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Ewing sarcomas (ES) are highly malignant, osteolytic bone or soft tissue

tumors, which are characterized by EWS–ETS translocations and early

metastasis to lung and bone. In this study, we investigated the role of the

BRICHOS chaperone domain-containing endochondral bone protein chon-

dromodulin I (CHM1) in ES pathogenesis. CHM1 is significantly overex-

pressed in ES, and chromosome immunoprecipitation (ChIP) data

demonstrate CHM1 to be directly bound by an EWS–ETS translocation,

EWS-FLI1. Using RNA interference, we observed that CHM1 promoted

chondrogenic differentiation capacity of ES cells but decreased the expres-

sion of osteolytic genes such as HIF1A, IL6, JAG1, and VEGF. This was

in line with the induction of the number of tartrate-resistant acid phos-

phatase (TRAP+)-stained osteoclasts in an orthotopic model of local

tumor growth after CHM1 knockdown, indicating that CHM1-mediated

inhibition of osteomimicry might play a role in homing, colonization, and

invasion into bone tissues. We further demonstrate that CHM1 enhanced

the invasive potential of ES cells in vitro. This invasiveness was in part

mediated via CHM1-regulated matrix metallopeptidase 9 expression and

correlated with the observation that, in an xenograft mouse model, CHM1

was essential for the establishment of lung metastases. This finding is in

line with the observed increase in CHM1 expression in patient specimens

with ES lung metastases. Our results suggest that CHM1 seems to have

pleiotropic functions in ES, which need to be further investigated, but

appears to be essential for the invasive and metastatic capacities of ES.
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1. Introduction

Ewing sarcomas (ES) are the second most common

malignancy of bone and soft tissues in children and

adolescents, which accounts for 10–15% of all primary

bone tumors (Burchill, 2003). Genetically, ES are

defined by EWS–ETS translocations encoding aberrant

transcription factors presumed to induce the highly

malignant phenotype of this disease (Delattre et al.,

1994; Lessnick and Ladanyi, 2012; Mackintosh et al.,

2010; Sorensen et al., 1994). Other contributing

somatic mutations involved in disease development

have only been observed at low frequency (Agelopou-

los et al., 2015; Brohl et al., 2014; Crompton et al.,

2014; Tirode et al., 2014). ES are characterized by

early metastasis into lung and bone tissues. Metastasis

is commonly hematogenous and related to stemness

(Burdach et al., 2009; Richter et al., 2009; Schmidt

et al., 1985). Even though prognosis for patients with

ES has markedly improved during the development of

multimodal therapeutic approaches, the survival rate

of patients with advanced, multifocal disease is still

associated with fatal outcome (Burdach et al., 1993,

2010; Thiel et al., 2011); especially, multifocal bone or

bone marrow disease and the development of metas-

tases in bones are catastrophic events in the clinical

course of patients with ES (Burdach and Jurgens,

2002; Coleman, 2006; Thiel et al., 2016).

Based on our previous microarray analysis, we iden-

tified the dickkopf WNT signaling pathway inhibitor 2

(DKK2) critical for terminal bone development (Li

et al., 2005) and two BRICHOS domain-containing

genes important for chondrogenic differentiation

(Deleersnijder et al., 1996; Klinger et al., 2011), to be

overexpressed in ES (Hauer et al., 2013; Staege et al.,

2004). We demonstrated DKK2 to be an agonist of

the canonical WNT/b-catenin pathway and to be a

key player in ES metastasis, bone invasiveness, and

osteolysis (Hauer et al., 2013).

Here, we analyzed one of the BRICHOS domain-

containing genes, leukocyte cell-derived chemotaxin 1

(also known as chondromodulin 1; CHM1; CNMD),

for its function in chondro-osseous tumor growth and

invasiveness. Sanchez-Pulido et al. (2002) observed

that the BRICHOS domain itself seems to be involved

in post-translational processing of the corresponding

pro-proteins and/or to have a chaperone-like activity.

CHM1 expression has been previously associated with

chondrosarcoma and BRICHOS domain mutations in

the surfactant protein C precursor have been linked to

endoplasmic reticulum stress, proteasome dysfunction,

and caspase 3 activation, suggesting a role for the

BRICHOS chaperone domain in microenvironmental

regulation (Hedlund et al., 2009; Sanchez-Pulido et al.,

2002). Under normal conditions, CHM1 is almost

exclusively expressed in the cartilage and has a strong

antiangiogenic function (Hiraki and Shukunami, 2000;

Hiraki et al., 1997; Yoshioka et al., 2006). The

secreted, mature form of the glycoprotein is a key fac-

tor in chondrocyte proliferation and development and

simultaneously inhibits terminal chondrocyte hypertro-

phy and endochondral ossification (Klinger et al.,

2011; Shukunami and Hiraki, 2001). These characteris-

tics indicated that CHM1 might be important in ES

malignancy, as ES progenitor cells seem to be of pre-

mature chondrogenic origin arrested at early osteo-

chondrogenic differentiation (Hauer et al., 2013; von

Heyking et al., 2016; Tanaka et al., 2014).

