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Editor Summary: Differences in gene expression between individual cells of the
same type are measured across batches and used to correct technical artefacts in
single-cell RNA sequencing data

Large-scale single-cell RNA sequencing (scRNA-seq) datasets that are
produced in different laboratories and at different times contain batch effects
that could compromise integration and interpretation of these data. Existing
scRNA-seq analysis methods incorrectly assume that the composition of cell
populations is either known, or the same, across batches. We present a
strategy for batch correction that is based on the detection of mutual nearest
neighbours (MNN) in the high-dimensional expression space. Our approach
does not rely on pre-defined or equal population compositions across
batches, and only requires that a subset of the population be shared between
batches. We demonstrate the superiority of our approach over existing
methods using both simulated and real scRNA-seq data sets. Using multiple
droplet-based scRNA-seq data sets, we demonstrate that our MNN batch-effect
correction method scales to large numbers of cells.

INTRODUCTION

The decreasing cost of single-cell RNA sequencing experiments [1] [2] [3] [4] has
encouraged the establishment of large-scale projects such as the Human Cell Atlas,
which profile the transcriptomes of thousands to millions of cells. For such large
studies, logistical constraints inevitably dictate that data are generated separately
i.e., at different times and with different operators. Data may also be generated in
multiple laboratories using different cell dissociation and handling protocols, library
preparation technologies and/or sequencing platforms. All of these factors result in
batch effects [5] [6] , where the expression of genes in one batch differs

systematically from those in another batch. Such differences can mask underlying



biology or introduce spurious structure in the data, and must be corrected prior to

further analysis to avoid misleading conclusions.

Most existing methods for batch correction are based on linear regression. The
limma package provides the removeBatchEffect function [7], which fits a linear model
containing a blocking term for the batch structure to the expression values for each
gene. Subsequently, the coefficient for each blocking term is set to zero and the
expression values are computed from the remaining terms and residuals, yielding a
new expression matrix without batch effects. The ComBat method [8] uses a similar
strategy but performs an additional step involving empirical Bayes shrinkage of the
blocking coefficient estimates. This stabilizes the estimates in the presence of limited
replicates by sharing information across genes. Other methods such as RUVseq [9]
and svaseq [10] are also frequently used for batch correction, but focus primarily on
identifying unknown factors of variation, e.g., due to unrecorded experimental
differences in cell processing. Once these factors are identified, their effects can be

regressed out as described previously.

Existing batch correction methods were specifically designed for bulk RNA-seq.
Thus, their applications to scRNA-seq data assume that the composition of the cell
population within each batch is identical. Any systematic differences in the mean
gene expression between batches are attributed to technical differences that can be
regressed out. However, in practice, population composition is usually not identical
across batches in scRNA-seq studies. Even assuming that the same cell types are
present in each batch, the abundance of each cell type in the data set can change
depending upon subtle differences in cell culture or tissue extraction, dissociation
and sorting, etc. Consequently, the estimated coefficients for the batch blocking
factors are not purely technical, but contain a non-zero biological component due to
differences in composition. Batch correction based on these coefficients will thus
yield inaccurate representations of the cellular

expression proles, potentially yielding worse results than if no correction was

performed.



An alternative approach for data merging and comparison in the presence of batch
effects uses a set of landmarks from a reference data set to project new data onto
the reference [11] [12]. The rationale here is that a given cell type in the reference
batch is most similar to cells of its own type in the new batch. Such projection
strategies can be applied using several dimensionality reduction methods such as
principal components analysis (PCA), diffusion maps or by force-based methods
such as t-distributed stochastic nearest-neighbour embedding (+-SNE). This strategy
depends on the selection of landmark points in high dimensional space picked from
the reference data set, which cover all cell types that might appear in the later
batches. However, if the new batches include cell types that fall outside the
transcriptional space explored in the reference batch, these cell types will not be
projected to an appropriate position in the space defined by the landmarks

(Supplementary Note 1).

