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The exploration of the endogenous regenerative potential of the
diseased adult human lung represents an innovative and exciting
task. In this pulmonary perspective, we discuss three major compo-
nents essential for endogenous lung repair and regeneration:
epithelial progenitor populations, developmental signaling path-
ways that regulate their reparative and regenerative potential, and
the surrounding extracellular matrix in the human diseased lung.
Over the past years, several distinct epithelial progenitor popula-
tions have been discovered within the lung, all of which most likely
respond to different injuries by varying degrees. It has become
evident that several progenitor populations aremutually involved in
maintenanceandrepair,which ishighly regulatedbydevelopmental
pathways, such as Wnt or Notch signaling. Third, endogenous
progenitor cells and developmental signaling pathways act in close
spatiotemporal synergy with the extracellular matrix. These three
components define and refine the highly dynamic microenviron-
ment of the lung, which is altered in a disease-specific fashion in
several chronic lung diseases. The search for the right mixture to
induce efficient and controlled repair and regeneration of the
diseased lung is ongoingandwill open completely novel avenues for
the treatment of patients with chronic lung disease.

Keywords: lung restoration; stem cells; developmental pathways;

emphysema; pulmonary fibrosis

Chronic lung diseases (CLD) are the second leading cause of
death worldwide and thus represent a significant global health
problem. Despite intensive research efforts, the underlying path-
ogenesis of the majority of CLD, such as chronic pulmonary
disease (COPD) or pulmonary fibrosis, remains elusive (1, 2).
Current therapies mainly target symptoms, and effective causal
therapy has not been developed thus far. Lung transplantation
is often the only option for patients with end-stage disease;
however, this procedure has the lowest 5-year survival rate of
any solid organ transplantation (3–5). Moreover, there is a large
imbalance of the number of patients listed for lung transplan-
tation compared with the number of available transplantable
organs (5).

As one approach to address the issue of transplantable organ
shortage, recent progress has been made toward the heroic feat

of bioengineering lungs and airways for transplantation (6–8).
However, many more obstacles have to be overcome, such as
the composition of biomaterials, suitable and specific cellular
sources, and proper vascularization of engineered tissues (9).
Another approach will be the manipulation of endogenous lung
cells to restore homeostasis and promote regeneration of dis-
eased and damaged lungs (10). This would be a tremendous step
forward, particularly in light of the fact that the de novo regen-
eration of the adult human diseased lung has not been demon-
strated yet. Here, we will summarize recent findings on (1)
endogenous epithelial progenitors, (2) the signaling pathways
that regulate their reparative and regenerative potential, and (3)
the modulating role of the extracellular matrix (ECM) present in
human diseased lungs. We discuss the similarities and differences
of these aspects over the whole life span, including pre- and post-
natal stages through adolescence and adulthood, and how this
might influence the progression and therapy of CLD.

STEM/PROGENITOR CELLS OF THE ADULT LUNG

The epithelial lining of the respiratory system varies along its
proximo-distal axis (11). A pseudostratified epithelium lines
conducting airways and performs mucociliary transport. This
transitions to a simple columnar, then cuboidal, and eventually
squamous epithelium in the alveoli across which gases can ex-
change. Evidence from in vivo and in vitro models suggests that
distinct stem/progenitor cell populations maintain and repair
these different epithelia (12) (Figure 1, Table 1).

Although ample evidence suggested that self-renewing epi-
thelial cells exist in the conducting airways (11), the role of
endogenous epithelial progenitor cells in the distal lung has long
been debated. Early experiments provided evidence that alve-
olar epithelial type (AT) II cells serve as progenitors for the
distal lung (13). Genetic lineage tracing in mice has confirmed
that these cells do in fact generate ATI cells under steady state
conditions and in response to acute lung injury induced by
bleomycin (14, 15). Importantly, these recent studies have
shown that in areas of extreme injury, there might exist another
alveolar progenitor cell that does not express surfactant protein
C (SFTPC), a common marker for ATII cells. There is evidence
that a population of integrin (Itg)a6/b41 alveolar epithelial cells
might represent a unique progenitor of alveolar lineages. Line-
age tracing with a Secretoglobin 1A member 1 (Scgb1a1/CC10)-
CreER allele has shown that a population of Scgb1a11 cells
(also named Clara cells or Club cells) can give rise to alveolar
lineages in response to some injuries, including bleomycin, but
not under steady state conditions or in response to naphthalene
or hyperoxia (14, 16). A population of Scgb1a11;Sftpc1 dual
positive cells resides at the bronchoalveolar duct junction
of mouse lungs. These putative bronchioalveolar stem cells
(BASCs) expand in response to oncogenic transformation and
give rise to bronchiolar and alveolar lineages in vitro (17).
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However, precise knowledge about the initial localization
and behaviors of Scgb1a11 progenitors, including BASCs,
awaits the identification of more discriminating markers. Im-
portantly, because functional studies are difficult in humans,
many of the data related to stem cells of the lung come from
animal models. There are significant differences between rodent
and human lungs, so hypotheses must be validated with respect
to significance (11). For example, Sftpc1;Scgb1a11 dual positive
cells have not yet been reported in human lungs.

