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SUMMARY

Activation and recruitment of thermogenic cells in
human white adipose tissues (‘‘browning’’) can
counteract obesity and associated metabolic disor-
ders. However, quantifying the effects of therapeutic
interventions on browning remains enigmatic. Here,
we devise a computational tool, named ProFAT
(profiling of fat tissue types), for quantifying the ther-
mogenic potential of heterogeneous fat biopsies
based on prediction of white and brown adipocyte
content from raw gene expression datasets. ProFAT
systematically integrates 103 mouse-fat-derived
transcriptomes to identify unbiased and robust
gene signatures of brown and white adipocytes.
We validate ProFAT on 80mouse and 97 human tran-
scriptional profiles from 14 independent studies and
correctly predict browning capacity upon various
physiological and pharmacological stimuli. Our study
represents the most exhaustive comparative anal-
ysis of public data on adipose biology toward quan-
tification of browning after personalized medical
intervention. ProFAT is freely available and should
become increasingly powerful with the growing
wealth of transcriptomics data.

INTRODUCTION

Adipose tissue is broadly divided into white and brown, based on

key anatomic, structural, molecular, and metabolic differences

(Frontini and Cinti, 2010). White adipose tissue (WAT) is special-

ized to store chemical energy as fat, whereas brown adipose tis-

sue (BAT) can catabolize lipids and glucose for non-shivering

thermogenesis, due to the high mitochondrial mass and expres-

sion of uncoupling protein 1 (UCP1), a mitochondrial inner mem-

brane protein that dissipates energy from substrate oxidation

directly as heat.
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Although major WAT and BAT depots are located in anatomi-

cally distinct regions, brown-like, UCP1-positive fat cells can be

found sporadically and interspersed in various WAT depots in

response to cold exposure or b-adrenergic receptor agonists.

These cells have been termed beige, brite (brown-in-white), re-

cruitable or inducible brown, or brown-like adipocytes (Ishibashi

and Seale, 2010), owing to their morphological and metabolic

features that are similar to ‘‘classical’’ brown adipocytes and to

the expression of thermogenic genes (Shabalina et al., 2013).

Several studies have suggested that beige adipocytes can

derive from bipotential WAT precursors and mature white adipo-

cytes (Barbatelli et al., 2010; Himms-Hagen et al., 2000; Schulz

et al., 2011; Wang et al., 2013). However, the structural and func-

tional differences that distinguish them from BAT and WAT still

remain unclear.

Advance in positron emission tomography (PET) scanning

methods have allowed the discovery that adult humans contain

significant deposits of UCP1-positive brown cells in the supra-

clavicular and neck region (Farmer, 2009) as well as in multiple

human WAT depots upon exposure to various physiological

and pharmacological effectors (Cypess et al., 2013; Jespersen

et al., 2013; Lidell et al., 2013). Promoting the appearance of

thermogenic cells in non-classical BAT locations can increase

energy expenditure and substrate metabolism, improve glucose

tolerance, and correct hyperlipidemia, leading to a healthier

metabolic phenotype in both rodents (Bartelt et al., 2011; Min

et al., 2016; Stanford et al., 2013) and humans (Saito et al.,

2009). Quantifying the browning potential of therapeutic inter-

ventions on human BAT activation would therefore accelerate

the identification of therapeutic avenues to reduce obesity and

its comorbidities. However, this remains challenging, given that

human fat contains only a small fraction of brown and brown-

like adipocytes.

Lineage-tracing studies for the selective isolation of different

adipose cell types have been performed in mice (Bartelt and

Heeren, 2014) but are not possible in humans. Furthermore,

currently available imaging methods have a limited sensitivity,

and the resulting data are difficult to deconvolute. Besides, there

are only a handful of adipose tissue marker genes, which have
).
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only been used so far to make a qualitative distinction between

human adipocytes or adipose tissue types. Those markers orig-

inate from either analyses of whole adipose tissue depots, con-

taining a great proportion of contaminating cells, or ex vivo stable

and clonally derived adipocytes (Cypess et al., 2013; Shinoda

et al., 2015; Wu et al., 2012), which are affected by in vitro cell

culture conditions. Therefore, novel approaches for the unbiased

quantification of browning capacity in patients’ fat depots are

required.

Here, we take advantage of the wealth of data on global tran-

scriptional profiling of fat depots published over the last decade

to develop a robust and automated computational pipeline,

which we call ProFAT (profiling of fat tissue types), for the sys-

tematic prediction of mouse and human adipose browning ca-

pacity based on raw gene expression data (Figure 1). First, we

identify a molecular signature of brown and white adipocytes

by integrating 51 and 52 global transcriptional profiles of mouse

BAT and WAT from seven independent studies, respectively.

Next, we develop a computational model trained on all 103 da-

tasets and show that it can correctly classify over 80 additional

mouse BAT and WAT samples from nine published studies.

