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Abstract 

Background: With the advent of the age of big data in bioinformatics, large volumes of data 

and high performance computing power enable researchers to perform re-analyses of 

publicly available datasets at an unprecedented scale. Ever more studies imply the 

microbiome in both normal human physiology and a wide range of diseases. RNA 

sequencing technology (RNA-seq) is commonly used to infer global eukaryotic gene 

expression patterns under defined conditions, including human disease-related contexts, but 

its generic nature also enables the detection of microbial and viral transcripts. 

 
Findings: We developed a bioinformatic pipeline to screen existing human RNA-seq datasets 

for the presence of microbial and viral reads by re-inspecting the non-human-mapping read 

fraction. We validated this approach by recapitulating outcomes from 6 independent 

controlled infection experiments of cell line models and comparison with an alternative 

metatranscriptomic mapping strategy. We then applied the pipeline to close to 150 terabytes 

of publicly available raw RNA-seq data from >17,000 samples from >400 studies relevant to 

human disease using state-of-the-art high performance computing systems. The resulting 

data of this large-scale re-analysis are made available in the presented MetaMap resource. 

 
Conclusions: Our results demonstrate that common human RNA-seq data, including those 

archived in public repositories, might contain valuable information to correlate microbial and 

viral detection patterns with diverse diseases. The presented MetaMap database thus 

provides a rich resource for hypothesis generation towards the role of the microbiome in 

human disease. Additionally, codes to process new datasets and perform statistical analyses 

are made available at https://github.com/theislab/MetaMap. 
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Data Description 

Context 

Recent studies have demonstrated the paramount importance of the microbiome for 

human health and disease [1]. For example, imbalance of the human gut microbiome was 

linked to non-communicable diseases such as obesity [2,3], diabetes [4], cardiovascular 

disease [5], chronic obstructive pulmonary disease [6], or colorectal carcinoma [7,8], to name 

just a few. 

The advent of high-throughput sequencing technologies has revolutionized the life 

sciences. RNA-seq technology produces one of the most frequent next generation 

sequencing data types and has been applied to study a large number of biological samples 

relevant to human disease. The majority of the underlying raw data is freely accessible from 

data repositories such as the Gene Expression Omnibus (GEO) (>1,700 human RNA-seq 

data sets as of january 2018) or the Sequence Read Archive (SRA) [9]. 

However, these data are typically exclusively used for single species (i.e. human) 

transcriptomics such as differential gene expression or alternative splicing analysis [9,10]. 

Reads that do not map onto the human genome are considered noise or contamination and 

therefore generally ignored [11,12] (collectively about 9% of total reads, Fig. 1). Five years 

ago, it was postulated that interspecies interactions might be studied by simultaneous 

detection and quantification of RNA transcripts from a given host and a microbe via „dual‟ 

RNA-seq [13]. Meanwhile this approach has been successfully applied to the interaction of 

mammalian cells with diverse bacterial [14] and viral pathogens [15–19]. 

Inspired by dual RNA-seq, in this study we hypothesize that reads in archived RNA-

seq datasets derived from human primary cells or tissue samples that fail to map against the 

human reference genome may contain valuable information about the presence of certain 

microbes in the respective body niches and/or under defined disease conditions. To enable 

metatranscriptomic study of these data, we combined existing read alignment and 

metagenomic classification software into a two-step „omni‟ RNA-seq pipeline to 
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comprehensively quantify archaeal, bacterial and viral reads in human RNA-seq data (Fig. 

1). 

In the first step of this so called „Metamap‟ pipeline, all reads are aligned against the 

human genome using the ultra-fast RNA-seq aligner STAR [20] and subsequently only the 

fraction of unmapped reads is subjected to metatranscriptomic classification using CLARK-S 

[21] (see Methods for details). The combination between scalability and accuracy was the 

main motivation behind choosing these two software packages over competing methods 

[22,23]. It is important to note that CLARK-S uses a set of uniquely discriminative short 

sequences at the species level to classify reads. Therefore, reads containing non-

discriminative sequences that fail to be uniquely assigned to a single species, e.g. reads 

originating from the bacterial ribosomal 16S rRNA gene, will be considered „unclassified‟ 

(altogether 8.6% in Fig. 1). 