Here, we propose a new method for removal of discrepancies between biologically
related batches based on the presence of mutual nearest neighbours (MNNSs)
between batches, which are considered to define the most similar cells of the same
type across batches. The difference in expression values between cells in a MNN
pair provides an estimate of the batch effect, which is made more precise by
averaging across many such pairs. A correction vector is obtained from the
estimated batch effect and applied to the expression values to perform batch
correction. Our approach automatically identifies overlaps in population composition
between batches and uses only the overlapping subsets for correction, thus avoiding
the assumption of equal composition required by other methods. We demonstrate
that our approach outperforms existing methods on a range of simulated and real

scRNA-seq data sets involving different biological systems and technologies.

RESULTS

Matching mutual nearest neighbours for batch correction

Our approach identifies cells between different experimental batches or replicates

that have mutually similar expression profiles. We infer that any differences between



these cells in the high-dimensional gene expression space are driven by batch
effects (i.e., technical differences induced by the operator or other experimental
artefacts) and do not represent the underlying biology of interest. We note that our
definition of a batch effect may also incorporate some signal driven by biological
features that are not of interest (e.g., differences between samples due to genotype).
Upon correction, multiple batches can be “joined up" into a single data set (Figure
1a).

The first step of our method involves global scaling of the data using a cosine
normalization. More precisely, if Y, is the expression vector for cell x, we define the
cosine normalization as:
Yy
Y, «
A

(1)

Subsequently, we compute the Euclidean distance between the cosine-normalized
expression profiles of pairs of cells. Calculating Euclidean distances on this
normalised data is equivalent to the use of cosine distances on the original
expression values (Supplementary Note 2). Cosine distances have been widely used
for measuring cell similarities based on their expression profiles [11] [13] [14] [15]
and are appealing as they are scale-independent [15], which makes them robust to

technical differences in sequencing depth and capture efficiency between batches.

The next step involves identification of mutual nearest neighbours. Consider a
scRNA-seq experiment consisting of two batches 1 and 2. For each cell i, in batch 1,
we find the k cells in batch 2 with the smallest distances to iy, i.e., its k nearest
neighbours in batch 2. We do the same for each cell in batch 2 to find its k nearest
neighbours in batch 1. If a pair of cells from each batch are contained in each other's
set of nearest neighbours, those cells are considered to be mutual nearest
neighbours (Figure 1b). We interpret these pairs as containing cells that belong to
the same cell type or state, despite being generated in different batches. This means
that any systematic differences in expression level between cells in MNN pairs

should represent the batch effect.



Our use of MNN pairs involves three assumptions: (i) there is at least one cell
population that is present in both batches, (ii) the batch effect is almost orthogonal to
the biological subspace, and (iii) batch effect variation is much smaller than the
biological effect variation between different cell types (see Supplementary Note 3 for
a more detailed discussion of these assumptions). The biological subspace refers to
a set of basis vectors, each of length equal to the number of genes, which represent
biological processes. For example, some of these vectors may represent the cell
cycle; some vectors may define expression profiles specific to each cell type; while
other vectors may represent differentiation or activation states. The true expression
profile of each cell can be expressed as a linear sum of these vectors. Meanwhile,
the batch effect is represented by a vector of length equal to the number of genes,
which is added to the expression profile for each cell in the same batch. Under our
assumptions, it is straightforward to show that cells from the same population in
different batches will form MNN pairs (Supplementary Note 4). This can be more
intuitively understood by realizing that cells from the same population in different
batches form parallel hyperplanes with respect to each other (Figure 1b). We also
note that the orthogonality assumption is weak for a random one-dimensional batch
effect vector in high-dimensional data, especially given that local biological
subspaces usually have much lower intrinsic dimensionality than the total number of

genes in the data set.

For each MNN pair, a pair-specific batch correction vector is computed as the vector
difference between the expression profiles of the paired cells. While a set of
biologically relevant genes (e.g. highly variable genes) can facilitate identification of
MNNSs, the calculation of batch vectors does not need to be performed in the same
space. Therefore, we can calculate the batch vectors for a different set of inquiry
genes (Supplementary Note 5). A cell-specific batch correction vector is then
calculated as a weighted average of these pair-specific vectors, computed using a
Gaussian kernel. This approach stabilizes the correction for each cell and ensures

that it changes smoothly between adjacent cells in the high-dimensional



expression space. This Gaussian smoothing of batch vectors enables a locally

linear batch correction, i.e., each MNN pair batch vector will contribute to the batch

effect for cells in the neighbourhood of the corresponding pair within each batch.

