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Editor Summary: Differences in gene expression between individual cells of the 
same type are measured across batches and used to correct technical artefacts in 
single-cell RNA sequencing data 
 
 
Large-scale single-cell RNA sequencing (scRNA-seq) datasets that are 
produced in different laboratories and at different times contain batch effects 
that could compromise integration and interpretation of these data. Existing 
scRNA-seq analysis methods incorrectly assume that the composition of cell 
populations is either known, or the same, across batches. We present a 
strategy for batch correction that is based on the detection of mutual nearest 
neighbours (MNN) in the high-dimensional expression space. Our approach 
does not rely on pre-defined or equal population compositions across 
batches, and only requires that a subset of the population be shared between 
batches. We demonstrate the superiority of our approach over existing 
methods using both simulated and real scRNA-seq data sets. Using multiple 
droplet-based scRNA-seq data sets, we demonstrate that our MNN batch-effect 
correction method scales to large numbers of cells.  
 
 
INTRODUCTION 
The decreasing cost of single-cell RNA sequencing experiments [1] [2] [3] [4] has 

encouraged the establishment of large-scale projects such as the Human Cell Atlas, 

which profile the transcriptomes of thousands to millions of cells. For such large 

studies, logistical constraints inevitably dictate that data are generated separately 

i.e., at different times and with different operators. Data may also be generated in 

multiple laboratories using different cell dissociation and handling protocols, library 

preparation technologies and/or sequencing platforms. All of these factors result in 

batch effects  [5] [6] , where the expression of genes in one batch differs 

systematically from those in another batch. Such differences can mask underlying 



biology or introduce spurious structure in the data, and must be corrected prior to 

further analysis to avoid misleading conclusions.  

 

Most existing methods for batch correction are based on linear regression. The 

limma package provides the removeBatchEffect function [7], which fits a linear model 

containing a blocking term for the batch structure to the expression values for each 

gene. Subsequently, the coefficient for each blocking term is set to zero and the 

expression values are computed from the remaining terms and residuals, yielding a 

new expression matrix without batch effects. The ComBat method [8] uses a similar 

strategy but performs an additional step involving empirical Bayes shrinkage of the 

blocking coefficient estimates. This stabilizes the estimates in the presence of limited 

replicates by sharing information across genes. Other methods such as RUVseq [9] 

and svaseq  [10]  are also frequently used for batch correction, but focus primarily on 

identifying unknown factors of variation, e.g., due to unrecorded experimental 

differences in cell processing. Once these factors are identified, their effects can be 

regressed out as described previously. 

 

Existing batch correction methods were specifically designed for bulk RNA-seq. 

Thus, their applications to scRNA-seq data assume that the composition of the cell 

population within each batch is identical. Any systematic differences in the mean 

gene expression between batches are attributed to technical differences that can be 

regressed out. However, in practice, population composition is usually not identical 

across batches in scRNA-seq studies. Even assuming that the same cell types are 

present in each batch, the abundance of each cell type in the data set can change 

depending upon subtle differences in cell culture or tissue extraction, dissociation 

and sorting, etc. Consequently, the estimated coefficients for the batch blocking 

factors are not purely technical, but contain a non-zero biological component due to 

differences in composition. Batch correction based on these coefficients will thus 

yield inaccurate representations of the cellular 

expression proles, potentially yielding worse results than if no correction was 

performed.  

 



An alternative approach for data merging and comparison in the presence of batch 

effects uses a set of landmarks from a reference data set to project new data onto 

the reference [11] [12]. The rationale here is that a given cell type in the reference 

batch is most similar to cells of its own type in the new batch. Such projection 

strategies can be applied using several dimensionality reduction methods such as 

principal components analysis (PCA), diffusion maps or by force-based methods 

such as t-distributed stochastic nearest-neighbour embedding (t-SNE). This strategy 

depends on the selection of landmark points in high dimensional space picked from 

the reference data set, which cover all cell types that might appear in the later 

batches. However, if the new batches include cell types that fall outside the 

transcriptional space explored in the reference batch, these cell types will not be 

projected to an appropriate position in the space defined by the landmarks 

(Supplementary Note 1). 

 

Here, we propose a new method for removal of discrepancies between biologically 

related batches based on the presence of mutual nearest neighbours (MNNs) 

between batches, which are considered to define the most similar cells of the same 

type across batches. The difference in expression values between cells in a MNN 

pair provides an estimate of the batch effect, which is made more precise by 

averaging across many such pairs. A correction vector is obtained from the 

estimated batch effect and applied to the expression values to perform batch 

correction. Our approach automatically identifies overlaps in population composition 

between batches and uses only the overlapping subsets for correction, thus avoiding 

the assumption of equal composition required by other methods. We demonstrate 

that our approach outperforms existing methods on a range of simulated and real 

scRNA-seq data sets involving different biological systems and technologies. 