The output of CLARK-S is an operational taxonomic units (OTU) count matrix, where 

rows correspond to viral, bacterial and archeal species and columns to (human) samples. 

Each entry corresponds to the number of non-human reads classified to the respective 

species. For convenience, in the following we refer to the set of microbial and viral species 

profiled using our approach as „metafeatures‟. 

By screening the study abstracts of the SRA for search terms prioritizing human 

clinical datasets derived from polyA-independent sequencing protocols (see Methods) we 

identified over 400 studies relevant to human disease comprising more than 17,000 cDNA 

libraries (close to 150 terabytes of raw sequencing data). Raw sequencing reads from these 

studies were downloaded and analyzed using the high performance computing system of the 

Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences and Humanities 

which facilitated ultra-fast processing with median speeds of 25 and 21 million reads per hour 

per core per run for the STAR and CLARK-S steps, respectively. Overall, of the total over 

500 billion RNA-seq reads processed, around 91% could be mapped to the human genome. 

A fraction of 8.6% of all reads remained non-discriminative at the species level and is defined 

as “unclassified”. 0.03%, 0.20% and 0.39% of all reads were assigned to archaeal, bacterial 
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or viral metafeatures, respectively. Despite these relatively low percentages, the absolute 

numbers of reads classified were in the hundred millions to billions, enabling statistical 

analyses. 

 

Methods 

High performance computing environment. Project computations including download, 

alignment of reads onto the human genome and metafeature quantification were made on 

the high performance Linux Cluster at the LRZ (www.lrz.de/services/compute/linux-cluster). 

RNA-seq data retrieval. Raw next generation sequencing data were downloaded from the 

SRA. The R package SRAdb was downloaded on 23 May 2017 and used to query of the 

SRA database. To identify SRA projects that contain transcriptomic analyses of human RNA-

seq data, the SRA attributes „taxon_id‟, „library_source‟, „library_strategy‟, „platform‟ were 

searched for the terms „9606‟, „TRANSCRIPT‟, „RNA-seq‟, „ILLUMINA‟, respectively. To 

remove potential bias derived from different sequencing technologies we also restricted the 

query to SRA runs annotated with „ILLUMINA‟ in SRA attribute „platform‟. To exclude studies 

with insufficient sample size for statistical analysis the query was restricted to SRA projects 

containing more than five runs. To avoid concentrating the analysis on a small number of large 

projects the query was restricted to SRA projects with less than 500 runs. To identify studies 

focusing on phenotypes relevant to human disease, we restricted the query to runs 

containing at least one or more of the terms „disease‟, „patient‟, „primary‟ and „clinical‟ in the 

SRA attribute „study_abstract‟. To exclude in vitro (cell-culture) experiments, but focus on 

primary (clinical) samples, SRA runs containing the terms "mutant" or "cell-line" were 

removed from our selection. Furthermore, SRA runs containing the terms "single cell" and 

"GTEx" were removed. Finally, samples with less than 1 million total reads or read lengths 

<50 base pairs were excluded. The described query resulted in 484 Short Read Projects 

(SRPs) containing a total of 21,659 RNA-seq runs. Due to technical problems (i.e. missing 

URLs, restricted access) we were unable to download a fraction of 4,078 samples. 
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Human alignment. Alignment of reads against the human reference genome (hg38) and 

simultaneous human gene expression quantification was conducted with STAR (version 

2.5.2). To increase mapping speed of a large number of samples, we used the --

genomeLoad LoadAndKeep function to load the STAR index once and keep it in memory for 

subsequent alignments. The parameter --quantmode GeneCounts was used to generate the 

human gene expression count tables. Unmapped reads were saved with the --

outReadsUnmapped Fastx parameter. To further increase mapping speed, multiple threads 

were used as implemented with the parameter --runThreadN 28. Runs with less than 30% 

reads mapping to the human genome were excluded from downstream analysis. All human 

alignments were conducted on the LRZ “CoolMUC2” Linux-Cluster. This cluster contains 384 

nodes with 64 GB RAM memory and 28 cores each. 