In the present study, we observed that CHM1

reduced the endothelial but enhanced the chondrocytic

differentiation ability of ES. CHM1 simultaneously

increased the expression of several stem cell genes such

as PROM1. Furthermore, CHM1 overexpression pro-

moted in vitro invasiveness, as well as lung metastasis

of ES cells in a xenograft mouse model. In line with

these findings, expression of CHM1 is significantly

higher in lung metastases samples of patients with ES

than in samples derived from different bone localiza-

tions. This indicates CHM1 to be important for ES

malignancy, especially for maintaining an undifferenti-

ated, metastatic phenotype in ES.

2. Materials and methods

2.1. Cell lines

ES lines (MHH-ES1, RD-ES, SK-ES1, SK-N-MC,

and TC-71), neuroblastoma lines (CHP126, MHH-

NB11, SHSY5Y, and SIMA), and pediatric human B-

cell precursor leukemic lines (cALL2, NALM6, and

697) were obtained from the German Collection of

Microorganisms and Cell Cultures (DSMZ, Braun-

schweig, Germany). ES line VH64 was kindly provided

by Marc Hotfilder (M€unster University, M€unster,

Germany); osteosarcoma lines (HOS, HOS-58,

MG-63, MNNG, SaOS, SJSA01, U2OS, and ZK-58)

by Jan Smida and Michaela Nathrath, Institute of

Pathology and Radiation Biology (HMGU, Neuher-

berg, Germany). A673 was purchased from ATCC

(LGC Standards, Teddington, UK). SB-KMS-KS1

and SB-KMS-MJ1 are ES cell lines that were estab-

lished in our laboratory (Grunewald et al., 2012; Rich-

ter et al., 2009). Retrovirus packaging cell line PT67

was obtained from Takara Bio Europe/Clontech
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(Saint-Germain-en-Laye, France). Cells were main-

tained in a humidified incubator at 37 °C in 5–8%
CO2 atmosphere in RPMI 1640 or DMEM (both Life

Technologies, Carlsbad, CA, USA) containing 10%

heat-inactivated fetal bovine serum (Biochrom, Berlin,

Germany) and 100 lg�mL�1 gentamicin (Life Tech-

nologies). Cell lines were checked routinely for purity

(e.g., EWS-FLI1 translocation product, surface antigen

or HLA phenotype) and mycoplasma contamination.

2.2. RNA interference (RNAi)

For transient RNA interference, cells were transfected

with small interfering RNA (siRNA) as described pre-

viously (Richter et al., 2009). To test transfection effi-

ciency and gene silencing, RNA was extracted and

gene expression assessed by quantitative real-time

PCR. All siRNA sequences are provided in the supple-

mentary data.

2.3. Constructs and retroviral gene transfer

For stable silencing of CHM1 expression, oligonu-

cleotides were designed corresponding to the most effi-

cient siRNA used for transient RNA interference and

retroviral gene transfer was performed as described

previously (Richter et al., 2009). The used oligonu-

cleotides are provided in the Supporting Information

(Doc. S1).

2.4. Quantitative Real-time PCR (qRT-PCR)

Total RNA was isolated and reverse-transcribed using

the High Capacity cDNA Reverse Transcription Kit

(Life Technologies) according to the manufacturer’s

instructions. Differential gene expression was then ana-

lyzed by qRT-PCR using TaqMan Universal PCR

Master Mix and fluorescence detection with an AB

7300 Real-Time PCR System (both Life Technologies)

as described previously (Richter et al., 2009, 2013).

Gene expression was normalized to glyceraldehyde-3-

phosphate dehydrogenase (GAPDH). A list of used

assays is provided in the Supporting Information.

NTC: nontemplate control.