Several recent reports challenge the idea of regionally distinct
epithelial stem cells of the adult lung. For example, one study
provided evidence that Keratin (Krt)51 basal cells (distal air-
way stem cells) can give rise to regenerative alveolar pods in
response to lung injury induced by a murinized H1N1 virus (18).
Where these cells initially reside and whether their descendants
go on to express markers of ATI and ATII cells awaits more
rigorous lineage-tracing experiments. Intriguingly, basal cells
are commonly observed in areas of bronchiolization within

Figure 1. Endogenous epithelial progenitor cells of the lung. Detailed characteristics of identified epithelial progenitor cells are given in Table 1.

Dashed lines indicate that definitive in vivo evidence of lineage data is missing. AT ¼ alveolar epithelial type; BASC ¼ bronchioalveolar stem cell;
DASC ¼ distal airway stem cell.

TABLE 1. SUMMARY OF CHARACTERISTICS OF ENDOGENOUS EPITHELIAL PROGENITOR POPULATIONS OF THE LUNG

Cell Type Markers Behaviors References

Basal cells Trp63, Krt5 (and variably Krt14),

NGFR, Pdpn

Self renew and generate ciliated and secretory cells

in vivo and in vitro

75, 76

ATII cells Sftpc Self renew and give rise to ATI under steady-state conditions

and in response to injury

13–15

Clara cells (club cells,

nonciliated secretory

cells)

Scgb1a1, electron-dense secretory

granules

Self renew and give rise to ciliated and secretory (including

mucus-producing) cells in vivo over the long term in

intralobar airways

16, 77

Variant Clara cells Same as above. Might also express

Upka3 and Scgb3a2. Resistant to

injury by naphthalene.

Survive and generate ciliated and secretory cells after injury by

systemic administration of naphthalene

24, 78

Distal lung progenitors ITGA6B4 (negative for Sftpc,

Scgb1a1, and Krt5)

These parenchymal cells generate Scgb1a11 and Sftpc1

structures when grafted under the kidney capsule with

dissociated embryonic lung

15

DASCs Krt5, p63 Only reported after injury. Give rise to potentially

regenerative alveolar “pods” after sublethal H1N1 lung

infection in mice.

18

BASCs Scgb1a1, Sftpc, localized to the

bronchoalveolar duct junction

Nonclonal cultures of isolated cells give rise to Sftpc1 and

Scgb1a11 cells in vitro. BASCs have not been reported

in human lungs. Note that Sftpc1/Scgb1a11 cells are also

found in the alveoli of mice; how these relate to BASCs is

not currently known.

17

c-kit1 c-kit (Kit) Cells isolated and expanded from human lungs were

reported to engraft into mouse lungs after cryoinjury

and give rise to all epithelial and mesenchymal lineages

21

Definition of abbreviations: ATII cells ¼ alveolar epithelial type II cells; BASC ¼ bronchioalveolar stem cell; DASC ¼ distal airway stem cell.
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the parenchyma of lungs from patients with idiopathic pulmo-
nary fibrosis (IPF) (19); however, these Krt51 pods were not
reported in bleomycin model of pulmonary fibrosis in mice (18).
Even more contrary to the paradigm of lineage-restricted epi-
thelial stem cells of the lung, another group recently reported
a population of c-kit1 cells in human lungs that, when grafted
into injured mouse lungs, gave rise to epithelial and mesenchy-
mal (i.e., fibroblasts, smooth muscle, and vascular) lineages (20,
21) (Table 1). Although such a cell would have great therapeu-
tic potential, these findings will have to be confirmed and await
independent validation (22, 23).