Such locally linear correction of batch effects results in an overall correction that can

tolerate non-constant batch effects (Supplementary Figure 1). We emphasize that

this correction is performed for all cells, regardless of whether or not they participate

in a MNN pair. This means that correction can be performed on all cells in each

batch, even if they do not have a corresponding cell type in the other batches.
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Figure 1: Schematics of batch effect correction by MNN. (a) Batch 1 and batch 2 in high dimensions
with an almost orthogonal batch effect difference between them. (b) The algorithm identifies matching
cell types by finding mutual nearest neighbouring pairs of cells (grey box). (c) Batch correction vectors
are calculated between the MNN pairs. (d) Batch 1 is regarded as the reference and batch 2 is
integrated into it by subtraction of correction vectors. (e) The integrated data are considered as the
reference and the procedure is repeated for integration of any new batch.

MNN correction outperforms existing methods on simulated data

We generated simulated data for a simple scenario with two batches of cells, each

consisting of varying proportions of three cell types (Online Methods). We applied



each batch correction method — our MNN-based correction method, limma and
ComBat — to the simulated data, and evaluated the results by inspection of +SNE
plots [16] (Online Methods). Proper removal of the batch effect should result in the
formation of three clusters, one for each cell type, where each cluster contains a
mixture of cells from both batches. However, we only observed this ideal result after
MNN correction (Figure 2). Expression data that were uncorrected or corrected with
the other methods exhibited at least one cluster containing cells from only a single
batch, indicating that the batch effect was not fully removed. This is fully attributable
to the differences in population composition, as discussed earlier. Repeating the
simulation with identical proportions of all cell types in each batch yielded equivalent

performance for all methods (Supplementary Figure 2).
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Figure 2: -SNE plots of simulated scRNA-seq data containing two batches of different cell types (with
each batch containing n=1000 cells), (a) before and after correction with (b) our MNN method, (c)
limma or (d) ComBat. In this simulation, each batch (closed circle or open triangle) contained different
numbers of cells in each of three cell types (specified by colour).

MNN correction outperforms existing methods on haematopoietic data



To demonstrate the applicability of our method on real data, we considered two
haematopietic data sets generated in different laboratories using two different
scRNA-seq protocols. In the first data set [12], the authors used the SMART-seq2
protocol [17] to profile single cells from haematopoietic stem and progenitor cell
(HSPC) populations in 12-week-old female mice. Using marker expression profiles
from fluorescence-activated cell sorting (FACS), known cell type labels were
retrospectively assigned to cells (Online Methods). This included multipotent
progenitors (MPP), lymphoid-primed multipotent progenitors (LMPP), haematopoietic
stem and progenitor cells (HSP), haematopoietic stem cells (HSC), common myeloid
progenitors (CMP), granulocyte-monocyte progenitors (GMP), and megakaryocyte-
erythrocyte progenitors (MEP). In the second data set [18], the authors used the
MARS-seq protocol to assess single-cell heterogeneity in myeloid progenitors for 6-
to 8-week-old female mice. Again, indexed FACS was used to assign a cell type
label (MEP, GMP or CMP) to each cell.

To assess performance, we performed -SNE dimensionality reduction on the
expression data of the highly variable genes, before and after correction using each
of the three methods (MNN, limma and ComBat) (Figure 3, a-d and Online Methods).
Only MNN correction was able to correctly merge the cell types that were shared
between batches, i.e., CMPs, MEPs and GMPs, while preserving the underlying
differentiation hierarchy [12] [18] (Figure 3e). In contrast, the shared cell types still
clustered by batch after correction with limma or ComBat, indicating that the batch
effect had not been completely removed (see Supplementary Figure 3 for colouring
by batch). This is attributable to the differences in cell type composition between
batches, consistent with the simulation results. To ensure that these results were not
due to an idiosyncrasy of the -SNE method, we repeated our analysis with an
alternative dimensionality reduction approach (PCA) using only the common cell
types between the two batches (Figure 3 f-i). MNN correction was still the most

effective at removing the batch effect compared to the other methods.