2.5. ChIP and quantitative real-time PCR

ChIP was performed using ChIP-IT� Express Kit

(Active Motif, Carlsbad, CA, USA) according to the

manufacturer’s instructions. In brief, 2 9 107 SK-N-

MC and TC-71 cells, respectively, were fixed with

methanol-free formaldehyde (Life Technologies, Darm-

stadt, Germany) at a final concentration of 1% for

10 min. After neutralization with glycine, cells were

lysed in RIPA buffer with protease inhibitors. Samples

were sonicated to an average DNA length of 200–
400 bp using a M220 Focused-ultrasonicatorTM (Cov-

aris, Woburn, MA, USA). ChIP was carried out using

5 lg of anti-FLI1 antibody (C-19, sc-356X; Santa

Cruz) or anti-rabbit IgG (sc-2027X; Santa Cruz),

respectively. DNA was cleaned up using IPure kit

(Diagenode, Seraing, Belgium). Quantitative real-time

PCR (qPCR) using SYBR Green (Bio-Rad, M€unchen,

Germany) was performed for different loci of the

CHM1 promoter and one positive control loci at

�1081 bp upstream of the transcription start site

(TSS) of the EZH2 promoter. FLI1 binding was nor-

malized to IgG control antibody using the DDCT
method (Livak and Schmittgen, 2001).

2.6. Proliferation assay

Cell proliferation was determined with an impedance-

based instrument system (xCELLigence, Roche/ACEA

Biosciences, Basel, Switzerland) enabling label-free

real-time cell analysis. Briefly, 1–3 9 104 cells were

seeded into 96-well plate with 200 lL media contain-

ing 10% FBS and allowed to grow up to 60 h. Cellu-

lar impedance was measured periodically every four

hours and gene knockdown was monitored by qRT-

PCR.

2.7. Colony forming assay

Cells were seeded in duplicate into a 35-mm plate at a

density of 5 9 103 cells per 1.5 mL methylcellulose-

based media (R&D Systems, Minneapolis, MN, USA)

according to the manufacturer’s instructions and cul-

tured for 10–14 days at 37 °C/5% CO2 in a humidified

atmosphere.

2.8. In vitro invasion assay

To study cell invasion, the BioCoatTM Angiogenesis

System: Endothelial Cell invasion was used (BD Bio-

sciences, San Jose, CA, USA) according to the manu-

facturer’s instructions as described previously

(Grunewald et al., 2012).

2.9. Differentiation assay

Cellular tube formation was tested by the use of a

commercial Matrigel matrix assay (Biocoat; BD Bio-

sciences) according to the manufacturer’s instruction.

Briefly, cells were seeded at 5 9 104 cells per well in a

96-well plate and grown at 37 °C (5% CO2) in a
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humidified atmosphere. After 16–18 h, cells were

stained with 1 lg�mL�1 Calcein AM Fluorescent Dye

(BD Biosciences) for 30 min in the dark. Cells were

imaged by fluorescence microscopy by using a Nikon

Eclipse TS 100 with an attached Nikon Coolpix 5400

camera (Nikon, Tokyo, Japan).

2.10. Elisa

An ELISA with 48 strip wells from MyBioSource (San

Diego, CA, USA) to detect CHM1 levels

(MBS937594) was performed according to the manu-

facturer’s instructions.

2.11. Microarray analysis

Patient material was obtained from clinical studies

of the Cooperative Ewing Sarcoma Study Group in

Europe. All patients provided informed consent.

Biotinylated target cRNA was prepared as previously

described (Richter et al., 2009). A detailed protocol

is available at www.affymetrix.com. Samples were

hybridized to Affymetrix Human Gene 1.0 ST

microarrays and analyzed by AFFYMETRIX software

expression console (Affymetrix, High Wycombe,

UK), version 1.1. For the data analysis, robust mul-

tichip average normalization was performed, includ-

ing background correlation, quantile normalization,

and median polish summary method. Array data

were submitted at GEO (GSE45544).

2.12. Animal model

Immunodeficient Rag2�/�cc�/� mice on a BALB/c

background were obtained from the Central Institute

for Experimental Animals (Kawasaki, Japan) and

maintained in our animal facility under pathogen-free

conditions in accordance with the institutional guideli-

nes and approval by local authorities (Regierung von

Oberbayern). Experiments were performed in 6- to 20-

week-old mice.

2.13. In vivo experiments

To examine in vivo tumorigenicity, 2 9 106 ES cells

and derivatives were injected subcutaneously into the

inguinal region of immunodeficient Rag2�/�cc�/�

mice, and when the tumor reached 1 cm3, mice were

sacrificed and tumor samples were analyzed.

For the analysis of in vivo metastatic potential, 1.5–
2 9 106 ES cells and derivatives were injected in a vol-

ume of 0.2 mL into the tail vein of immunodeficient

Rag2�/�cc�/� mice as described previously (Grune-

wald et al., 2012; Richter et al., 2009). Mice were sac-

rificed after five weeks, and metastatic spread was

examined in individual organs.