Importantly, the model can estimate the degree of browning

for WAT-treated samples (beige) independently from biological

and technical differences in the anatomical location of fat

depots and in experimental models and procedures. We

also confirm that our model can be applied to humans and

predict the browning capacity of 96 samples derived from

heterogeneous tissue biopsies and ex vivo immortalized adipo-

cytes. ProFAT is freely available (http://profat.genzentrum.

lmu.de) and allows users to automatically perform hierarchical

clustering (HC), principal-component analysis (PCA), and pre-

diction of browning capacity from raw microarray and RNA

sequencing (RNA-seq) datasets.

RESULTS

A Comprehensive Mouse-Adipocyte-Centered Gene
Expression Atlas
To compile a comprehensive and unbiased gene expression

atlas of mouse fat, we systematically retrieved whole-genome

transcriptomes from microarray and RNA-seq studies on adi-

pose tissue biopsies and differentiated clonal adipocytes that

are publicly available in GEO and ArrayExpress databases. A

total of 16 independent studies on at least two clearly defined

adipocytes, for example, classical brown, white, and inducible

brown adipocytes (beige or brite), were selected for down-

stream computational analyses (Baboota et al., 2015; Fang

et al., 2015; Fitzgibbons et al., 2011; Grimaldi et al., 2010;

Long et al., 2014; Majka et al., 2010; Ohno et al., 2012; Rosell

et al., 2014; Seale et al., 2007; Sharp et al., 2012; Su et al.,

2004; Timmons et al., 2007; Wang et al., 2016; Wu et al.,

2012; Xue et al., 2009; Zhang et al., 2014; Table S1; Figure 2A).

Those included 174 microarray and 34 RNA-seq datasets of

high reads quality and correlation between biological replicates

(Figures S1 and S2), of which 83 were gene expression data-

sets on a variety of white fat depots originating from different

anatomical locations, such as epididymal, inguinal, gonadal,

perivascular, mesenteric, and subcutaneous WAT (Figure 2B).
In addition, it contains 63 gene expression datasets on inter-

scapular BAT and 52 on beige or brite adipocytes originated

from different WAT depots in response to treatments such as

cold, PPAR-gamma agonists (rosiglitazone, fexaramine, forsko-

lin, and roscovitine), and beta-3 adrenergic receptor agonists

(CL316,243; Figures 2A and 2B).

Gene Expression Signatures of Brown, White, and Beige
or Brite Fat
To construct a global adipose-tissue-centered gene expression

map, we aggregated transcriptional profiles from all microarray

or RNA-seq-based studies in our atlas (Figure 1). First, spurious

differences in gene expression between studies, due to technical

variation in array platforms and sequencing libraries, were

resolved by correcting for batch effects. Next, PCA (Figure 2C)

and HC (Figures S3 and S4) were applied to evaluate the related-

ness between transcriptional profiles of BAT, WAT, and beige or

brite-depots-derived datasets from all studies. Both approaches

highlighted a strong and robust gene expression signature from

BAT- and WAT-derived samples, despite their heterogeneous

composition. On the whole-genome transcriptional level, the

variation between WAT depots, due for example to different

anatomical regions, proportion of distinct adipocytes, age,

food, and gender, had no relevant contribution to the global

WAT signature. Furthermore, the gene expression signatures

of BAT and WAT were always clearly distinct, independently

from the sequencing method (microarray versus RNA-seq), re-

flecting robust transcriptional differences in the regulation of

their physiology and metabolism. Surprisingly, perivascular

WAT (pvWAT) samples from study M9 (Fitzgibbons et al., 2011)

showed a molecular signature indistinguishable from BAT-

derived samples. This result is fully consistent with findings by

Fitzgibbons et al. that thoracic pvWAT from mice fed either a

normal or high-fat diet has virtually identical gene expression

profiles to brown adipocytes.

With the exception of samples from Wang et al. (2016) (study

M13), the transcriptional profile of beige or brite adipocytes

from other studies was not clearly distinct from either WAT or

BAT groups in both PCA and HC analyses (Figures 2C, S3, and

S4). For example, gene expression profiles of beige or brite sam-

ples from inguinal WAT (iWAT) biopsies of C57BL6 male mice

kept in cold for 1–5 weeks (study M8; Xue et al., 2009) were

similar to that of BAT samples in the atlas, grouping together in

both PCA and HC analyses. On the contrary, beige or brite sam-

ples from subcutaneous (sWAT) and mesenteric (mWAT) WAT

biopsies of SV129 female mice kept in cold for 10 days (study

M10; Rosell et al., 2014) showed a gene expression signature

similar to WAT samples from the same as well as from other

studies. Similarly, beige or brite adipocytes from cold acclimated

(study R1; Long et al., 2014) and fexaramine-stimulated (study

R2) iWAT and gonadal WAT (gWAT) (Fang et al., 2015) clustered

with WAT samples from other RNA-seq studies in the atlas,

whereas beige or brite adipocytes from iWAT treated with rosigli-

tazone (study R3; Sharp et al., 2012) grouped with BAT samples.