As a justification for the orthogonality of batch effect to the biological hyperplane, we

present a histogram of the angle between the batch vectors calculated by MNN and



the first two singular value decomposition (SVD) components of the reference batch
used in MNN (i.e., the SMART-seq2 data set). Most angles are close to 90°,
supporting the near-orthogonality assumption (Supplementary Figure 3 e). A
diffusion map [19] of the MNN corrected data (Supplementary Figure 3 f-h) shows
the same differentiation hierarchy of cell types as observed in Figure 3e. Repeating
the same analysis on a subset of randomly sampled genes (1500 out of the total of
3904 highly variable genes), yielded similar results, thus demonstrating the
robustness of our analysis with respect to the input gene set (Supplementary Figure
4).
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Figure 3: -SNE plots of scRNA-seq count data for cells from the haematopoietic lineage, prepared in
two batches using different technologies (SMART-seg2 with n=1920 cells, closed circle; MARS-seq,
with n=2729 cells, open circle). Plots were generated (a) before and after batch correction using (b)
our MNN method, (c) limma or (d) ComBat. Cells are coloured according to their annotated cell type.
(e) The expected hierarchy of haematopoietic cell types. PCA plots of scRNA-seq count data for
common cells types between the two batches of the haematopoietic lineage generated (SMART-seq2
with n=791 cells and MARS-seq, with n=2729 cells) (f) before and after batch correction using (g) our
MNN method, (h) limma or (i) ComBat.

MNN correction outperforms existing methods on a pancreas data set



We further tested the ability of our method to combine more complex data sets
generated using a variety of different methods. Here, we focused on the pancreas as
it is a highly heterogeneous tissue with several well-defined cell types. We combined
scRNA-seq data on human pancreas cells from four different publicly available data
sets [20] [21] [22] [23], generated with two different scRNA-seq protocols (SMART-
seg2 and CELseq/ CEL-seq2). Cell type labels were taken from the provided
metadata, or derived by following the methodology described in the original

publication (see Online Methods for further details of data preprocessing).

We applied MNN, limma and ComBat to the combined data set and examined the
corrected data. All three batch correction methods improve the grouping of cells by
their cell type labels (Online Methods, Supplementary Figure 5a-d). This is not
surprising, as the discrepancy between cell type composition in the four batches is
modest (Supplementary Table 1). However, even a small difference in composition
is sufficient to cause ductal and acinar cells to be incorrectly separated following
correction with limma or ComBat. By comparison, both cell types are coherently
grouped across batches following MNN correction, consistent with the simulation
results. To determine the effect of correction on the quality of cell type-based
clustering, we assessed cluster separation by computing the average Silhouette
widths for each cell type (Supplementary Figure 5, Online Methods). The average
Silhouette coefficient after MNN correction is significantly larger than those in the
uncorrected, limma and ComBat-corrected data (p < 0:05, two-sided Welch's t-test).
Thus, MNN correction is able to reduce the between-batch variance within each cell
type while preserving differences between cell types. We also computed the entropy
of mixing (Online Methods) to quantify the extent of intermingling of cells from
different batches. Batch corrected data using MNN show higher entropy of mixing
compared to the uncorrected data and corrected data using limma or ComBat
(Supplementary Figure 5). The improvement in the mixing of batches is observed in
the reduced dimension space by either SNE or PCA (Supplementary Figure 5e-l).
We again illustrate our assumption that batch effects are adequately removed when
they lie orthogonally to the biological subspace (Supplementary Figure 5m-0). The

observed structure in the pancreas data is robust to the size of the input gene set,



demonstrated by random subsampling of the total highly variable gene set

(Supplementary Figure 6).