To investigate bone invasiveness and osteolysis, mice

were anesthetized with 500 mg�mL�1 novaminsulfon

(Ratiopharm, Ulm, Germany) and isoflurane (Abbott,

Abbott Park, IL, USA) and A673 or TC-71 derivatives

were injected as described previously (Hauer et al.,

2013). Briefly, a 30-gauge needle was introduced

through the proximal tibia plateau and 2 9 105 ES

cells in a volume of 20 lL were injected into the

medullary cavity. In all experiments, tumors and

affected tissues were recovered and processed for histo-

logical analyses. Intratibial tumor formation was mon-

itored by X-ray radiography.

2.14. Histology

Murine organs were fixed in phosphate-buffered 4%

formaldehyde and embedded in paraffin; 3- to 5-lm-

thick sections were stained with hematoxylin and eosin

Fig. 1. CHM1 is highly overexpressed in ES. (A) Expression profile of CHM1 in primary ES in comparison with normal tissue (NT) and fetal

tissue (FT). ES, NT, and FT samples were analyzed using EOS-Hu01 microarrays (Staege et al., 2004). (B) Expression levels of CHM1 in

different pediatric small, round, blue cell tumors, carcinomas, and normal tissues by box plot presentation using a comparative study of the

amc onco-genomics software tool (www.amc.com). Results are 2-log-centered for better representation of results. The number of samples

in each cohort is given in brackets. (C) CHM1 expression in different tumor cell lines analyzed by qRT-PCR. Data are mean � SEM. (D) RNA

interference of EWS-FLI1 expression (bottom) does reduce CHM1 expression (top). si.EWS-FLI1_1 (less efficient) and si.EWS-FLI1_2

represent the specific siRNAs (si.control: nonsilencing siRNA). Results of qRT-PCR 48 h after transfection are shown. Data are

mean � SEM of two independent experiments; t-test. (E) EWS-FLI1 enrichment at the CHM1 promoter in SK-N-MC and TC-71 cells. ChIP

analysis was performed with FLI1 and control IgG antibodies, respectively, and analyzed by quantitative PCR for binding to different regions

of the CHM1 promoter. FLI1 enrichment was detected at different ETS recognition sites �1060, �1036, �992, �665, and �240 bp

upstream of the TSS of CHM1. The �1894-bp region, which is devoid of ETS recognition sequences, served as negative control. The ETS

consensus site at �1081 bp of the EZH2 promoter (Richter et al., 2009) was used as positive control for FLI1 binding. Data represent the

mean of two independent experiments, and error bars represent standard deviations. (F) Constitutive suppression of CHM1 expression after

infection of ES cells with CHM1-specific shRNA constructs as measured by qRT-PCR (sh.CHM1 and sh.control). qRT-PCR data are

mean � SEM of 10 independent experiments; t-test. (G) ELISA detection of CHM1 levels in the supernatant of ES cells stably transfected

with CHM1 shRNA or control. Data are mean � SEM; t-test. *P < 0.05; **P < 0.005; ***P < 0.0005 (see 2.15. Statistical analyses).
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(H&E). Hind limb bones were decalcified and paraffin-

embedded; the histological analysis with H&E was

complemented by quantification of tartrate-resistant

acid phosphatase (TRAP+)-stained osteoclasts. All

sections were reviewed and interpreted by two patholo-

gists (J. C-W.; F. N. or I.E.).

2.15. Statistical analyses

Data are mean � SEM as indicated. Differences were

analyzed by unpaired two-tailed Student’s t-test as

indicated using Excel (Microsoft, Redmond, WA,

USA) or Prism 5 (GraphPad Software, San Diego,

CA, USA); P values < 0.05 were considered

statistically significant (*P < 0.05; **P < 0.005; ***P
< 0.0005).

3. Results

3.1. CHM1 is highly expressed in Ewing sarcomas

Previously, we identified CHM1 to be highly expressed

in ES (Staege et al., 2004). As shown in Fig. 1A,B, we

observed high levels of CHM1 expression exclusively

in ES, compared to different normal and fetal tissues

(Fig. 1A), or various other pediatric or adult cancer

types such as neuroblastoma, medulloblastoma, leuke-

mia, and various carcinomas (Fig. 1B). To further val-

idate overexpression of CHM1 in ES, we tested nine

common ES cell lines against a series of different

osteosarcoma, neuroblastoma, and ALL cell lines

using qRT-PCR. As expected, CHM1 was strongly

up-regulated in ES cell lines, but not in neuroblastoma

and ALL cell lines (Fig. 1C). Furthermore, analysis of

mRNA levels revealed no expression of CHM1 in

osteosarcoma cell lines (Fig. 1C), while CHM1 was

previously associated with inhibition of endochondral

ossification (Deleersnijder et al., 1996; Klinger et al.,

2011).