 

RESULTS 
Matching mutual nearest neighbours for batch correction 

 

Our approach identifies cells between different experimental batches or replicates 

that have mutually similar expression profiles. We infer that any differences between 



these cells in the high-dimensional gene expression space are driven by batch 

effects (i.e., technical differences induced by the operator or other experimental 

artefacts) and do not represent the underlying biology of interest. We note that our 

definition of a batch effect may also incorporate some signal driven by biological 

features that are not of interest (e.g., differences between samples due to genotype).  

Upon correction, multiple batches can be “joined up" into a single data set (Figure 

1a). 

 

The first step of our method involves global scaling of the data using a cosine 

normalization. More precisely, if Y" is the expression vector for cell x, we define the 

cosine normalization as: 

𝑌% ←
𝑌%

∥ 𝑌% ∥
																							(1) 

 

Subsequently, we compute the Euclidean distance between the cosine-normalized 

expression profiles of pairs of cells. Calculating Euclidean distances on this 

normalised data is equivalent to the use of cosine distances on the original 

expression values (Supplementary Note 2). Cosine distances have been widely used 

for measuring cell similarities based on their expression profiles [11] [13] [14] [15] 

and are appealing as they are scale-independent [15], which makes them robust to 

technical differences in sequencing depth and capture efficiency between batches. 

 

The next step involves identification of mutual nearest neighbours. Consider a 

scRNA-seq experiment consisting of two batches 1 and 2. For each cell i- in batch 1, 

we find the k cells in batch 2 with the smallest distances to i-, i.e., its 𝑘 nearest 

neighbours in batch 2. We do the same for each cell in batch 2 to find its 𝑘 nearest 

neighbours in batch 1. If a pair of cells from each batch are contained in each other's 

set of nearest neighbours, those cells are considered to be mutual nearest 

neighbours (Figure 1b). We interpret these pairs as containing cells that belong to 

the same cell type or state, despite being generated in different batches. This means 

that any systematic differences in expression level between cells in MNN pairs 

should represent the batch effect. 



 

Our use of MNN pairs involves three assumptions: (i) there is at least one cell 

population that is present in both batches, (ii) the batch effect is almost orthogonal to 

the biological subspace, and (iii) batch effect variation is much smaller than the 

biological effect variation between different cell types (see Supplementary Note 3 for 

a more detailed discussion of these assumptions). The biological subspace refers to 

a set of basis vectors, each of length equal to the number of genes, which represent 

biological processes. For example, some of these vectors may represent the cell 

cycle; some vectors may define expression profiles specific to each cell type; while 

other vectors may represent differentiation or activation states. The true expression 

profile of each cell can be expressed as a linear sum of these vectors. Meanwhile, 

the batch effect is represented by a vector of length equal to the number of genes, 

which is added to the expression profile for each cell in the same batch. Under our 

assumptions, it is straightforward to show that cells from the same population in 

different batches will form MNN pairs (Supplementary Note 4). This can be more 

intuitively understood by realizing that cells from the same population in different 

batches form parallel hyperplanes with respect to each other (Figure 1b). We also 

note that the orthogonality assumption is weak for a random one-dimensional batch 

effect vector in high-dimensional data, especially given that local biological 

subspaces usually have much lower intrinsic dimensionality than the total number of 

genes in the data set. 

 

For each MNN pair, a pair-specific batch correction vector is computed as the vector 

difference between the expression profiles of the paired cells. While a set of 

biologically relevant genes (e.g. highly variable genes) can facilitate identification of 

MNNs, the calculation of batch vectors does not need to be performed in the same 

space. Therefore, we can calculate the batch vectors for a different set of inquiry 

genes (Supplementary Note 5). A cell-specific batch correction vector is then 

calculated as a weighted average of these pair-specific vectors, computed using a 

Gaussian kernel. This approach stabilizes the correction for each cell and ensures 

that it changes smoothly between adjacent cells in the high-dimensional 



expression space. This Gaussian smoothing of batch vectors enables a locally 

linear batch correction, i.e., each MNN pair batch vector will contribute to the batch 
effect for cells in the neighbourhood of the corresponding pair within each batch. 

Such locally linear correction of batch effects results in an overall correction that can 

tolerate non-constant batch effects (Supplementary Figure 1). We emphasize that 

this correction is performed for all cells, regardless of whether or not they participate 

in a MNN pair. This means that correction can be performed on all cells in each 

batch, even if they do not have a corresponding cell type in the other batches. 