Taken together, our systematic analysis of transcriptomics

data from many published studies highlights robust gene

expression differences between BAT andWAT that are indepen-

dent of experimental procedures, sample purity, origin of fat
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(legend continued on next page)
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depots, and sequencing methods and can therefore be used to

predict an unbiased molecular signature of BAT and WAT.

Prediction of BAT and WAT Molecular Signatures
As a first step toward the prediction of brown adipocytes content

(browning capacity) in whole adipose tissue depots, we identi-

fied marker genes for classical brown and white fat tissue classi-

fication (Figure 3). To this goal, we integrated 51 BAT and 52

WAT transcriptional profiles from seven out of 16 independent

studies in our atlas (M1, M2, M4, M5, M6, M7, and M12 and

R4 in Figure 2A). Data normalization and batch effect removal

were performed to ensure that differences in gene expression in-

tensities were indeed due to differential expression betweenBAT

and WAT sample groups. Ideally, brown and white fat-specific

markers should show an ‘‘absolute’’ difference in expression to

allow a clear distinction between BAT and WAT, independently

of biological differences in fat depots, sample composition

(pure populations versus whole tissue biopsies), and their

expression in other cell types. Overall, we found a total of 59

genes (Figure 3A) that were consistently and significantly differ-

entially expressed between all BAT and WAT samples (log2 fold

change > 1.5 and p-adj value < 0.01). We identified several

known brown fat markers, such as Ucp1, Cidea (cell death-

inducing DFFA-like effector a), Cox7a1 (cytochrome c oxidase

subunit VII a polypeptide 1), and Zic1 (zinc finger protein of the

cerebellum 1), as well as white fat markers (e.g., Hoxc8 [tran-

scription factor homeobox C8]). Due to the high abundance of

mitochondria in BAT, brown fat markers included several mito-

chondrial-targeted proteins that are related to mitochondrial

biogenesis and metabolism (Calvo et al., 2016). Not surprisingly,

our marker core set was enriched in biological processes and

pathways that are known to be involved in energy production

and glucose and lipid metabolism (Figure 3B).

To further evaluate the predicted marker set, we looked for

functional associations between the 59 marker genes (Fig-

ure 3C). We employed a computational method, called iRegulon,

to reverse engineer the transcriptional regulatory network under-

lying our set of differentially expressed marker genes. iRegulon

searches for cis-regulatory regions at 10–20 kb around the tran-

scription start site (TSS) of each gene and then it looks for enrich-

ment in any of �10,000 transcription factor (TF) motifs from

seven different databases and chromatin immunoprecipitation

(ChIP)-seq peaks associated with potential TFs. We identified

four key TFs targeting 39 out of the 59 markers, which were

also differentially expressed between WAT and BAT samples

(log2 fold change > 1.5 and p value < 0.01). Those included

two well-known key adipogenic TFs and co-regulators

described in mammals, which are part of the subfamily of perox-

isome proliferator-activated receptors (Ppara, peroxisome

proliferator-activated receptor alpha; Ppargc1, peroxisome pro-

liferator-activated receptor gamma coactivator 1-alpha; Alvarez-

Dominguez et al., 2015). Another gene, Nr4a1 (nuclear receptor
(B) Sample distribution among different adipose tissue types in all microarray an

white adipose tissue; iWAT, inguinal white adipose tissue; mWAT,mesenteric whit

sWAT, subcutaneous white adipose tissue.

(C) Study-by-study principle-component analysis (PCA) of normalized gene expr

See also Table S1 and Figures S1–S4.
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subfamily 4, group A, member 1; also known as NUR77), was

previously involved in the control of Ucp1 expression (Kanzleiter

et al., 2005). In addition, we identified Gata6, a member of the

GATA factors family. Although those factors are generally

considered as negative regulators of adipogenesis, Gata6 has

not yet been implicated in the regulation of adipogenesis in

mammals (Bou et al., 2017). Next, to validate the predicted

BAT and WAT molecular signatures, we quantified the expres-

sion of eachmarker gene in interscapular BAT and iWAT isolated

from 16-week-old female mice kept at either thermoneutrality or

cold acclimated for two weeks at 18�C, followed by 4 weeks at

5�C, in order to induce browning (Figure S5). We confirmed

that all of our brown fat markers were indeed highly expressed

in classical BAT from both room temperature and cold-exposed

mice (Figures 3D and S6). The expression of many of those

markers, such as Ucp1, Cidea, Cox7a1, and Pdk4, was also

higher in WAT from cold-exposed mice than in untreated WAT,

reflecting the induction of browning; instead, others appeared

to be brown specific (e.g., Zic1, Impdh1, Tmem246, and

Shmt1). Similar results were obtained with male mice of the

same age and background (data not shown). Notably, several

genes have not yet been associated to BAT (Aco2, Gm13910,

and Acaa2) and WAT (Alcam, Ar, Sgpp1, and Gria3) and could

therefore represent novel BAT and WAT markers.