MNN correction improves differential expression analyses

Once batch correction is performed, the corrected expression values can be used in
routine downstream analyses such as clustering and differential gene expression
identification. To demonstrate, we used the MNN-corrected expression matrix to
simultaneously cluster cells from all four pancreas data sets. Our new cluster labels
were in agreement with the previous cell type assignments based on the individual
batches, with an adjusted Rand index of 0.94 (a Rand index of 0 is equivalent to a
random assignment, whilst a Rand index of 1 denotes a perfect match between
previous and new assignments). Importantly, we obtained clusters for all batches in
a single clustering step. This ensures that the cluster labels are directly comparable
between cells in different batches. In contrast, if clustering were performed
separately in each batch, there is no guarantee that a (weakly-separated) cluster

detected in one batch has a direct counterpart in another batch.

We used our new clusters to perform a differential expression (DE) analysis between
the §-islet cluster and the y-islet cluster. Using cells from all batches, we detected 76
differentially expressed genes at a false discovery rate (FDR) of 5% (Figure 4c). This
set included the marker genes for the cells included in the analysis (PPY, SST),
genes involved in pancreatic islet cell development (PAX6) and genes recently
implicated in §-islet function and type 2 diabetes development (CD9, HADH) [22].
For comparison, we repeated the DE analysis using only cells from each batch in
which both cell types were present [21] [22] [20]. This yielded only 12, 59 and 88
genes respectively, at a FDR of 5%, which encompass 14.5-57.9% of those detected
using all cells (Figure 4d). Merging data sets is beneficial as it increases the number
of cells without extra experimental work; improves statistical power for downstream
analyses such as differential gene expression; and in doing so, provides additional
biological insights. To this end, our MNN approach is critical as it ensures that

merging is performed in a coherent manner.



MNN correction is applicable to droplet RNA-seq technology

The advent of droplet-based cell capture, lysis, RNA reverse transcription and
subsequent expression profiling by sequencing has allowed single cell expression
experiments to be scaled up to tens and hundreds of thousands of cells [2] [3] [24].
These technologies are ideal for testing the scalability and applicability of our
correction method to large scRNA-seq data sets. We specifically applied our MNN
approach to two large data sets of droplet-based scRNA-seq derived from the
commercial 10X Genomics Chromium platform [24]. We selected data sets in which
there were a mixture of cell identities and complexities; namely 68,000 peripheral
blood mononuclear cells (PBMCs) and 4,000 T cells, derived from different donors.
PBMCs contain a milieu of peripheral adaptive and innate immune white blood cells
as they circulate through the human vasculature, while peripheral T cells contain a
mixture of naive and antigen-exposed lymphocytes involved in active immune

surveillance.

A naive merging of these two data sets without accounting for batch effects
illustrates the separation of the T cells from their counterparts in the PBMC data
(Figure 5a,b). Combination of these two data sets using MNNs demonstrates that
the separate peripheral T cells map to the T cell subsets within the PBMC mixture
(Figure 5c¢,d). Importantly, other peripheral lymphocyte relationships are not distorted
by the correction applied, despite the absence of MNNs in the T cell data set (Figure
5c). Specifically, we note that 4446/4459 (99.7%) of individual T cells map onto their
appropriate counterparts in the PBMC data set (Figure 5). The remaining 13/4459
(0.3%) map primarily to a small cluster of unknown ontogeny and to the edges of a
large cluster of monocytes. Conversely, 14 non-T cells (0.3%; specifically

monocytes) mapped to T cell clusters inappropriately.

As the size of single cell expression data sets increases, there will be a growing
need for computational methods that can scale up to meet these requirements. To

demonstrate the scalability of our method, we sampled different proportions of cells



from the 68K PBMC data set, and corrected the batch effect between each
subsample and the 4K T cell data. Within the range of 7,000 to 70,000 cells we see
an approximately linear time increase (Figure 5e). This demonstrates that our
method is applicable to both the nature of droplet technology-derived single cell

expression data, and the scale of current and future data sets.
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Figure 4: Application of MNN batch correction to pancreas cells using four data sets (GSE81076 with
n=1007, GSE86473 with n= 2331, GSE85241 with n=1595 and E-MTAB-5061 with n=2163 cells)
measured on two different platforms, CEL-seq(2) and SMART-seq2. +-SNE plots for (a) uncorrected
(raw) data and (b) data corrected with our MNN method. The different batches are represented by
four colours in the top panel of (a) and (b), whilst the different cell types are denoted in the bottom