 

 
 
Figure 1: Schematics of batch effect correction by MNN. (a) Batch 1 and batch 2 in high dimensions 
with an almost orthogonal batch effect difference between them. (b) The algorithm identifies matching 
cell types by finding mutual nearest neighbouring pairs of cells (grey box). (c) Batch correction vectors 
are calculated between the MNN pairs. (d) Batch 1 is regarded as the reference and batch 2 is 
integrated into it by subtraction of correction vectors. (e) The integrated data are considered as the 
reference and the procedure is repeated for integration of any new batch. 
 
 
 
MNN correction outperforms existing methods on simulated data 

 

We generated simulated data for a simple scenario with two batches of cells, each 

consisting of varying proportions of three cell types (Online Methods). We applied 
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each batch correction method – our MNN-based correction method, limma and 

ComBat – to the simulated data, and evaluated the results by inspection of t-SNE 

plots [16] (Online Methods). Proper removal of the batch effect should result in the 

formation of three clusters, one for each cell type, where each cluster contains a 

mixture of cells from both batches. However, we only observed this ideal result after 

MNN correction (Figure 2). Expression data that were uncorrected or corrected with 

the other methods exhibited at least one cluster containing cells from only a single 

batch, indicating that the batch effect was not fully removed. This is fully attributable 

to the differences in population composition, as discussed earlier. Repeating the 

simulation with identical proportions of all cell types in each batch yielded equivalent 

performance for all methods (Supplementary Figure 2). 

 

 
 
Figure 2: t-SNE plots of simulated scRNA-seq data containing two batches of different cell types (with 
each batch containing n=1000 cells), (a) before and after correction with (b) our MNN method, (c) 
limma or (d) ComBat. In this simulation, each batch (closed circle or open triangle) contained different 
numbers of cells in each of three cell types (specified by colour). 
 
 
MNN correction outperforms existing methods on haematopoietic data 
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To demonstrate the applicability of our method on real data, we considered two 

haematopietic data sets generated in different laboratories using two different 

scRNA-seq protocols. In the first data set [12], the authors used the SMART-seq2 

protocol [17] to profile single cells from haematopoietic stem and progenitor cell 

(HSPC) populations in 12-week-old female mice. Using marker expression profiles 

from fluorescence-activated cell sorting (FACS), known cell type labels were 

retrospectively assigned to cells (Online Methods). This included multipotent 

progenitors (MPP), lymphoid-primed multipotent progenitors (LMPP), haematopoietic 

stem and progenitor cells (HSP), haematopoietic stem cells (HSC), common myeloid 

progenitors (CMP), granulocyte-monocyte progenitors (GMP), and megakaryocyte-

erythrocyte progenitors (MEP). In the second data set [18], the authors used the 

MARS-seq protocol to assess single-cell heterogeneity in myeloid progenitors for 6-

to 8-week-old female mice. Again, indexed FACS was used to assign a cell type 

label (MEP, GMP or CMP) to each cell. 

 

To assess performance, we performed t-SNE dimensionality reduction on the 

expression data of the highly variable genes, before and after correction using each 

of the three methods (MNN, limma and ComBat) (Figure 3, a-d and Online Methods). 

Only MNN correction was able to correctly merge the cell types that were shared 

between batches, i.e., CMPs, MEPs and GMPs, while preserving the underlying 

differentiation hierarchy [12] [18] (Figure 3e). In contrast, the shared cell types still 

clustered by batch after correction with limma or ComBat, indicating that the batch 

effect had not been completely removed (see Supplementary Figure 3 for colouring 

by batch). This is attributable to the differences in cell type composition between 

batches, consistent with the simulation results. To ensure that these results were not 

due to an idiosyncrasy of the t-SNE method, we repeated our analysis with an 

alternative dimensionality reduction approach (PCA) using only the common cell 

types between the two batches (Figure 3 f-i). MNN correction was still the most 

effective at removing the batch effect compared to the other methods. 

 

As a justification for the orthogonality of batch effect to the biological hyperplane, we 

present a histogram of the angle between the batch vectors calculated by MNN and 



the first two singular value decomposition (SVD) components of the reference batch 

used in MNN (i.e., the SMART-seq2 data set). Most angles are close to 90°, 

supporting the near-orthogonality assumption (Supplementary Figure 3 e). A 

diffusion map [19] of the MNN corrected data (Supplementary Figure 3 f-h) shows 

the same differentiation hierarchy of cell types as observed in Figure 3e. Repeating 

the same analysis on a subset of randomly sampled genes (1500 out of the total of 

3904 highly variable genes), yielded similar results, thus demonstrating the 

robustness of our analysis with respect to the input gene set (Supplementary Figure 

4). 