Subsequently, we analyzed whether the oncogenic

fusion protein EWS-FLI1 can influence CHM1 expres-

sion in four different ES cell lines. As shown in

Fig. 1D, RNA interference-mediated EWS-FLI1

silencing led to a significant, efficiency-dependent sup-

pression of CHM1 levels, which indicates CHM1

expression to be associated with EWS-FLI1. We next

performed ChIP analysis with FLI1 and IgG antibod-

ies to analyze binding of FLI1 to the CHM1 pro-

moter. FLI1 enrichment was detected at different ETS

recognition sites �1060, �1036, �992, �665, and

�240 bp upstream of the TSS of CHM1 (Fig. 1E).

These data suggest CHM1 to be directly regulated by

the ES chimeric transcription factor, EWS-FLI1. For

subsequent analysis, we constitutively down-regulated

CHM1 in different ES cell lines (A673, SK-N-MC,

and TC-71) to further elucidate the influence of this

gene on ES pathogenesis (Fig. 1F,G).

3.2. CHM1 influences the endothelial as well as

chondrocytic differentiation potential of ES

Due to the well-known antiangiogenic function of

CHM1 (Hiraki et al., 1997; Yoshioka et al., 2006), we

first tested the endothelial differentiation capacity of

A673 and MHH-ES1 cells either stable-transfected

with sh.CHM1 or sh.control or transiently with

CHM1 or control siRNA, respectively (Fig. S1A), in a

Matrigel matrix assay. As shown in Fig. 2A, CHM1

expression clearly inhibited the potential to form cellu-

lar tubes in ES cell lines irrespective of whether we

investigated constitutive or transient knockdown of

CHM1. Furthermore, CHM1 seems to be a key factor

in chondrocyte development and proliferation inhibit-

ing terminal chondrocyte differentiation to a hyper-

trophic phenotype during the process of endochondral

ossification (Klinger et al., 2011; Shukunami and Hir-

aki, 2001). Thus, we incubated three ES cell lines sta-

bly transfected with sh.CHM1 and sh.control with

specific differentiation media to induce chondrogenic

or osteogenic differentiation. The differentiation poten-

tial was determined by qRT-PCR using specific marker

genes (Vater et al., 2011). As shown in Fig. S1B,C, the

chondrogenic, and to a lesser extent the osteogenic,

differentiation ability was significantly impaired after

CHM1 knockdown. Based on these findings, we asked

whether CHM1 might be important for the mainte-

nance of an immature, chondrocytic phenotype of this

tumor. Therefore, we analyzed the expression of differ-

ent stem cell genes, namely ATP-binding cassette, sub-

family G (WHITE), member 2 (ABCG2; Szepesi et al.,

2015; Zhou et al., 2001), nanog homeobox (NANOG;

Mitsui et al., 2003), and prominin 1 (PROM1; Katoh

and Katoh, 2007), in ES cell lines with CHM1 knock-

down and respective controls. As shown in Fig. S1D,

suppression of CHM1 decreased the expression of

ABCG2 and PROM1 compared to sh.control-trans-

fected cells, of which only PROM1, important for

maintaining stemness and pluripotency, was down-

regulated down to 13.7% (32.9%), especially in A673

cells, after CHM1 knockdown at the protein level

(Fig. S1E).

3.3. CHM1 represses osteomimicry of ES

Due to the particular effect of CHM1 especially on the

chondrogenic differentiation potential of ES cells, we
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asked whether CHM1 may influence bone-associated

tumor growth of ES in vivo, as well. We injected con-

stitutive sh.CHM1- or sh.control-infected A673 cells

(see Materials and methods 2.13) into the tibiae of

immunodeficient Rag2�/�cc�/� mice and analyzed

bone infiltration and destruction by X-ray radiography

and histology. Many mice developed severe osteolytic

lesions (both around 80%), regardless of whether mice

were injected with A673 sh.control or sh.CHM1 cells

(data not shown). However, the number of TRAP+

osteoclasts was significantly increased within bone

tissue, but decreased within the tumor tissue in

sh.CHM1 samples as compared to negative controls

(Fig. 2B). A similar experiment with TC-71 sh.CHM1

and sh.control cells could confirm these findings, even

though only few mice (40%) developed a tumor

regardless of whether injecting TC-71 sh.CHM1 or sh.-

control cells (Fig. S2).