These emerging concepts have stimulated discussion in the
field. One important idea is that different populations probably
survive and respond to various injuries by varying degrees. For
example, Scb1a11 secretory cells are particularly susceptible to
injury by systemic administration of naphthalene, an injury that
is restricted to Scgb1a11 cells and repaired by surviving basal
cells and a subpopulation of variant Clara cells near neuroepi-
thelial bodies (24). In contrast, Scgb1a11 cells survive the injury
induced by bleomycin. Bleomycin is a cytostatic drug, which on
intratracheal application affects the whole epithelium, including
bronchial and alveolar epithelial cells. Subsequently, fibrosis
development is observed in peribronchiolar regions as well as
in the alveolar space (25). In this model, Scgb1a11 cells give rise
to alveolar epithelial cells to repair this injury (14).

This has fueled a debate over terminology: should these
lineage-restricted populations be called “facultative progenitor
cells”? The classical definition of a stem cell is one that can both
self-renew and generate differentiated progeny. By these crite-
ria, basal cells, secretory cells, and ATII cells are all stem-cell
populations. Similar models, in which more than one progenitor
population coordinately fuels maintenance and repair, have re-
cently come to light in other systems, including the intestinal
and mammary epithelia (26, 27). These emerging models are
different from the classical stem cell hierarchy of the hemato-
poietic system, in which a single cell can give rise to every
lineage in a linear progression of differentiation and restricted
potential (28). Regardless of nomenclature, the cells with long-
term potential for self-renewal and differentiation represent
ideal targets for genetic and molecular therapy for lung disease.

DEVELOPMENTAL PATHWAYS IN THE ADULT LUNG

Developmental studies have emphasized the importance of
a tight spatiotemporal interplay between initiating and differ-
entiating factors for proper organ formation. It is well accepted
today that instead of a few organ-specific master genes, several
molecules must mutually act as a finely tuned orchestra to con-
trol organ development (29, 30). For example, the Wnt signal-
ing pathway is expressed in a cell-specific manner in the
developing lung, tightly regulating epithelial and mesenchymal
cell behavior (31, 32).

Importantly, in the human adult lung, the identification of ini-
tiating and/or differentiating factors essential for regeneration of
damaged lungs remains largely unexplored. Recent findings,
however, have shed light on the relevance of developmental
pathways in CLD. Unbiased screening approaches analyzing
the mRNA/miRNA profile within several different CLD
revealed that classical developmental pathways, among them
Wnt, Notch, or sonic hedgehog, might be involved in disease
pathogenesis (33–37). Several recent studies suggested that de-
velopmental pathways are silenced in COPD. Here, reduced
Wnt/b-catenin and Notch signaling has been particularly ob-
served in several lung epithelial cells (38–40), such as airway
epithelial cells of healthy smokers or smokers with COPD (39).
Furthermore, reduced nuclear (i.e., active) b-catenin has been

observed in patients with stage IV COPD as well as in animal
models of COPD/emphysema (38). Intriguingly, these pathways
are not only critically involved in lung development but also
known to regulate progenitor cell maintenance (41). Activation
of Wnt/b-catenin signaling in the animal model led to attenua-
tion of emphysema, suggesting that Wnt/b-catenin activation
promotes lung restoration. The mechanism behind this has
not been elucidated thus far; however, it can be speculated that
Wnt/b-catenin activation may target epithelial progenitor cell
niches. Indeed, it has recently been described that mouse em-
bryonic stem cells are able to differentiate into airway progen-
itor cells on fine-tuned recapitulation of relevant developmental
signaling pathways, among them Wnt signaling (42). Moreover,
Wnt proteins have been implicated in endogenous lung epithe-
lial progenitor cell maintenance and activation. In BASC, loss
of the transcription factor GATA6 led to increased Wnt signal-
ing and concurrent BASC expansion (43).

Similar to Wnt/b-catenin, altered Notch signaling has been
linked to COPD. This pathway has been implicated in the reg-
ulation of airway epithelial differentiation, and down-regulation
of Notch pathway genes in the adult airway epithelium of smok-
ers and patients with COPD has been observed (40, 44). In line
with this, recent data suggest that active Notch signaling sus-
tains Scgb1a11 cells and protects from goblet cell metaplasia,
a feature commonly found in patients with COPD (45).