 

 
 
Figure 3: t-SNE plots of scRNA-seq count data for cells from the haematopoietic lineage, prepared in 
two batches using different technologies (SMART-seq2 with n=1920 cells, closed circle; MARS-seq, 
with n=2729 cells, open circle). Plots were generated (a) before and after batch correction using (b) 
our MNN method, (c) limma or (d) ComBat. Cells are coloured according to their annotated cell type. 
(e) The expected hierarchy of haematopoietic cell types. PCA plots of scRNA-seq count data for 
common cells types between the two batches of the haematopoietic lineage generated (SMART-seq2 
with n=791 cells and MARS-seq, with n=2729 cells) (f) before and after batch correction using (g) our 
MNN method, (h) limma or (i) ComBat. 
 
MNN correction outperforms existing methods on a pancreas data set 
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We further tested the ability of our method to combine more complex data sets 

generated using a variety of different methods. Here, we focused on the pancreas as 

it is a highly heterogeneous tissue with several well-defined cell types. We combined 

scRNA-seq data on human pancreas cells from four different publicly available data 

sets  [20] [21] [22] [23], generated with two different scRNA-seq protocols (SMART-

seq2 and CELseq/ CEL-seq2). Cell type labels were taken from the provided 

metadata, or derived by following the methodology described in the original 

publication (see Online Methods for further details of data preprocessing). 

 

We applied MNN, limma and ComBat to the combined data set and examined the 

corrected data. All three batch correction methods improve the grouping of cells by 

their cell type labels (Online Methods, Supplementary Figure 5a-d). This is not 

surprising, as the discrepancy between cell type composition in the four batches is 

modest (Supplementary Table 1). However, even a small difference in composition 

is sufficient to cause ductal and acinar cells to be incorrectly separated following 

correction with limma or ComBat. By comparison, both cell types are coherently 

grouped across batches following MNN correction, consistent with the simulation 

results. To determine the effect of correction on the quality of cell type-based 

clustering, we assessed cluster separation by computing the average Silhouette 

widths for each cell type (Supplementary Figure 5, Online Methods). The average 

Silhouette coefficient after MNN correction is significantly larger than those in the 

uncorrected, limma and ComBat-corrected data (𝑝 < 0:05, two-sided Welch's t-test). 

Thus, MNN correction is able to reduce the between-batch variance within each cell 

type while preserving differences between cell types. We also computed the entropy 

of mixing (Online Methods) to quantify the extent of intermingling of cells from 

different batches. Batch corrected data using MNN show higher entropy of mixing 

compared to the uncorrected data and corrected data using limma or ComBat 

(Supplementary Figure 5). The improvement in the mixing of batches is observed in 

the reduced dimension space by either t-SNE or PCA (Supplementary Figure 5e-l). 

We again illustrate our assumption that batch effects are adequately removed when 

they lie orthogonally to the biological subspace (Supplementary Figure 5m-o). The 

observed structure in the pancreas data is robust to the size of the input gene set, 



demonstrated by random subsampling of the total highly variable gene set 

(Supplementary Figure 6).  

 

MNN correction improves differential expression analyses  
 

Once batch correction is performed, the corrected expression values can be used in 

routine downstream analyses such as clustering and differential gene expression 

identification. To demonstrate, we used the MNN-corrected expression matrix to 

simultaneously cluster cells from all four pancreas data sets. Our new cluster labels 

were in agreement with the previous cell type assignments based on the individual 

batches, with an adjusted Rand index of 0.94 (a Rand index of 0 is equivalent to a 

random assignment, whilst a Rand index of 1 denotes a perfect match between 

previous and new assignments). Importantly, we obtained clusters for all batches in 

a single clustering step. This ensures that the cluster labels are directly comparable 

between cells in different batches. In contrast, if clustering were performed 

separately in each batch, there is no guarantee that a (weakly-separated) cluster 

detected in one batch has a direct counterpart in another batch. 

 

We used our new clusters to perform a differential expression (DE) analysis between 

the 𝛿-islet cluster and the 𝛾-islet cluster. Using cells from all batches, we detected 76 

differentially expressed genes at a false discovery rate (FDR) of 5% (Figure 4c). This 

set included the marker genes for the cells included in the analysis (PPY, SST), 

genes involved in pancreatic islet cell development (PAX6) and genes recently 

implicated in 𝛿-islet function and type 2 diabetes development (CD9, HADH) [22]. 