panels by distinct colours. (¢) Combining data sets by using MNN correction increases the power to
detect differentially expressed genes. Volcano plots of differential expression testing in a single data
set (GSE81076; §-cells=54, y-cells=19, left panel) and using the new cell type labels after MNN
correction (Combined; §-cells=428, y-cells=425, right panel). The y-axis represents the -logio
Benjamini- Hochberg adjusted p-value (-logqo p-value > 100 are censored at 100 for comparable
scales), and the x-axis is the log, fold change of expression in cells over cells. Individual gene
symbols are labelled where llog: fold changel > 3. More genes are consistently differentially
expressed at a FDR 5% in the combined data sets. (d) Venn diagrams representing the intersection of
differentially expressed genes using the cell type labels after batch correction (blue circle) and using
the original cell type labels from each individual study (orange circle). Numbers in each segment are
the total number of DE genes between 6 and y islet cells in each batch. Each Venn diagram
corresponds to a batch in which both cell types are present.
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Figure 5: MNN batch correction scales to tens of thousands of cells. -SNE plots of scRNA-seq data
of human peripheral blood mononuclear cells and T cells (n=73039 cells), prior to batch correction (a,
¢) and following MNN correction (b, d). Individual points are coloured by their original cell type labels
(c, d) and by the study batch of origin (a, b). (¢) CPU time increases linearly in the number of input
cells to MNN correction. Points represent the number of sub-sampled cells; the red dashed line

represents the linear t between CPU time (minutes) and number of cells.



Discussion

Proper removal of batch effects is critical for valid data analysis and interpretation of
the results. This is especially pertinent as the scale and scope of scRNA-seq
experiments increase, exceeding the capacity of data generation within a single
batch. To answer the relevant biological questions, merging data from different
batches - generated by different protocols, operators and/or platforms - is required.
However, for biological systems that are highly heterogeneous, it is likely that the
composition of cell types and states will change across batches, due to stochastic

and uncontrollable biological variability.

Existing batch correction methods do not account for differences in cell composition
between batches and fail to fully remove the batch effect in such cases. This can
lead to misleading conclusions whereby batch-specific clusters are incorrectly
interpreted as distinct cell types. We demonstrate that our MNN method is able to
successfully remove the batch effect in the presence of differences in composition,
using both simulated data and real scRNA-seq data sets as well as demonstrating its

scalability.

One prerequisite for our MNN method is that each batch contains at least one
shared cell population with another batch. This is necessary for the correct
identification of MNN pairs between batches. Batches without any shared structure
are inherently difficult to correct, as the batch effects are completely confounded with
biological differences. Such cases provide a motivation for using “cell controls”, i.e.,
an easily reproducible cell population of known composition (from a cell line for
example) that is spiked into each sample for the purpose of removing batch effects

across samples.

A notable feature of our MNN correction method is that it adjusts for local variations
in the batch effects by using a Gaussian kernel. This means that our method can
accommodate differences in the size or direction of the batch effect between

different cell subpopulations in the high-dimensional space. Such differences are not



easily handled by methods based on linear models (as this would require explicit
modelling of pre-defined groupings of cells, which would defeat the purpose of using
scRNA-seq to study population heterogeneity in the first place). This also has some
implications for the use of cell controls. Our results for the pancreas data set suggest
that considering cell-type specific batch effects (the default setting of MNN) rather
than a globally constant batch effect for all cells, improves batch removal results
(Supplementary Figure 7). An important consequence is that a single cell control
population might not suffice for accurate estimation of local batch effects. Rather, it
may be necessary to use an appropriately mixed population of cells to properly

account for local variation.

We have demonstrated in simulations and real data sets that MNN successfully
combines cells with the same cell type label, by bringing cells from different batches
onto a common coordinate system which is defined by the first (reference) batch,
such that all batches can be analysed together. Therefore, MNN eliminates
discrepancies between related batches without an analysis or interpretation of the
origins and causes of batch effects (between e