Given this accumulating evidence, reactivation of develop-
mental pathways represents a suitable therapeutic strategy to
combat CLD. This conclusion, however, is challenged by obser-
vations made in other CLD, such as pulmonary fibrosis. Pulmo-
nary fibrosis is characterized by epithelial cell injury and
activation concomitant with a gain of mesenchymal cells, and ab-
errant reactivation of a multitude of developmental pathways
has been described (2, 35, 46). Several groups demonstrated that
Wnt/b-catenin signaling is activated in IPF, and inhibition of
this pathway led to amelioration of experimental fibrosis in
animal models (33, 47–51). In addition, noncanonical Wnt sig-
naling has been also described to exert profibrotic effects (52,
53). Most interestingly, recent studies suggest that b-catenin
signal activity in IPF not only is regulated by Wnt proteins
but also participates in profibrotic transforming growth factor
(TGF)-b signaling. TGF-b–mediated Smad3/b-catenin signaling
has been observed in alveolar epithelial cells in IPF tissue speci-
mens and has been linked to epithelial-to-mesenchymal transi-
tion, thereby contributing to fibrosis (49, 54). Moreover, there is
increasing evidence that several developmental pathways are
altered in pulmonary fibrosis. For example, in addition to
TGF-b and Wnt/b-catenin, Notch receptor expression colocal-
ized with myofibroblasts in IPF tissue and has also been impli-
cated in epithelial cell plasticity (55, 56).

Altogether, IPF presents as a disease characterized by a loss of
spatiotemporal fine tuning of developmental pathways. This idea
has stimulated a lively discussion: Is it possible to correct and re-
trieve control to shift impaired repair and remodeling to successful
repair and regeneration in pulmonary fibrosis? How can we fur-
ther advance reactivation of developmental pathways as a thera-
peutic target in COPD given the risk of inducing fibrogenic or
oncogenic processes? Clearly, the search for the right balance
of pathways will be an essential part of future studies.

THE ECM OF THE ADULT LUNG

In the lung, the ECM surrounds the conducting airways, alveolar
cells, and vascular system. The ECM has a major impact on lung
architecture and function, such as gas exchange, by facilitating
cell signaling via adhesive molecules, surface receptors, or
growth factors. The pulmonary ECM is subjected to a continuous
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turnover of greater than 10% of the total ECM per day (57).
Thus, a dynamic equilibrium between synthesis and degradation
of the pulmonary ECM is maintaining the physiological bal-
ance, and disturbances in ECM turnover represent a key feature
of several CLD. Several factors are involved in (dys)balancing
the ECM, such as de novo synthesis and ECM deposition by
structural cells, proteolytic degradation by matrix metallopro-
teinases (MMPs), and inhibition of MMP activity by tissue
inhibitors of metalloproteinases (58). In COPD, ample evidence
demonstrated an increased activity of proteolytic enzymes that

may subsequently lead to impaired ECM turnover (59, 60).
Similarly, altered activity of MMPs and tissue inhibitors of met-
alloproteinases, along with increased collagen deposition in the
lung parenchyma, has also been demonstrated in pulmonary
fibrosis (46, 61). The detailed scenario finally resulting in appar-
ent disease-specific pathological differences warrants further
investigation.

The impact of cell–matrix interaction in the context of CLD
has become an area of significant research. Substantial evidence
suggests that several signal molecules and pathways shape

Figure 2. The microenvironment of the lung. (A) Lung homeostasis is maintained by endogenous (progenitor) cells, developmental signaling
systems, and the extracellular matrix within the microenvironment. (B) Various lung injuries lead to alterations of these components, resulting in

distinct chronic lung diseases. Therapeutic strategies that aim to restore the initial balance of endogenous (progenitor) cells, developmental

signaling systems, and extracellular matrix are required to achieve lung regeneration. AT ¼ alveolar epithelial type; BASC ¼ bronchioalveolar stem

cell; Shh ¼ sonic hedgehog; TGF ¼ transforming growth factor.
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matrix deposition and turnover; however, recent studies pointed
out that the lung matrix exerts a stable priming effect on cell
behavior, such as myofibroblast activation (62). Furthermore,
alterations in matrix biology ultimately lead to changes in lung
mechanics and subsequently signal transduction and cellular
phenotypes (63).

One of the major questions that were raised in the initial tis-
sue engineering studies addresses the relevance and impact of
the surrounding matrix in a diseased lung. Thus far, studies ap-
plying exogenous progenitor cells have mainly been successful to
restore lung architecture and function within a nondiseased ma-
trix (64, 65). These studies suggest that the decellularized matrix
is capable of dictating the fate of exogenous progenitor cells (7).

Importantly, studies elucidating how these cells behave in
a diseasedmatrix are currently being performed and are essential
to reveal the impact of the existing matrix on the capacity of the
human lung to repair and regenerate. Finally, we need to under-
stand how the diseased matrix can be modified, along with tar-
geting progenitor cells using the right composition of signaling
pathways to identify suitable therapeutic options for patients
with CLD (Figures 2A and 2B).