Metafeature quantification. Metafeature quantification was conducted with CLARK-S (version 

1.2.3). CLARK-S is a software method for fast and accurate sequence classification of 

metagenomic next-generation sequencing data, including RNA-seq data. One major issue 

during the classification of metagenomic data is the rising number of targets to align against. 

CLARK-S solves this issue by building a large index file consisting of discriminative k-mers. 

The metagenomic reference database was generated following the description of the CLARK 

website using the following two commands: 1) set_targets.sh bacteria virus --species and 2) 

buildSpacedDB.sh. This database contained a total of 16,551 genome sequences 

corresponding to 6,979 unique species (additional file 2). To allow uniform processing, 

paired-end sequencing experiments were analyzed independently. Each single unmapped 

reads file was used as input for CLARK-S with the following parameters: 

classify_metagenome.sh --spaced –O list of FASTQ files. To increase classification speed, 

the CLARK-S express mode was selected and multiple threads were used with parameters --

m 2 and --n 32, respectively. The output files of this step contain all input read identifiers with 

the corresponding metafeature classification. In the subsequent step, total counts are 

summarized for each feature with the estimate_abundance.sh command. To enable 

comparison across single-end and paired-end experiments, metafeature counts from paired-
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end experiments were averaged and subsequently rounded to conserve count distribution. 

To account for varying sequencing depths, metafeature abundance was estimated as the 

number of reads per million (RPM) total reads sequenced. Metafeature quantification was 

conducted on the LRZ “Teramem” Linux-Cluster. This cluster contains one node with 6,144 

GB RAM memory and 96 cores. 

BLAST based metafeature classification. To validate results generated by the MetaMap 

pipeline, the Basic Local Alignment Search Tool [24] was used as follows. A BLAST 

database was created from the same genome sequences used in the CLARK-S approach. 

Then, reads were aligned to this database using BLASTN with a threshold E-value of 1e-10. 

Produced counts from paired-end experiments were averaged. For each file, BLAST was 

done by running approximately 10 kilobase chunks (record separator ">") in parallel using 

GNU parallel (28 jobs), each with 8 threads using one node on the LRZ “CoolMUC3” Linux 

Cluster. This cluster contains 148 nodes with 96 GB RAM memory and 64 cores each. 

Output was parsed to exclusively keep reads that could be assigned at the species level. 

Differential metafeature abundance. Differential metafeature abundance analysis was 

performed using the R package DESeq2 [25]. DESeq2 models differential gene expression 

by fitting a negative binomial distribution to the raw counts underlying RNA-seq data. This 

framework can account for confounding variables such as sequencing depth. Therefore, the 

data need not be normalized prior to statistical inter-sample comparisons. For each of the 

four published bona fide dual RNA-seq studies we classified samples into two groups based 

on the provided annotations: 1) Samples expected to contain the known pathogen, such as 

human papillomavirus positive tumors in the Zhang et al study, and 2) pathogen-free 

controls, such as mock-treated cells in the Westermann et al study. Using this binary 

outcome we performed differential expression analysis across all detected metafeatures. To 

account for sequencing depth, library size factors were estimated from the total number of 

sequenced reads. The dispersion for the negative binomial distribution was estimated using 

a local linear regression as implemented in the DESeq() function via the fitType parameter 

„local‟. 