For comparison, we repeated the DE analysis using only cells from each batch in 

which both cell types were present [21] [22] [20]. This yielded only 12, 59 and 88 

genes respectively, at a FDR of 5%, which encompass 14.5-57.9% of those detected 

using all cells (Figure 4d). Merging data sets is beneficial as it increases the number 

of cells without extra experimental work; improves statistical power for downstream 

analyses such as differential gene expression; and in doing so, provides additional 

biological insights. To this end, our MNN approach is critical as it ensures that 

merging is performed in a coherent manner. 



 
MNN correction is applicable to droplet RNA-seq technology 

 

The advent of droplet-based cell capture, lysis, RNA reverse transcription and 

subsequent expression profiling by sequencing has allowed single cell expression 

experiments to be scaled up to tens and hundreds of thousands of cells [2] [3] [24]. 

These technologies are ideal for testing the scalability and applicability of our 

correction method to large scRNA-seq data sets. We specifically applied our MNN 

approach to two large data sets of droplet-based scRNA-seq derived from the 

commercial 10X Genomics Chromium platform [24]. We selected data sets in which 

there were a mixture of cell identities and complexities; namely 68,000 peripheral 

blood mononuclear cells (PBMCs) and 4,000 T cells, derived from different donors. 

PBMCs contain a milieu of peripheral adaptive and innate immune white blood cells 

as they circulate through the human vasculature, while peripheral T cells contain a 

mixture of naïve and antigen-exposed lymphocytes involved in active immune 

surveillance. 

 

A naive merging of these two data sets without accounting for batch effects 

illustrates the separation of the T cells from their counterparts in the PBMC data 

(Figure 5a,b). Combination of these two data sets using MNNs demonstrates that 

the separate peripheral T cells map to the T cell subsets within the PBMC mixture 

(Figure 5c,d). Importantly, other peripheral lymphocyte relationships are not distorted 
by the correction applied, despite the absence of MNNs in the T cell data set (Figure 

5c). Specifically, we note that 4446/4459 (99.7%) of individual T cells map onto their 

appropriate counterparts in the PBMC data set (Figure 5). The remaining 13/4459 

(0.3%) map primarily to a small cluster of unknown ontogeny and to the edges of a 

large cluster of monocytes. Conversely, 14 non-T cells (0.3%; specifically 

monocytes) mapped to T cell clusters inappropriately. 

 

As the size of single cell expression data sets increases, there will be a growing 

need for computational methods that can scale up to meet these requirements. To 

demonstrate the scalability of our method, we sampled different proportions of cells 



from the 68K PBMC data set, and corrected the batch effect between each 

subsample and the 4K T cell data. Within the range of 7,000 to 70,000 cells we see 

an approximately linear time increase (Figure 5e). This demonstrates that our 

method is applicable to both the nature of droplet technology-derived single cell 

expression data, and the scale of current and future data sets. 

 

 

 
 
Figure 4: Application of MNN batch correction to pancreas cells using four data sets (GSE81076 with 
n=1007, GSE86473 with n= 2331, GSE85241 with n=1595 and E-MTAB-5061 with n=2163 cells) 
measured on two different platforms, CEL-seq(2) and SMART-seq2. t-SNE plots for (a) uncorrected 
(raw) data and (b) data corrected with our MNN method. The different batches are represented by 
four colours in the top panel of (a) and (b), whilst the different cell types are denoted in the bottom 



panels by distinct colours. (c) Combining data sets by using MNN correction increases the power to 
detect differentially expressed genes. Volcano plots of differential expression testing in a single data 
set (GSE81076; 𝛿-cells=54, 𝛾-cells=19, left panel) and using the new cell type labels after MNN 
correction (Combined; 𝛿-cells=428, 𝛾-cells=425, right panel). The y-axis represents the -log10 
Benjamini- Hochberg adjusted p-value (-log10 p-value > 100 are censored at 100 for comparable 
scales), and the x-axis is the log2 fold change of expression in cells over cells. Individual gene 
symbols are labelled where |log2 fold change| > 3. More genes are consistently differentially 
expressed at a FDR 5% in the combined data sets. (d) Venn diagrams representing the intersection of 
differentially expressed genes using the cell type labels after batch correction (blue circle) and using 
the original cell type labels from each individual study (orange circle). Numbers in each segment are 
the total number of DE genes between 𝛿	and 𝛾 islet cells in each batch. Each Venn diagram 
corresponds to a batch in which both cell types are present. 
 