Automated Prediction of Mouse Adipose Tissue
Browning Capacity
To assess the thermogenic potential of fat tissues in response to

browning agents, we devised a computational model that can

predict brown and white adipocytes content (‘‘BAT probability’’;

probability to be brown-like) independently of sample purity and

experimental systems (Figure 4A). The model combines into a

single-layer neural network (SLNN) the transcriptional profiles

of 51 BAT and 52 WAT samples from M1, M2, M4, M5, M6,

M7, M12, and R4, which represent our ‘‘training set,’’ and the

predicted core marker set. Our choice of SLNN was justified

by a systematic comparison to the performance of other algo-

rithms, such as random forest, naive Bayes, generalized linear

model, recursive partitioning, and support vector machine (Fig-

ure S7). To this goal, each machine learning algorithm was first

trained through a leave-one-out cross-validation (LOOCV)

step, and the accuracy of different models was then assessed

based on the correct classification of BAT and WAT samples

from a ‘‘testing set’’ of nine independent studies (M3, M8, M9,

M10, M11, M13, R1, R2, and R3). As shown in Figure S7,

SLNN outperformed other algorithms and was therefore em-

ployed for follow-up analyses.

Next, we tested the predictive power of our model using tran-

scriptomes of white adipocytes from primary cell culture, whole

fat tissue biopsies, as well as immortalized clonal lines, in which

thermogenesis was activated by either cold, rosiglitazone (RG),

roscovitine (RS), CL316,243 (CL), forskolin, or fexaramine (fex)
d RNA-seq studies. eWAT, epididymal white adipose tissue; gWAT, gonadal

e adipose tissue; N/A, not specified; pvWAT, perivascular white adipose tissue;

ession data.
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treatment (Figures 4B and S8). The model deconvolutes the per-

centage of brown adipocytes (thermogenic cells) and calculates

the probability that a specific sample has acquired a brown-like

transcriptional signature. A browning probability close to 0%and

100% would indicate a fat sample with WAT-like and BAT-like

profiles, respectively. Instead, a browning probability close to

50% would suggest either that the tissue profile is neither

BAT- nor WAT-like (e.g., de-differentiated adipocytes and other

tissue types) or that it has features of both fat types (e.g., it con-

sists of an equal mixture of brown and white adipocytes).

As shown in Figure 4B, our model always classifies BAT and

WAT with almost 100% accuracy and predicts the thermogenic

potential of beige or brite samples to be higher than the corre-

sponding untreated WAT samples, a result that is in agreement

with the relative UCP1 expression level measured in each sam-

ple. A ‘‘positive control’’ in our analysis is represented by study

M9. Here, the model ‘‘misclassifies’’ samples from pvWAT as

having a high browning probability, thus BAT-like. However,

our prediction is fully consistent with findings from the original

study of Fitzgibbons et al. (2011), showing a virtually identical

molecular signature between pvWAT and BAT from mice fed

either a normal or high-fat diet. Notably, cold-treated sWAT

from study M10 showed both a high UCP1 expression level

and browning capacity, whereas the model predicted the same

treatment to be ineffective when applied to mWAT. This result

is consistent with previous observations that rodents’ sWAT de-

pots are more sensitive to acquisition of BAT characteristics and

have a higher thermogenic potential than visceral depots, such

as mWAT (Seale et al., 2011; Tiraby and Langin, 2003). When

we applied our model on datasets from study M13, we found

that samples defined by Wang et al. (2016) to originate from

BAT and iWAT had a browning capacity close to 100% and

0%, respectively. Reassuringly, treatment of iWAT with the

browning agent CL was predicted to yield a strong increase in

browning capacity, in accordance with results from functional

analyses. Similarly, we found that the thermogenic potential of

CL-based iWAT treatment was higher than either RG or RS.

Accordingly, measurements of rectal temperature in mice that

were exposed to cold after treatment with each browning agent

showed that the starting body temperature of CL-treated mice

was the highest and CL was the most potent enhancer of

glucose tolerance among all three drugs. Moreover, HC analysis

also confirmed that, at the transcriptional level, UCP1-positive

adipocytes arising in WAT of mice treated with RG and RS

were more similar to each other than to UCP1-positive cells

from CL-treated mice, which showed a transcriptome very close

to that of BAT. Accordingly, RS- and RG-treated cells expressed

several fold lower levels of Ucp1 than cells from BAT and
Figure 3. Prediction and Validation of BAT and WAT Marker Genes

(A) Relative gene expression changes (Z score) for the predicted marker genes

mitochondrial localization of marker genes.

(B) Gene Ontology (GO) and pathway (Reactome) enrichment analysis of marker

(C) Transcriptional regulatory network of BAT andWATmarker genes (circles) and

the log2 fold change of the average expression level in BAT and WAT samples u

(D) Experimental validation of BAT and WAT marker genes (n R 4). On each b

respectively, and the whiskers extend to the most extreme data points.