The increased osteolytic phenotype in bone tissue

after CHM1 knockdown might result in better local-

ization to bone in combination with a change in the

expression pattern of cancer cells, also known as

Fig. 2. CHM1 inhibits tube formation and influences osteomimicry. (A) Tube formation assay with constitutively transfected A673 (sh.control

and sh.CHM1) and transiently transfected MHH-ES1 (si.control and si.CHM1_1) cells demonstrated CHM1 to clearly inhibit endothelial

differentiation potential (scale bar 0.5 mm). (B) Analysis of osteolysis of A673 sh.CHM1 and negative controls (sh.control) in an orthotopic bone

xenotransplantation model (five to eight mice per group). Affected bones were assessed by histology (TRAP staining, scale bar 0.25 mm or

0.05 mm). Left panel: quantitative summary of the average number of osteoclasts (mm2) in unaffected bone marrow, tumor samples, and

attached to the bone in tumor tissues (bone). Data are mean � SEM of at least two independent samples (at least 40 segments counted); t-

test. Right panel: Representative pictures are shown. CHM1 knockdown significantly enhanced the amount of TRAP-positive osteoclasts

attached to the bone (b) in the area of tumor (arrow) and thus increased the osteolytic phenotype. (C) Different ES cell lines with constitutive

CHM1 knockdown and respective controls were analyzed by qRT-PCR for expression of osteolytic genes such as HIF1A, IL6, JAG1, and VEGF.

Data are mean � SEM of two independent experiments; t-test. *P < 0.05; **P < 0.005; ***P < 0.0005 (see 2.15. Statistical analyses).
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osteomimicry. We determined the mRNA levels of dif-

ferent genes known to be associated with osteolysis.

As shown in Fig. 2C, CHM1 knockdown significantly

increased the expression levels of osteolytic genes such

as hypoxia-inducible factor 1, alpha subunit (HIF1A),

interleukin 6 (IL6), jagged 1 (JAG1), and vascular

endothelial growth factor receptor 1 (VEGF) (Weil-

baecher et al., 2011), which may further increase the

osteolytic and malignant activity within bone observed

here (Fig. 2B).

3.4. CHM1 enhances proliferation in ES

To further analyze the impact of CHM1 overexpres-

sion on the pathogenesis and malignancy of ES, we

next examined the effect of CHM1 on in vitro prolif-

eration using an xCELLigence-based proliferation

assay. As shown in Fig. 3A, constitutive down-regula-

tion of CHM1 significantly decreased contact-depen-

dent growth of all three ES cell lines investigated

without affecting the cell cycle (Fig. S3). Interestingly,

CHM1 similarly enhanced colony formation on

methylcellulose matrices in A673, SK-N-MC, and

TC-71 cells in vitro (Fig. 3B). Subsequently, we ana-

lyzed whether CHM1 affects in vivo tumorigenicity of

ES, too. We injected stably transfected A673 and TC-

71 cells with sh.CHM1 and sh.control subcutaneously

into the inguinal region of immunodeficient Rag2�/

�cc�/� mice and analyzed local tumor growth. How-

ever, in contrast to in vitro proliferation, suppression

Fig. 3. CHM1 delayed proliferation in ES in vitro. (A) Analysis of contact-dependent growth of constitutively sh.CHM1- and sh.control-

infected ES cell lines with xCELLigence. Left panel: Cellular impedance was measured every four hours (relative cell index). Data are

mean � SEM (hexaplicate/group); t-test. Right panel: doubling time of constitutive A673, SK-N-MC, and TC-71 CHM1 shRNA infectants.

Data are mean � SEM of two independent experiments/cell line (hexaplicate/group); t-test. B. Effect of CHM1 knockdown on anchorage-

independent growth in A673, SK-N-MC, and TC-71 cells using methylcellulose matrices. Left panel: A representative experiment with SK-N-

MC cells was shown as macrograph. Right panel: The average number of colonies of at least two different experiments with three different

ES cell lines was shown after stable CHM1 suppression. (C) Left panel: evaluation of tumorigenicity of constitutive A673 and TC-71 CHM1

shRNA infectants in immunodeficient Rag2�/�cc�/� mice (3–5 mice per group). Right panel: post ex vivo CHM1 expression using qRT-PCR.

Data are mean � SEM, t-test. *P < 0.05; **P < 0.005; ***P < 0.0005 (see 2.15. Statistical analyses).
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of CHM1 only marginally delayed local tumor

growth in vivo (Fig. 3C).

3.5. CHM1 enhances invasiveness and metastasis

in ES

Invasiveness and metastasis are important hallmarks

of cancer (Hanahan and Weinberg, 2011). Therefore,

we tested three ES cell lines with constitutive CHM1

knockdown and respective controls in a Matrigel inva-

sion assay. Stably silenced CHM1 ES cell lines showed

a clear reduction in invasion down to 4% in SK-N-

MC cells compared to control cells (Fig. 4A). As pre-

viously reported by our group, matrix metallopepti-

dases (MMPs) appear to be important for ES

invasiveness (Grunewald et al., 2012; Hauer et al.,

2013; Richter et al., 2013). Thus, we next examined

the mRNA expression of MMP1, MMP7, and MMP9

after CHM1 knockdown. As shown in Fig. 4B, sup-

pression of CHM1 clearly reduced mRNA levels of

MMP9, in contrast to MMP1 and MMP7 (Fig. S4A).