 
Figure 5: MNN batch correction scales to tens of thousands of cells. t-SNE plots of scRNA-seq data 
of human peripheral blood mononuclear cells and T cells (n=73039 cells), prior to batch correction (a, 
c) and following MNN correction (b, d). Individual points are coloured by their original cell type labels 
(c, d) and by the study batch of origin (a, b). (e) CPU time increases linearly in the number of input 
cells to MNN correction. Points represent the number of sub-sampled cells; the red dashed line 
represents the linear t between CPU time (minutes) and number of cells. 
 

 

 
 



Discussion 
 

Proper removal of batch effects is critical for valid data analysis and interpretation of 

the results. This is especially pertinent as the scale and scope of scRNA-seq 

experiments increase, exceeding the capacity of data generation within a single 

batch. To answer the relevant biological questions, merging data from different 

batches -  generated by different protocols, operators and/or platforms - is required. 

However, for biological systems that are highly heterogeneous, it is likely that the 

composition of cell types and states will change across batches, due to stochastic 

and uncontrollable biological variability. 

 

Existing batch correction methods do not account for differences in cell composition 

between batches and fail to fully remove the batch effect in such cases. This can 

lead to misleading conclusions whereby batch-specific clusters are incorrectly 

interpreted as distinct cell types. We demonstrate that our MNN method is able to 

successfully remove the batch effect in the presence of differences in composition, 

using both simulated data and real scRNA-seq data sets as well as demonstrating its 

scalability. 

 

One prerequisite for our MNN method is that each batch contains at least one 

shared cell population with another batch. This is necessary for the correct 

identification of MNN pairs between batches. Batches without any shared structure 

are inherently difficult to correct, as the batch effects are completely confounded with 

biological differences. Such cases provide a motivation for using “cell controls”, i.e., 

an easily reproducible cell population of known composition (from a cell line for 

example) that is spiked into each sample for the purpose of removing batch effects 

across samples. 

 

A notable feature of our MNN correction method is that it adjusts for local variations 

in the batch effects by using a Gaussian kernel. This means that our method can 

accommodate differences in the size or direction of the batch effect between 

different cell subpopulations in the high-dimensional space. Such differences are not 



easily handled by methods based on linear models (as this would require explicit 

modelling of pre-defined groupings of cells, which would defeat the purpose of using 

scRNA-seq to study population heterogeneity in the first place). This also has some 

implications for the use of cell controls. Our results for the pancreas data set suggest 

that considering cell-type specific batch effects (the default setting of MNN) rather 

than a globally constant batch effect for all cells, improves batch removal results 

(Supplementary Figure 7). An important consequence is that a single cell control 

population might not suffice for accurate estimation of local batch effects. Rather, it 

may be necessary to use an appropriately mixed population of cells to properly 

account for local variation. 

 

We have demonstrated in simulations and real data sets that MNN successfully 

combines cells with the same cell type label, by bringing cells from different batches 

onto a common coordinate system which is defined by the first (reference) batch, 

such that all batches can be analysed together. Therefore, MNN eliminates 

discrepancies between related batches without an analysis or interpretation of the 

origins and causes of batch effects (between each pair of batches). The study of 

technical and biological origins of these discrepancies may also be interesting. For 

instance, where one batch contains cells from a gene knock-out experiment and the 

other batch contains cells from a wild-type organism. In such cases we could 

potentially examine the correction vectors (provided as an output of the MNN 

algorithm) to understand the differences between batches.  

 

Batch correction plays a critical role in the interpretation of data from scRNA-seq 

studies. This includes both small studies, where logistical constraints preclude the 

generation of data in a single batch; as well as those involving international consortia 

such as the Human Cell Atlas, where scRNA-seq data is generated on a variety of 

related tissues at different times and by multiple laboratories. Our MNN method 

provides a superior alternative to existing methods for batch correction in the 

presence of compositional differences between batches. We anticipate that it will 

improve the rigour of scRNA-seq data analysis and, thus, the quality of the biological 

conclusions. 
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Online Methods 

 
Generation and analysis of simulated data 

 

We considered a three-component Gaussian mixture model in two dimensions (to 

represent the low dimensional biological subspace), where each mixture component 

represents a different simulated cell type. Two data sets with N = 1000 cells were 

drawn with different mixing coefficients (0.2, 0.3 and 0.5 for the first batch and 0.05, 

0.65 and 0.3 for the second batch) for the three cell types. We then projected 

both data sets to G = 100 dimensions using the same random Gaussian matrix, thus 

simulating high-dimensional gene expression. Batch effects were incorporated by 

generating a Gaussian random vector for each data set and adding it to the 

expression profiles for all cells in that data set. 