See also Figures S5 and S6.
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CL-treated adipocytes. We also obtained consistent results

between our predictions and functional characterizations of

fex-treated and untreated iWAT and gWAT from study R2.

Here, the model predicted that fex treatment would not result

in an increased browning activity of WAT. This is in agreement

with the low Ucp1 level measured in those samples and with

observations that fex-treated mice show reduction in weight

gain and improved metabolic homeostasis upon diet-induced

obesity, which was largely attributed to enhanced thermogenic

activity in BAT rather than browning of iWAT or gWAT. However,

the significance of our prediction is difficult to assess for this

study, given that only one replicate for each sample is available.

Overall, our predictions are in agreement with HC analyses,

but whereas those can only provide a qualitative classification

of each sample, our model can also estimate its thermogenic po-

tential in response to a variety of browning stimuli.

Automated Prediction of Human Adipose Tissue
Browning Capacity
To evaluate the applicability of our mouse-based model to de-

convolute browning capacity of heterogeneous adipocyte popu-

lations from human samples, we retrieved publicly available

transcriptomics analyses of human adipose tissues (Table S1;

Figures 5A and S9). Those included a total of 97 datasets from

3 microarray and 2 RNA-seq-based studies on a variety of

different experimental models: immortalized clonal preadipocyte

cell lines derived from stromal vascular fractions (SVFs) of sub-

cutaneous and deep neck of four adult human subjects (study

hM1; Xue et al., 2015); primary adipocytes isolated from paired

biopsies of deep and subcutaneous neck adipose tissue from

six patients undergoing neck surgery (study hM2; Tews et al.,

2014); adipose tissue isolated from abdominal subcutaneous

fat depots of seven type 2 diabetic (T2D) patients before and af-

ter 10 days of cold acclimation (study hM3; Hanssen et al., 2015);

pluripotent stem cell (PSC)-derived white (WAs) and brown (BAs)

adipocytes subjected to the Janus kinase 3 (JAK3) and spleen

tyrosine kinase (SYK) inhibitors tofacitinib and R406, respec-

tively (study hR1; Moisan et al., 2015); and immortalized clonal

brown and white preadipocytes isolated from SVFs in supracla-

vicular BAT and sWAT of two adult humans before and after

in vitro differentiation and in response to forskolin treatment

(study hR2; Shinoda et al., 2015). All of these studies were

used as ‘‘testing set’’ in the neural network model (Figure 5B),

which was trained on BAT and WAT samples from mouse-spe-

cific studies, as previously shown in Figure 4A. Each testing

dataset was first mapped through orthology to mouse genes.

Overall, we observed that the level of UCP1 expression in the

original datasets was not always correlating to the browning
(53 and 6 BAT and WAT markers, respectively). MitoCarta2 is used to predict

genes.

predicted targeting transcription factors (squares). Nodes are colored based on

sed for markers prediction (log2 FC > 1.5 and p-adj value < 0.01).

ox, central line and edges represent median and 25th and 75th percentiles,
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capacity predicted by ourmodel. Overall, we foundUCP1 to be a

weak classifier of brown- versus white-like depots, particularly

when analyzing human tissue biopsies. Our observation is in

agreement with previous claims that the thermogenic potential

of human adipose tissues does not directly correlate with the

simple presence of UCP1-positive cells (Rosenwald et al.,

2013). Whereas UCP1 expression can be used as a marker of

active brown adipocytes, in heterogeneous populations, it would

be insufficient to estimate brown adipocyte content. Therefore,

we evaluated the predictive value of our model in human sam-

ples where UCP1 level could not be used to quantify browning.

As an example, Tews et al. (2014) (study hM2) looked for func-

tional differences between paired adipose tissue biopsies from

deep neck, where human BAT is commonly found, and subcu-

taneous neck, where WAT is enriched. Accordingly, our model

predicted higher browning capacity in samples from deep

compared to subcutaneous neck, despite minor changes in

UCP1 expression level measured by microarray analysis. Inter-

estingly, based on our prediction, the deep neck samples of

some patients showed stronger browning capacity than others,

possibly reflecting biological variations in BAT content or tech-

nical differences in the depth of tissue biopsies between individ-

uals. In another study by Hanssen et al. (2015; study hM3),

chronic cold exposure was employed in seven human patients

with T2D as a possible strategy to improve glucose homeostasis.

Cold acclimation was previously shown to increase supraclavic-

ular BAT mass and activity and to lead to recruitment of UCP1-

positive adipocytes in other adipose tissue depots. Accordingly,

all subjects showed an increase in cold-induced glucose uptake

rate in the supraclavicular BAT region, although quite different

between the individuals. However, BAT activity and mass were

unaffected in other fat depots, such as sWAT and visceral

WAT, and no sign of browning could be detected by microar-

ray-based gene expression analysis of abdominal sWAT bi-

opsies from the same patients before and after cold acclimation.