Downloaded from https://academic.oup.com/gigascience/advance-article-abstract/doi/10.1093/gigascience/giy070/5036539
by Helmholtz Zentrum Muenchen - Central Library user
on 28 June 2018



 
 

 

Data validation and quality control 

We validated our approach by recovering the ground truth in bona fide dual RNA-seq 

experiments performed with human cell lines and samples from patients with well-known 

infection status. Of the four selected studies, one analyzed an infection model based on a 

bacterial (Salmonella enterica serovar Typhimurium) and three based on distinct viral 

pathogens (Human papillomavirus, Herpes simplex virus, Rhinovirus). As expected, 

MetaMap detected the known pathogen at higher levels in the respective study compared to 

the other studies and pathogens (Table 1). However, comparisons across studies and 

metafeatures may be biased by technical confounders (discussed in detail in the Re-use 

potential section). Therefore, we focussed our analysis on the comparison of a single 

metafeature across subjects within a study. Using the annotation provided in the respective 

study, we performed differential metafeature abundance analysis to identify those 

metafeatures that show the largest relative difference in abundance levels between the 

infected and control samples (see Methods for details). The correct infection agent showed 

the most significant difference across all metafeatures between infected and control samples 

for each study (Fig. 2). For example, Westermann et al [26] generated dual RNA-seq data 

from HeLa cells infected with the enteric bacterial pathogen Salmonella enterica serovar 

Typhimurium and compared them to mock-treated control samples. Accordingly, we here 

observed Salmonella enterica as the most differentially abundant metafeature between the 

infected and the control samples (P<1e-75, Fig. 2A). Likewise we recovered 

Alphapapillomavirus 9, Human alphaherpesvirus 1 (also known as herpes simplex virus 1) 

and Rhinovirus A as the most differentially abundant metafeatures in the data from Zhang et 

al [27], Rutkowski et al [28] and Bai et al [29], respectively. In the Westermann et al [26] and 

Rutkowski et al [28] studies, several additional metafeatures showed a strong differential 

abundance effect (Fig. 2A & C). These metafeatures were closely related to the true infection 

agent, i.e Salmonella bongori (P<1e-67) and Panine alphaherpesvirus 3 (P<1e-9) for the 

Westermann et al [26] or Rutkowski et al [28] study, respectively. These findings confirm that 

our MetaMap pipeline recapitulates results from dedicated dual RNA-seq studies, i.e. studies 
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based on known infectious agents. Therefore, MetaMap may be equally suited to detect 

previously unknown microbial and viral species in human primary samples. 

As an additional control, we re-analysed two projects contained in our data collection 

that are derived from the B lymphoblast cell line, under non-infectious conditions. However, 

since Epstein-Barr virus is used for transfection and transformation of lymphocytes to 

lymphoblasts, we expected to detect reads from this virus in these projects [30], but no 

further viral or microbial reads [31]. Indeed the most abundant metafeatures in each project 

were dominated by reads classified to Gammaherpesvirus 4 (also known as Epstein-Barr 

virus, EBV) and Enterobacteria phage phiX174 sensu lato (phiX), commonly used as spike-in 

in Illumina sequencing runs [32] (Fig. 3A-B). On average 95% and 97% of all metafeature 

reads were classified as phiX or EBV for projects SRP041338 and SRP091453, respectively 

(Fig. 3C). Conversely, the abundance of reads mapping to bacterial species for these two 

projects corresponds to the bottom percentile as compared to all other projects in the 

MetaMap database, supporting sterility of this cell line (Fig. 3D). This demonstrates that 

MetaMap not only is capable of re-discovering known pathogenic species (true positives) in 

controlled infection experiments (Fig. 2), but it also minimizes the detection of false positives 

or at least, provides measures such as abundance and significance allowing the user to 

identify and counterselect those species. 

 
As a technical validation, we compared our approach to an alternative 

metatranscriptomic classification strategy for the Westermann et al [33] study. All non-human 

reads were aligned using BLASTN to a BLAST database consisting of the same genomic 

sequences used by CLARK-S (see Methods for details). The average metafeature 

abundances across all 42 samples derived from the BLAST based approach and CLARK-S 

correlated significantly (Spearman correlation, Rho: 0.16, P: 3.1e-10) (Fig. 4A). BLAST 

showed higher sensitivity and detected more metafeatures compared to CLARK-S (indicated 

by the accumulation of dots at value 0 on the X-axis in Fig. 4A). This is mostly observed for 

low abundance metafeatures which could represent low counts derived from sequencing 
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and/or mapping errors. However, most importantly the true pathogen metafeature 

„Salmonella enterica‟ showed very high correlation across samples between the BLAST and 

CLARK-based abundance estimates (Fig. 4B). Noteworthy, the MetaMap pipeline processed 

reads more than three orders of magnitude faster than BLAST, demonstrating a significant 

speed advantage while generating comparable results (Fig. 4C). 