 
Processing and analysis of the haemaopoetic data sets 

 

Gene expression counts generated by Nestorowa et al. [12] on the SMART-seq2 

platform (1920 cells in total) were downloaded from the NCBI Gene Expression 

Omnibus (GEO) using the accession number GSE81682. Expression counts 

generated by Paul et al. [18] on the MARS-seq platform (10368 cells in total) were 

obtained from NCBI GEO using the accession GSE72857. Then, using FACS 

sorting, the authors identified 2729 myeloid progenitor cells (CMP, GMP, and MEP) 

as Lin− (lineage negative) c-Kit+ Sca1− and gated the cells further by the levels of 

the FcgR and CD34 markers; these cells were used for the analysis in this 

manuscript. For batch correction, we identified a set of 3937 common highly 

variable genes between the two data sets, by applying the method described by 

Brennecke et al. [25] to each data set. For both data sets, we performed library size 

normalization before log-transforming the normalized expression values. A priori cell 

labels were assigned to each cell based on the original publications. 



 
Processing and analysis of the pancreas data sets 

 

Raw data were obtained from NCBI GEO using the accession numbers GSE81076 

[20] (CEL-seq), GSE85241 [21](CEL-seq2) and GSE86473 [22] (SMART-seq2); or 

from ArrayExpress, using the accession E-MTAB-5061 [23] (SMART-seq2). Count 

matrices were used as provided by GEO or ArrayExpress, if available. For 

GSE86473, reads were aligned to the hg38 build of the human genome using STAR 

version 2.4.2a [26] with default parameters, and assigned to Ensembl build 86 

protein-coding genes using featureCounts version 1.4.6 [27]. 

 

Quality control was performed on each data set independently to remove poor 

quality cells (>20% of total counts from spike-in transcripts, <100,000 reads, >40% 

total counts from ribosomal RNA genes). Sparse cells and genes (90% zero values) 

were also removed, leaving a total of 7236 cells available across all 4 data sets. 

Normalization of cell-specific biases was performed for each data set using the 

deconvolution method of Lun et al. [28]. Counts were divided by size factors to 

obtain normalised expression values that were log-transformed after adding a 

pseudo-count of 1. Highly variable genes were identified in each data set using the 

method of Brennecke at al. [25]. We took the union of highly variable genes that are 

commonly expressed across all four data sets, resulting in 2507 genes that were 

used for the MNN batch correction. 

 

Cell type labels for each data set were assigned based on the provided metadata 

(GSE86473, EMTAB-5061) or, if the labels were not provided, were inferred from the 

data using the method employed in the original publication (GSE81076, GSE85241). 

 

To demonstrate the utility of our batch correction method in downstream analyses, 

we applied dimensionality reduction (t-SNE) to the MNN-corrected expression matrix 

from the pooled pancreas data sets. We constructed a shared-nearest-neighbour 

(SNN) graph [29] using the combined cells and the union of the highly variable genes 

that were commonly expressed across all data set. To identify communities of cells 



we applied the “Walktrap" algorithm to the SNN graph [30], with 5 steps. This 

identified a total of 11 clusters. To assign specific cell type labels to these clusters, 

we examined the expression of the marker genes that were used for cell type 

assignment in the original publications. Specifically, GCG was used to mark 𝛼-islets, 

INS for 𝛽-islets, SST for 𝛿-islets, PPY for 𝛾-islets, PRSS1 for acinar cells, KRT19 for 

ductal cells, and COL1A1 for mesenchyme cells. Cells in the cluster with the highest 

expression of each marker gene were assigned to the corresponding cell type. All 

remaining cells were allocated into an additional “Unassigned/Unknown" cluster.  

 

The differential expression analysis was performed using methods from the limma 

package [7]. For the analysis on all cells, we parameterized the design matrix such 

that each batch-cluster combination formed a separate group in a one-way layout 

using the labels derived from the batch-corrected data (see above). We used this 

design to fit a linear model to the normalized uncorrected log-expression values for 

each gene, and performed empirical Bayes shrinkage to stabilize the sample 

variances. A moderated t-test was applied to compare the 𝛿- and 𝛾-islet clusters 

across all batches. Specifically, we tested whether the average expression of each 

cluster across all batches was equal between the two cell types. Differentially 

expressed genes were defined as those detected at an FDR of 5%. For comparison, 

we repeated this analysis for each batch using only cells from batches where both 

cell types were present. Here, we used a design matrix with a one-way layout 

constructed from the original cell type assignments. 𝛿- and 𝛾-islet cell types were 

directly compared within this batch. 

 

Application of batch correction to droplet-based data 
 
Single-cell gene expression measurements derived from the droplet-based platform 

by 10X Genomics using their Chromium v2 chemistry were downloaded from the 

company website 

(https://support.10xgenomics.com/single-cell-gene-expression/datasets ). 