Consistently, we also found that the browning capacity of sWAT

from each patient was unaffected by cold acclimation, given that

there was a minor difference in browning probability between

sWAT samples before and after cold exposure. These results

are in agreement with findings from multiple studies showing

that cold does not brown all human fat depots equally (Conere

et al., 1986; Leitner et al., 2017; Romu et al., 2016; Vosselman

et al., 2014). Findings from our model applied to hR1 datasets

were also in agreement with observations in the original study

by Moisan et al. (2015). Here, the JAK3 and SYK inhibitors, tofa-

citinib and R406, respectively, were shown to induce browning

of human PSC-WAs. When comparing the browning probability

of PSC-WAs samples treated with DMSO, R406, or tofacitinib,

our model correctly predicted a drug-dependent increase in
Figure 4. Prediction of Browning Capacity of Mouse Adipose Tissue S

(A) Schematic diagram of the supervised machine learning approach.

(B) Estimation of browning capacity in samples from each test study (right). HC an

shown for all samples and biological replicateswithin each test study (left). The gre

calculated as (sample_Ucp1�min_Ucp1)/(max_Ucp1�min_Ucp1), where the m

gene expression across test and training sets, respectively. BAT (training set), com

combined WAT samples from all training datasets.

See Table S1 for detailed description of each sample. See also Figures S7 and S
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browning. We also predicted a much higher browning capacity

for R406 (PSC-WAs SYKi) than for tofacitinib (PSC-WAs

JAK3)-treated adipocytes, which was consistent with evidence

of higher UCP1 and FABP4 (fatty acid binding protein 4) expres-

sion, small lipid droplet area, and mitochondrial content in

response to R406. Our data also suggested that both SYK and

JAK3 inhibitors are more potent browning inducers than cell

fate conversion methods, as shown by comparing the BAT prob-

ability of PSC-derived brown adipocytes (PSC-BAs) with PSC-

WAs. Finally, when testing samples from study hR2, we found

that preadipocytes from supraclavicular and subcutaneous fat

depots showed very low browning capacity, which increased af-

ter differentiation to brown, but not to white adipocytes, respec-

tively. As expected, a cyclic AMP (cAMP) stimulus induced by

treatment with forskolin increased the browning probability of

sWAT-derived clonal lines, also confirmed by the activation of

thermogenic markers observed in Shinoda et al. (2015).

Altogether, these results demonstrate that our mouse-based

model can be also applied to quantify white and brown adipo-

cytes content in ex vivo clonally derived human adipocytes and

complex human biopsies and to reliably predict the thermogenic

potential of treatments applied to induce browning of white fat

depots.

DISCUSSION

Integrative data analyses have been extensively shown to

outperform the predictive power of individual large-scale studies

(Calvo et al., 2006; Liu, 2005; Pagliarini et al., 2008; Perocchi

et al., 2006). Therefore, when combining multiple datasets from

different and complementary approaches, we can learn more

about the system than what would be gained by analyzing

each dataset in isolation. Given the wealthy of transcriptional an-

alyses in the field of adipose biology, obesity, and its comorbid-

ities, we found it timely to perform a meta-analysis of published

data and combine into a single framework the knowledge ac-

quired from each study so far. To this goal, we compiled the

largest adipose-centric gene expression atlas and developed

ProFAT, a systematic and automated approach to derive a

robust and unbiased molecular signature of mouse BAT and

WAT. This was then used to train a computational model in quan-

tifying the browning capacity of heterogeneous fat tissues in

both mouse and humans. We found that BAT and WAT show

clearly distinct molecular signatures, irrespective of the anatom-

ical location of the fat depots, their cell types composition,

experimental models, and procedures employed. Instead,

when we applied ProFAT to several transcriptomics data from

beige samples, we observed that the extent to which beige or

brite fat differs from either WAT or BAT greatly depends on
amples from Test Studies by Supervised Machine Learning

alysis based on relative gene expression changes (Z score) of marker genes is

en line on each bar represents the sample’s relativeUcp1 gene expression level

in_Ucp1 andmax_Ucp1 indicate theminimum and themaximum value ofUcp1

bined BAT samples from all training datasets; r, replicates; WAT (training set),

8.
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study-to-study differences. Indeed, the degree of browning may

vary due to samples purity, length, and type (cold, PPAR-

gamma, or beta-3 adrenergic receptor agonists) of browning

stimuli and to whether the fat sample derives from tissue bi-

opsies, primary adipocytes, or clonal cell populations. The latter

can be affected by in vitro adaptations, culture microenviron-

ments, and cell-cell interactions. Unsupervised clustering ana-

lyses of gene expression data from pure clonally derived beige

adipocytes have suggested that those could be classified as a

distinct fat type at the transcriptional level (Wu et al., 2012).