 

Re-use potential 

Microbial and viral contamination in next-generation sequencing data was observed 

before. It can be caused by mapping errors due to genome sequence similarity between 

different species [34,35]. In addition, technical confounders can obstruct the analysis and 

potentially generate artificial differences if not considered properly. For example, different 

types of human samples may contain different amounts of non-human material due to 

varying sterility of the tissues. Furthermore, sequencing depth may introduce a detection 

floor for low abundant metafeatures. Therefore, comparisons across different tissues and 

sequencing depths may generate artificial differences. Additionally, given that only uniquely 

discriminative sequences are counted, the absolute abundance levels may not be 

comparable across metafeatures. Finally, the MetaMap pipeline captures metafeature 

abundance at the RNA level, which may not necessarily correspond to genomic abundance 

levels. Metafeatures may be low abundant at the DNA level but highly transcriptionally active 

and thus abundantly detected at the RNA level, or the inverse. These potential challenges 

need to be taken into consideration when comparing across metafeatures. 

To minimize these effects, we encourage focusing on studies including intra-project 

comparisons testing each metafeature at a time, such as exemplified in the differential 

metafeature abundance analysis. Our rationale is that technical confounders - in contrast to 

biologically meaningful changes - should affect all runs within a project to the same extent 

and therefore not show condition-specific effects. For example, in the Westermann et al 

study [33] we detected substantial levels of phiX in both conditions (infected samples and 

mock-treated controls), but only the „Salmonella‟ metafeature showed a condition-specific 
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effect. We aim to address the challenges inherent to inter-project and inter-metafeature 

comparisons in future work. 

All the raw data described in the present study were publicly available before, yet 

have been very cumbersome to extract individually. The presented MetaMap database now 

makes these data easily accessible for a very broad community, thereby allowing for global 

comparisons over hundreds of individual studies and thousands of sampled conditions. While 

we attempted to minimize the risk of detecting false positives (Fig. 3), it should be noted that 

not all metafeatures classified by MetaMap will necessarily refer to true biological factors. 

Noteworthy, our approach reveals correlation between metafeatures and disease, not 

causality, and cannot discriminate disease-associated effects from potential treatment 

effects. However, our pipeline provides the user with a scientific starting ground to validate 

the presence/absence of defined microbial and viral species under defined conditions and 

explore the underlying biology and significance in greater detail. As a potential use case of 

these data, users can test for associations of microbial or viral metafeatures with a plethora 

of human diseases, or between themselves. In addition, users with interest in a specific 

bacterial or viral species can easily identify studies, and consequently disease contexts, in 

which reads from this organism were detected. This could give an important first hint to 

assess whether the respective species might be implicated in a given human disease 

etiology. Furthermore, this resource provides the opportunity to support findings derived from 

standard microbiome profiling technologies, such as 16S rRNA gene based or shotgun 

metagenomics [36]. Finally, metafeature detection in human clinical RNA-seq samples may 

provide a diagnostic advantage when studying microbes or viruses which are challenging to 

isolate. 

The composite metafeature OTU count table, derived from 17,278 cDNA libraries 

from 436 SRA projects, including annotations is provided for download [37]. The MetaMap 

pipeline and example code for performing statistical analysis can be found at 

https://github.com/theislab/MetaMap. 
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Availability of source code and requirements 

Project name: MetaMap 

Project home: https://github.com/theislab/MetaMap 

Operating system(s): Platform-independent 

Programming language: Unix command line, R 

Other requirements: STAR and CLARK-S may require large amounts of memory (>100 GB) 

License: GNU GPL 

 

Availability of supporting data 

The data sets supporting the results of this article are available in the GigaScience Database 

repository [37]. The protocols are also available from protocols.io [38]. 