Simultaneously transient MMP9 knockdown signifi-

cantly decreased the amount of cells crossing the

Matrigel, albeit not as strong as observed after CHM1

suppression (Fig. 4A,B bottom), indicating additional

factors involved.

Finally, we investigated the metastatic potential of

ES cells constitutively transfected with sh.CHM1 and

sh.control in immunodeficient Rag2�/�cc�/� mice.

Even though there is no difference in cell size and

there is only a minimal increase in granularity between

sh.CHM1 and sh.control cells (Fig. S4B), suppression

Fig. 4. CHM1 enhances metastasis in ES in vivo. (A) Analysis of invasiveness of ES cell lines through Matrigel after transfection with

specific CHM1 shRNA constructs. Data are mean � SEM of two independent experiments; t-test. (B) Upper panel: qRT-PCR of MMP9

expression after stable CHM1 knockdown. Data are mean � SEM of two independent experiments; t-test. Lower panel: analysis of the

invasive potential of A673 and SK-N-MC cells after transient transfection with two specific MMP9 siRNAs 48 h before seeding. Data are

mean � SEM; t-test. (C) Analysis of metastasis using A673 and TC-71 cells with stable CHM1 suppression and respective controls (four to

five mice per group). Left panel: Representative lungs with corresponding H&E staining of A673-injected mice are shown (scale bar 5 or

2 mm). Right panel: Average number of apparent metastases per mouse in lung and liver tissues is illustrated; t-test. (D) DotBlot of relative

CHM1 expression in ES osseous tumor samples compared to ES lung metastases samples using microarray analysis of 14 patient tumor

samples. *P < 0.05; **P < 0.005; ***P < 0.0005 (see 2.15. Statistical analyses).
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of CHM1 significantly reduced the number of lung

metastases after inoculation with A673 cells (Fig. 4C).

However, no clear differences were observed for liver

metastases for these cells (Fig. 4C, right). These results

were confirmed with TC-71 cells; while no lung metas-

tases were observed after CHM1 suppression, the

number of liver metastases was not affected (Fig. 4C).

Interestingly, modulation of angiogenesis did not seem

to contribute to ES metastasis in our in vivo mouse

model. Although CHM1 clearly inhibited the endothe-

lial differentiation potential in vitro (Fig. 2A) and

in vivo, no differences in angiogenesis were observed as

demonstrated by CD31 and Mac-3 staining of differ-

ent lung and liver tumor samples (Fig. S4C,D).

To further determine the relevance of these results

in the clinical setting, we analyzed samples from 14

patients with ES. Interestingly, microarray analysis

revealed a significantly higher expression of CHM1 (P-

value < 0.005) in tumor samples derived from lung

metastases than from different local relapses in bone

localizations (Fig. 4D).

4. Discussion

The current study investigated the role of CHM1 for

the biology and pathology of ES. We observed that

EWS-FLI1 specifically induced CHM1 expression.

CHM1 is a known antiangiogenic factor, which has

been demonstrated to play a role in bone development

and to be expressed in growth plate cartilage of hyper-

trophic and calcified zones (Hiraki et al., 1997; Miura

et al., 2014; Yoshioka et al., 2006). Previously, we have

shown that reduced tumor perfusion is associated with

resistance and poor prognosis in ES (Dunst et al.,

2001). CHM1 influences endochondral ossification as

well as chondrocyte development and proliferation

(Klinger et al., 2011; Shukunami and Hiraki, 2001). Its

function may be mediated by its secreted form or by its

intracellular effect on different pathways, respectively

(Mera et al., 2009). ES cells secrete CHM1 as demon-

strated via ELISA, but we have no direct information

on potential membrane-bound forms as available anti-

bodies so far do not work reproducibly in western blot

analysis (data not shown). However, following RNA

interference, we observed CHM1 to affect endothelial,

as well as chondrocytic, differentiation potential of ES,

presumably via its intracellular activity. Because CHM1

maintains a more undifferentiated chondrocytic pheno-

type and represses endothelial differentiation of ES, we

further investigated the expression of several stem cell

genes. Although we did not observe a distinct pheno-

type, we could show that CHM1 enhanced the expres-

sion of ABCG2 and PROM1. ABCG2 is expressed in a

wide variety of stem cells (Zhou et al., 2001), while

PROM1 is so in embryonic and adult as well as cancer

stem cells and maintains stem cell properties by sup-

pressing differentiation (Katoh and Katoh, 2007).