Whereas our analysis cannot formally rule out a distinct origin

of beige from either brown or white adipocytes, it prompts for

caution when defining beige-specific signatures in the context

of a few limited dataset and biological models, rather than either

systematically across a large and diverse set of data or based on

pure populations of UCP1-positive cells (Wang et al., 2016).

The computational pipeline developed in this study will be

especially important when trying to evaluate the thermogenic

potential of therapeutic approaches in humans. Human adipose

tissue biopsies usually yield limiting amounts of sample to

perform an exhaustive functional characterization of browning,

and classical BAT markers, like UCP1, have been shown to be

insufficient to predict adipose tissue types. Instead, whole-

genome expression analyses typically require little material to

be performed and have become amethod of choice to infer func-

tional remodeling of WATs, based on the assumption that the

phenotype is reflected in the gene expression signature. Our

meta-analysis enables to classify complex tissue samples from

distinct fat depots as well as from in vitro derived adipocytes

of both mouse and humans, based on their relative brown and

white-like molecular signatures. We envision a scenario in which

medical researchers can directly assess the thermogenic poten-

tial of the patient’s white fat sample, prior to and post-medical

intervention.

Finally, we generate a user-friendly interface where microarray

and RNA-seq-based datasets from mouse and human samples

can be directly uploaded and analyzed with both HC and PCA

methods, and their browning probability can be automatically

computed using ProFAT. This resource can be freely accessed

and should become increasingly powerful with the growing

wealth of transcriptomics data.
EXPERIMENTAL PROCEDURES

Systematic Retrieval of Adipose-Tissue-Specific Transcriptional

Profiles

NCBI GEO and EBI ArrayExpress databases published before September 1,

2015 were queried using the following keywords: ‘‘adipocyte,’’ ‘‘adipose

white,’’ ‘‘adipose brown,’’ ‘‘adipose beige,’’ ‘‘fat white,’’ ‘‘fat brown,’’ ‘‘fat

beige,’’ ‘‘BAT,’’ and ‘‘WAT.’’ Systematic retrieval of whole genome expression

profiles for Mus musculus and Homo sapiens from NCBI GEO and EBI
Figure 5. Prediction of Browning Capacity of Human Adipose Tissue S

(A) Summary of microarray (hM1–3) and RNA-seq studies (hR1–2) on human fat

(B) Schematic diagram of the supervised machine learning approach.

(C) Estimation of browning capacity (right) and HC analysis (left) of samples

(tofacitinib); PSC-BAs, pluripotent stem cell-derived brown adipocytes; PSC-WA

inhibitor (R406).

See Table S1 for detailed description of each sample. See also Figure S9.
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ArrayExpress databases was performed through the Entrez Programming Util-

ities (E-utilities) and programmatic access, respectively. The GEOquery pack-

age fromBioconductor (Davis andMeltzer, 2007) was used to retrieve rawCEL

microarray data. Only microarray and RNA-seq datasets generated with Affy-

metrix and Illumina HiSeq Series sequencing platforms, respectively, were

considered for downstream computational analyses.

Data Processing

Raw CELmicroarray data were normalized by quantile normalization using the

robust multiarray average (RMA) function in affy (Gautier et al., 2004) and oligo

(Carvalho and Irizarry, 2010) R packages. Probe IDs were mapped to Ensembl

gene IDs using Biomart (Durinck et al., 2009) based on the following criteria:

probes not mapping to any gene ID were excluded; probes mapping to multi-

ple gene IDs were assigned to all genes; and for probes mapping to the same

gene ID, the mean expression value was considered.

Processing of raw FastQ files from RNA-seq analyses involved three main

steps. First, adapters, barcodes, and sequences with a Phred quality scores

below 20 were removed using the Trim Galore software. Second, raw reads

were mapped against mouse or human reference genomes (Ensembl release

81) using TopHat v2.0.13 (Trapnell et al., 2009) with Bowtie index (Bow-

tie 2.2.0.0) andGTF transcript annotation files. Next, the number of readsmap-

ping to each Ensembl gene ID were counted using the ht-seq count software

(Anders et al., 2015) to obtain raw read counts and quantify gene expression.

A gene was defined as expressed if the sum of raw read counts across all data-

sets within a studywas >1. Last, DESeq2 (regularized logarithm transformation

algorithm; Love et al., 2014) was used to perform rlog transformation (conver-

sion of raw read counts in log2 scale), which minimizes differences between

samples and normalize with respect to library size.

For each study, a datamatrix was generated, whereby each row and column

corresponded to an Ensembl gene ID and sample ID, respectively. Correlation

analyses were performed using pheatmap R package based on a pairwise dis-

tancematrix generated using Euclidean distance. Biological replicates that did

not replicate were considered as outliers and removed from follow-up ana-

lyses. Data from all microarray or RNA-seq-based studies were aggregated

based on gene IDs and then combat algorithm (Johnson et al., 2007) was

applied to remove the batch effect across multiple batches of microarray

and RNA-seq experiments and to calculate normalized gene expression

values. This algorithm is robust to outliers in small sample sizes and performs

comparable to existing methods for large samples. Hierarchical clustering was

performed using Euclidean distance and complete linkage based on normal-

ized gene expression values. Differential gene expression analysis was per-

formed using the Limma algorithm, and significantly differentially expressed

genes were defined based on an adjusted p values < 0.01 and a mean log2
fold-change threshold >1.5.