List of abbreviations 

SRA: Sequencing read archive; LRZ: Leibniz Rechenzentrum; GEO: Gene expression 

omnibus, EBV: Epstein-Barr virus; BLAST: Basic local alignment search tool; STAR: Spliced 

Transcripts Alignment to a Reference software; OTU: operational taxonomic units; phiX: 

Enterobacteria phage phiX174 sensu lato; RPM: reads per million total reads 
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Figure 1. Schematic illustrates the MetaMap pipeline. Over 400 projects from studies relevant to 

human disease were identified in the SRA database. Over 500 billion RNA-seq reads were 

downloaded and first filtered by mapping them onto the human genome and subsequently the 

remaining reads underwent metafeature classification. 90.7% of all reads mapped to the human 

genome. 0.03%, 0.20% and 0.39% of all reads were assigned to archaeal, bacterial or viral 

metafeatures, respectively. 8.6% of all reads remain non-discriminative at the species level 

(„unclassified‟). 
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Figure 2. Differential metafeature abundance analysis of controlled infection experiments recovers 

ground truth. Panels A-D depict “volcano” plots showing fold change and inverted p-value on the X 

and Y axes, respectively. Each dot represents a metafeature. The most significant metafeature is 

colored in red. Insets display boxplots of the abundance levels in RPM of the top hit metafeature 

across conditions for each study. For all boxplots, the box represents the interquartile range, the 

horizontal line in the box is the median, and the whiskers represent 1.5 times the interquartile range. 

Downloaded from https://academic.oup.com/gigascience/advance-article-abstract/doi/10.1093/gigascience/giy070/5036539
by Helmholtz Zentrum Muenchen - Central Library user
on 28 June 2018



 
 

 

 

Figure 3. Analysis of lymphoblast cell line experiments further supports the MetaMap pipeline. Panels 

A and B depict mean abundance levels across all samples of the top five metafeatures for projects 

SRP041338 and SRP091453, respectively. Panel C shows relative proportion of reads mapping to 

EBV, phiX and all other metafeatures across RNA-seq samples. Panel D depicts the cumulative 

distribution plot of the average proportion of bacterial metafeature reads across all projects. Purple 

and pink vertical lines highlight projects SRP041338 and SRP091453, respectively. 
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Figure 4. Alternative BLAST-based classification method validates metafeature abundance estimates 

by MetaMap. Panel A depicts average metafeature RPM levels derived using the CLARK-S software, 

as implemented in the MetaMap pipeline, and a BLAST-based alternative approach on the X- and Y-

axes, respectively. Panel B shows the correlation in Salmonella enterica abundance levels between 

the two classification approaches. Panel C shows the difference in classification speed between the 

BLAST and CLARK-S metatranscriptomic classification. Y axis shows the number of reads processed 

per hour per thread in log10 space. 
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Table 1. Overview of four dual RNA-seq studies used to validate the MetaMap pipeline. Total 

reads column depicts the average read depth per sample for each study. Average 

metafeature abundance for Alphapapillomavirus 9, Salmonella enterica, Human 

alphaherpesvirus 1 and Rhinovirus A are shown in RPM. The correct infection agent for the 

respective study is highlighted in bold font. 

Study Infection 
agent 

Total 
reads 

Salmonell
a enterica 

Alphapapillomaviru
s 9 

H. 
alphaherpesviru
s 1 

Rhinoviru
s A 

Westerman
n et al 

Salmonella 
enterica 
serovar 
Typhimurium 

1.0e+0
7 

6.3e+03 1.2e-01 1.5e-01 1.2e-01 

Zhang et al Human 
papillomaviru
s 

4.6e+0
7 

3.0e-02 5.1e+01 2.2e-02 2.2e-02 

Rutkowski 
et al 

Herpes 
simplex virus 

3.5e+0
7 

1.1e+00 3.1e-02 3.1e+04 3.0e-02 

Bai et al Rhinovirus 6.6e+0
6 

2.0e-01 1.5e-01 1.5e-01 4.4e+01 
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