ABCG2, in addition, seems to be a good marker for

stem cells with enhanced osteogenic and chondrogenic

differentiation potential (Szepesi et al., 2015). Remark-

ably, Tanaka et al. (2014) recently demonstrated that

cells present in the embryonic superficial zone of long

bones and of osteo-chondrogenic origin are possible ES

progenitor cells. Furthermore, epigenetic suppression of

CHM1 in malignant tumor of bone such as osteosar-

coma (Aoyama et al., 2004) is supportive for its pre-

sumed role maintaining an immature chondrocytic

phenotype in ES.

While investigating how CHM1 influences tumor

growth in our orthotopic xenograft mouse model

(Hauer et al., 2013), we observed that overall tumor

growth was relatively unaffected although an increase

in TRAP+ osteoclasts in bone tissue following CHM1

suppression was detected. In line with this observation,

we noticed an increased expression of malignancy-pro-

moting/osteolytic genes after CHM1 knockdown in ES

cells, which might enhance aggressiveness and result in

better localization to bone in combination with a

change in the expression pattern of cancer cells, also

known as osteomimicry. Expression of the transcrip-

tion factor HIF1A by tumor cells inhibits osteoblast

differentiation and enhances the differentiation and

maturation of osteoclasts, in part via VEGF induction

(Dunn et al., 2009; Hiraga et al., 2007; Weilbaecher

et al., 2011). Furthermore, Guan et al. demonstrated

that VEGF increases RANKL promoter activity in

ES, leading to induced bone lysis (Guan et al., 2009),

which may explain the increased osteolytic phenotype

of ES after CHM1 knockdown in our osteotropic

tumor model as observed here. In addition, JAG1, a

potent downstream mediator of TGFB1, which pro-

motes osteolysis in breast cancer cells by activating the

NOTCH signaling pathway, leads to increased IL6

expression (Sethi et al., 2011; Tao et al., 2011). How-

ever, in ES, NOTCH signaling is switched off via

EWS-FLI1-mediated repression (Ban et al., 2008; Ben-

nani-Baiti et al., 2011). IL6 is a pro-proliferative cyto-

kine, which promotes tumor growth (Ara et al., 2009)

and is enhanced after CHM1 suppression in ES cells

(Fig. 2C). Another prominent example with regard to

osteomimicry observed here was the expression of

OPN, which also increased after CHM1 knockdown

especially in A673 cells (Fig. S1C). OPN is normally

expressed by osteoclasts and facilitates attachment of

osteoclasts to the bone matrix (Reinholt et al., 1990).

Moreover, OPN is known to be secreted by tumor
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cells and promotes bone marrow cell recruitment and

tumor formation in bones (Anborgh et al., 2010; Weil-

baecher et al., 2011). Overall, these results may pro-

vide hints that CHM1 may balance a certain level of

chondro-osseous differentiation capability and sup-

ports stronger CHM1 expression in lung metastases

compared to bone samples of patients with ES, as

observed here.

Further analysis of ES malignancy revealed that

CHM1 significantly enhances contact-dependent as

well as contact-independent growth of different ES cell

lines in vitro, but only marginally influences local

tumor growth in xenograft mice after subcutaneous

injection. Presumably, the CHM1-mediated growth

advantage in vitro may be reduced by a poorer supple-

ment/support of tumor growth in vivo due to the

known antiangiogenic function of this glycoprotein

(Hiraki et al., 1997; Yoshioka et al., 2006).

Additionally, we clearly observed that CHM1

enhances in vitro invasiveness and significantly

increased the mRNA expression of MMP9 in different

ES cell lines. In previous studies (Grunewald et al.,

2012; Hauer et al., 2013; Richter et al., 2013), we

demonstrated MMP1 to be the most important factor

influencing ES invasiveness in vitro and in vivo. How-

ever, these results were not confirmed after knockdown

of CHM1. Transient suppression of MMP9 clearly

reduced the invasive potential of ES cells, as well, intro-

ducing MMP9 as another important factor in ES inva-

siveness. This observation is confirmed by different

publications identifying MMP9 as a crucial factor asso-

ciated with invasion in other tumor entities, such as

breast and prostate cancer (Bin Hafeez et al., 2009;

Wang et al., 2011). In line with these findings, in vivo

knockdown of CHM1 mainly suppressed the develop-

ment of lung metastases of different ES cells investi-

gated in our mouse model, indicating CHM1 to be

important for the development of lung but not for liver

or bone metastases. These results were complemented

by clinical data reinforcing a role of CHM1 for ES inva-

siveness and metastasis especially to lung tissues

(Fig. 4D).

In summary, our results indicate that CHM1 pre-

serves the immature chondrocytic phenotype of this

disease and enhances clonality as well as invasiveness

and the metastatic potential especially for lung metas-

tasis in vivo, thereby promoting the malignant poten-

tial of this disease.
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