Identification of BAT and WAT Marker Genes

Microarray and RNA-seq gene expression data on BAT and WAT samples

from the following studies M1, M2, M4, M5, M6, M7, M12, and R4 were com-

bined based on Gene IDs. Combat algorithm (Johnson et al., 2007) was

applied to remove batch effects and to calculate normalized gene expression

values. Next, the MGFM (Marker Gene Finder in MicroArray) bioinformatics

tool (El Amrani et al., 2015) was applied to predict genes that allow a robust

and specific segregation of samples from BAT and WAT types (http://www.

bioconductor.org/packages/release/bioc/html/MGFM.html; default parame-

ters). The subset of 59 genes that were significantly differentially expressed

(log2 fold-change > 1.5 and p-adj value < 0.01) was selected as a core BAT

and WAT marker set. The ConcensusPathDB-Mouse (http://cpdb.molgen.

mpg.de/MCPDB) was used to identify non-redundant functional categories
amples by Supervised Machine Learning

samples.

from each human-adipocytes-based study. JAK3i, Janus kinase 3 inhibitor

s, pluripotent stem cell derived white adipocytes; SYKi, spleen tyrosine kinase

http://www.bioconductor.org/packages/release/bioc/html/MGFM.html
http://www.bioconductor.org/packages/release/bioc/html/MGFM.html
http://cpdb.molgen.mpg.de/MCPDB
http://cpdb.molgen.mpg.de/MCPDB


from Gene Ontology (GO) and Reactome that were enriched within BAT and

WAT marker genes (p value < 0.01). Cytoscape (Shannon et al., 2003) was

used to display the predicted regulatory network.

In-House RNA-Seq

Total RNA was extracted from inguinal WAT and interscapular BAT of

16-week-old female C57BL/6 mice kept either for the whole life at an ambient

temperature of 30�C or for two weeks at 18�C followed by 4 weeks at 5�C
(n = 4; not randomization and blinding applied). Qiazol was used for RNA

extraction according to the manufacturer’s instructions (Qiazol Lysis Reagent;

QIAGEN). The quality of the RNA was determined with the Agilent 2100

BioAnalyzer (RNA 6000 Nano Kit; Agilent Technologies). All samples had a

RNA integrity number (RIN) value greater than 8. For library preparation, 1 mg

of total RNA per sample was used. RNAmolecules were poly(A) selected, frag-

mented, and reverse transcribed with the Elute, Prime, Fragment Mix (EPF;

Illumina). End repair, A-tailing, adaptor ligation, and library enrichment were

performed as described in the low-throughput protocol of the TruSeq RNA

Sample Prep Guide (Illumina). RNA libraries were assessed for quality and

quantity with the Agilent 2100 BioAnalyzer and the Quant-iT PicoGreen dsDNA

Assay Kit (Life Technologies). RNA libraries were sequenced as 100-bp paired-

end runs on an Illumina HiSeq2500 platform. The animal welfare authorities

approved animal maintenance and experimental procedures.

Prediction of Adipose Tissue Browning Capacity by Machine

Learning

A neural network model was developed with one hidden layer, using caret

R package with method set to nnet. Leave-one-out cross validation was

used to tune the number of hidden units and weight decay, whereas default

values were used for the remaining parameters. Datasets were exclusively as-

signed to either a test or a training group. The training data only included data-

sets from study M1, M2, M4, M5, M6, M7, M12, and R4. Instead, the test data

included microarray and RNA-seq datasets from study M3, M8, M9, M10,

M11, M13, R1, R2, and R3. To avoid introducing circularity in the analysis,

test datawere independent from training data andwere never used for training.

COMBAT algorithm was applied to normalize any new test dataset against the

training set in order to remove batch effects, and then the training set together

with the core marker set were used in the neural network. Human transcrip-

tional profiles were also used as testing set by mapping human gene IDs to

mouse ortholog gene IDs with BioMart (Ensembl release 81) restricted to

ortholog_one2one mapping type.

Statistical Analysis

Z score is calculated as (X � m)/s, where X is the value of the element, m is the

mean, and s is the SD. A marker gene is defined significant if the adjusted

p value < 0.01 and the log2(fold change) > 1.5, where p value and fold change

are calculated with DESeq R package.

DATA AND SOFTWARE AVAILABILITY

The accession number for in-house RNA-seq data reported in this paper is

GEO: GSE112582. The data and code can be accessed at https://github.

com/PerocchiLab/ProFAT. Accession codes for publicly available microarray

and RNA-seq datasets used in this study are also listed in Table S1.
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