REBUILDING A DISEASED LUNG OVER THE LIFE SPAN

CLD in general lead to progressive distortion of normal lung ar-
chitecture, loss of functional gas exchange, and impairment of
lung function. Importantly, CLD occur over the entire life span,
including a variety of disease phenotypes, such as bronchopul-
monary dysplasia, asthma, cystic fibrosis, COPD, or interstitial
pneumonias, including IPF. The endogenous ability of the hu-
man lung to induce repair is highly dependent on the “age” of
the lung, which impacts its potential to respond to injuries and
challenges (32, 66). It is well known that lung development
proceeds into adolescence, and it is likely that stem/progenitor
cells in young postnatal lungs are phenotypically distinct from
adult epithelial cells. For example, the proportion of ciliated
cells derived from adult secretory cells increases throughout life
(16). In contrast, the proportion of ciliated cells derived from
the population of secretory cells present at embryonic day 18.5
plateaus in adulthood. This suggests that the progenitor poten-
tial of young secretory cells is different from adult secretory
cells.

In contrast to adult CLD, profound knowledge about endog-
enous epithelial progenitor cell niches or alterations of develop-
mental pathways in newborn or childhood CLD is still missing
and gave rise to an emerging research area (67). As an exten-
sion of this idea, it is likely that respiratory epithelial stem cell
function declines with age and that this could contribute to the
normal age-related decline in lung function. Moreover, ineffec-
tive repair by aging stem cells or reduced capability of activating
signal pathways that promote repair might exacerbate these
effects in older individuals (68). In some cases, aging stem cells
might themselves cause lung disease. For example, short telo-
meres, characteristic of older cells, have recently been impli-
cated in the progression of human lung pathology (69). In
other cases, endoplasmic reticulum stress, perhaps owing to ge-
netic mutations, could lead to a premature exhaustion of the
stem cell pool and an inability to maintain the lung against the
damages of everyday life (70). Moreover, structural cells, such
as fibroblasts, have been reported to develop a progressive myo-
fibroblast phenotype during age-related decline in lung regen-
eration in mice (71).

An important implication of this idea is how genetic and en-
vironmental insults to the progenitor cell population early in life
affect lung homeostasis in adulthood. A number of studies
suggest that hyperoxic injury in neonates can predispose individuals

to lung disease later in life (72). Similarly, it has been demon-
strated that maternal smoking during pregnancy affects the de-
velopmental pathways, such as Wnt/b-catenin signaling, in the
lungs of neonatal offspring (73). Altogether, this may potentiate
the risk of impaired lung development in early life and elevated
risk of developing CLD.

An emerging concept is the influence of a stem cell’s micro-
environment, or niche, on its progenitor behaviors (74). In an
increasing number of contexts, including the hematopoietic and
nervous systems, there is evidence to suggest that the microen-
vironment, including structural cells, is changed by age, and this
influences a stem cell’s capacity for repair. Even in the context
of lung transplant or bioengineered lung replacements, systemic
responses or an inhospitable microenvironment might limit its
long-term outcome.

OUTLOOK

The assessment of the regenerative potential of the adult dis-
eased lung represents a challenging task, in particular because
of the potential development of novel therapies for CLD. The
capacity of endogenous progenitors to restore lung architec-
ture and function is influenced by several factors that are sus-
ceptible to considerable variation over the whole life span:
endogenous progenitor cell populations, activity of develop-
mental pathways, and the modified pulmonary extracellular
matrix. Recent findings have led to tremendous progress in
our understanding of these components and provide hope that
endogenous lung repair and regeneration capacity will emerge
as a suitable approach for the treatment of CLD.

Relevant open questions emphasized throughout this per-
spective target the validation of endogenous progenitor sources
and their lineage specificity in the human lung. Furthermore, it is
unclear how developmental pathways influence progenitor cell
behavior in distinct CLD and whether alterations in develop-
mental pathways reflect a cause or consequence of disease path-
ogenesis. This will impact therapeutic strategies aiming to
restore the spatiotemporal balance of signaling pathways and
repair the diseased lung. Finally, we need to understand the in-
teraction of the existing diseased matrix with endogenous (pro-
genitor) cells and signaling pathways and whether this matrix
can potentially be modified. Future studies addressing these
questions will not only provide novel therapeutic strategies
but also identify the appropriate progenitor cells, signaling
pathways, and microenvironmental cues to facilitate bioengi-
neering of the lung.

Author disclosures are available with the text of this article at www.atsjournals.org.
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