Expression data from 4459 human T cells (t_4k) and 68,580 peripheral blood 

mononuclear cells (PBMCs; pbmc68k) from two separate donors were normalised 



separately using size factors estimated by the deconvolution method as previously 

described [28]. Highly variable genes were defined within each data set as 

previously described [25] (PBMC - 1409 genes, T cells - 1219). To define 

communities of transcriptionally similar cells, we constructed a SNN graph, and 

assigned cells to specific communities using the Walktrap algorithm. The identity of 

each community was assigned by visualisation of canonical marker gene expression 

to major leukocyte lineages (CD3, CD20, CD14, CD16, CD1C, CD56). Droplet data 

sets were combined using our MNN approach on the intersection of the two highly 

variable gene sets (270 genes). Low-dimensional representations of individual and 

combined data sets was performed using t-SNE. 

 

MNN correction scalability 

 

Scalability testing of our MNN correction method was performed by random sampling 

of cells between 10 and 100% of the total number of PBMCs, i.e., where 100% = 

68,000 cells. We combined each subset with the set of 4459 T cells, and recorded 

the CPU time in the R environment (R Core Team 2017) using the system.time 

function. For each combination of data, the R environment garbage collector 

was invoked prior to recording the function call system time. 

 

t-SNE plots 
 

We generated the t-SNE plots using the Rtsne package with identical parameter 

settings for the uncorrected and batch corrected data using MNN, limma and 

ComBat. In all plots, we have used the distance matrix as the input for the Rtsne 

function (i.e., Rtsne parameter is.distance=TRUE). For the haematopoietic data 

where continuity of data structure is expected, we accounted for this by choosing 

a large perplexity parameter (i.e., 90). For all other data sets where existence of 

separate clusters in the data is expected, we have used the default perplexity 

parameter (i.e., 30), and again have used identical parameter settings across all 

batch correction methods. 

 



Silhouette coefficient 
 

To assess the separation of the cell types for the pancreas data, we computed the 

silhouette coefficient using the kBET package in R [31]. Here, each unique cell type 

label defines a cluster of cells. Let 𝑎(𝑖) be the average distance of cell 𝑖 to all other 

cells within the same cluster as 𝑖, and 𝑏 𝑖  be the average distance of cell 𝑖 to all 

cells assigned to the neighbouring cluster, i.e., the cluster with the lowest average 

distance to the cluster of 𝑖. The Silhouette coefficient for cell 𝑖 is defined as: 

 

𝑠 𝑖 =

1 −
𝑎 𝑖
𝑏 𝑖 								𝑖𝑓	𝑎 𝑖 	< 		𝑏 𝑖

0																			𝑖𝑓		𝑎 𝑖 	= 	𝑏 𝑖 				

𝑏 𝑖
𝑎 𝑖 − 1										𝑖𝑓		𝑎 𝑖 > 	𝑏(𝑖)					

																				 2  

 

A larger 𝑠(𝑖) implies that the cluster assignment for cell 𝑖 is appropriate, i.e., it is 

close to other cells in the same cluster yet distant from cells in other clusters. As 

dimensionality reduction by t-SNE facilitates more reasonable clustering results 

compared to clustering in the high dimensions, we calculated the silhouette 

coefficients using distance matrices computed from the t-SNE coordinates of each 

cell in the batch-corrected and the uncorrected data. 

 

 

Entropy of batch mixing 
 

Entropy of mixing [32] for 𝑐 different batches is defined as: 

 

𝐸 = 𝑥B

C

BD-

log(𝑥B)																(3) 

 



where 𝑥B is the proportion of cells from batch 𝑖	in a given region, such that 𝑥BC
BD- =

1. We assessed the total entropy of batch mixing on the first two PCs of the batch-

corrected and the uncorrected pancreas data sets, using regional mixing entropies 

according to Equation 3 at the location of 100 randomly chosen cells from all 

batches. The regional proportion of cells from each batch was defined from the set of 

100 nearest neighbours for each randomly chosen cell. The total mixing entropy was 

then calculated as the sum of the regional entropies. We repeated this for 100 

iterations with different randomly chosen cells to generate boxplots of the total 

entropy (Supplementary Figures 5q and 6q). 

 

A Life Sciences Reporting Summary is available.  
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Software availability 

An open-source software implementation of our MNN method is available as the 

mnnCorrect function in version 1.6.2 of the scran package on Bioconductor 

(https://bioconductor.org/packages/scran ). All code for producing results and figures 

in this manuscript are available on Github (https://github.com/MarioniLab/MNN2017). 
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