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Understanding direct neuronal reprogramming — from

pioneer factors to 3D chromatin

Jovica Ninkovic'#* and Magdalena Gétz'-%*

Cell replacement therapies aim at reestablishment of neuronal
circuits after brain injury, stroke or neurodegeneration.
Recently, direct reprogramming of resident glial cells into the
affected neuronal subtypes has become a feasible and
promising option for central nervous system regeneration.
Direct reprogramming relies on the implementation of a new
transcriptional program defining the desired neuronal identity in
fully differentiated glial cells implying the more or less complete
down-regulation of the program for the former identity of the
glial cell. Despite the enormous progress achieved in this
regard with highly efficient in vive reprogramming after injury, a
number of hurdles still need to be resolved. One way to further
improve direct neuronal reprogramming is to understand the
molecular hurdles which we discuss with the focus on
chromatin states of the starting versus the reprogrammed cells.
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Brain injury induces an orchestrated reaction of resident
glial cells and infilrating monocytes [1-6], leading to
changes in the exmracellular matrix (ECM) and formarion
of non-funcrional glial scar tissue [1.3,7]. Direct reprogram-
ming of reactive scar forming glial cells is a novel approach
to reduce scar formation and simultaneously replace the
degenerated neurons at the injury site [8,9%]. Glial cells are
converted to a neuronal fate bypassing the progenitor stage
(direct reprograming) by expression of neurogenic fate
determinants sin vitro or in vive [10,11,12%°,13,14]. Recently

even in the inflamed environment after invasive stab
wound injury amazing conversion rates of over %0% have
been achieved including behavioural recovery [9°,11,
13,15-18], bur there is still some room for improvement.
For example, long term survival of the induced neurons,
generation of exact neuronal subtype identity and the
appropriate long-range connectivity are still unresolved
challenges (for recent review see Grade and Giez [19];
Bardker er a4/, in press). Towards this aim, it is essential to
understand the conversion process at the molecular level,
and particularly identify the molecular hurdles (for recent
review see (ascon ¢f af. [17]). Here we discuss the power
and limitations of pioneer T'Fs ('T'Fs) and their effects on
3D chromatin architecture, a so far unexplored field in
direct neuronal reprogramming {Figure 1).

The power and limits of TFs

Direct lineage conversion relies on the implementation of
the ranscriptional program of the desired cell type, neurons
in this case, and the downregulation of the transcriptional
program defining the identity of the starting cell, glia in this
case [97%,20-26]. Implementing the new neuronal fate is
mostly achieved in direct re programmaing byvuthizing genes
specifying neurons in development [27]. The choice is
mostly for T'Fs that are verv potent during development,
such as the master regulator Pax6é or the proneural bHLLH
T'Fs. However, it is important to notice that direct repro-
gramming stares in a very different cellular and transcrip-
tional context, namely in a differentiated cell of a different
identity, rather than in a neural stem or progenitor cell from
which neurons normally differentiate. T'hus, 1t would be
plausible to expect that the developmenmal facrors do not
ennrely copy the canonical programs and progenitor states
we learned about from the development, burt also employ
non-canonical molecular programs a.ﬂ pass though
unusual intermediate (progenitor) state2—lIndeed, single
cell RNA-sequencing after Ascll mediated induction of
neuronal fate in fibroblasts revealed intermediate states,
including the lineage bi-furcation leading to either neuro-
nal or myogenic fate [28"]. The neuronal fate can be
stabilized bv the addition of the transcriptional repressor
MyrlL [29°]. MytlL represses genes specific for other
lineages and thereby stabilizes the neuronal fate [297].
T'his function resembles the concept of terminal selectors,
a single or goup of TFs specifying neuronal subtvpes
during development and mammtamming this identry by
repressing others [30-32]. Importantly, the terminal selec-
tor concept applies to closely relared alternatve fates
within neural tissue. In contrast, the alternative fates in
reprogramming are developmentally distant from the new
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Changes in the 3D chromatin organization (riangles) are associated
with the reprogramming trajectores (blue and magenta) from starting
state to the final alternative fate. Note that at the node of
reprogramming trajectories has both chromatin organizations
representing at least a part of alternative identity states and one
chromatin onganization needs to be over-written in order to achieve
successful reprgramming.

fate, but seemingly closely related to the starter cell f
(fibroblasts and muscles are both mesmiﬂrm—derivativ
[28%]. One explanaton for this may be that terminal selec-

tors are notsufficient to repress fates more distant from [hei@

noarmal-funcrion in the nervous svstem. These consider-
ations prompt the question to which extent developmental
history (i.e. of fates closely related in their normal lineage)
applies in direct reprogramming (for review see Masser-
dotti ez a/. [33%])

One additional outcome of clashing cell identity programs
is cell death. Forexample, excessive ROS levels thar arise
during direct neuronal reprogramming causing most of
the cell death [9°] may be due to dysregulation during the
metabolic conversion of glvcolytic astrocyres into neurons
relving predominantly on oxidative phosphorylation.
Indeed, the neurogenic TFs seem to induce transcrip-
tional short-cuts in direct reprogramming, such as the fast
activation of relatively marure neuronal hallmarks,-for
example,ofton channel®d fast as 4 hours after Neurogl
Lransduc[iﬂ:'}l. In regard to the metabolic conversion
this may imply changing the metabolism towards oxida-
tive phosphorylation prior to implementing the protective
machinery.

How can we then identify reprogramming short-cuts and
the barriers that these short-cuts need to overcome? One
wide-spread, pragmartic approach is using a cockrail of
developmentally active TFs and then subtracting TFs
that are not needed to overcome the lineage barriers
[17,27,34,35]). Interestingly, this approach almost invar-
iantly ends with pioneer TFs either on their own or
together with other TFs [12™,13-15,20,21,23,24,36,37].
Pioneer TFs are defined by their capacity to bind

compacted chromatin, increase the T'F target site acces-
sibility and foster the binding of other, lineage specific
T'Fs to instruct the fate specificaton of progenitors during
development [38-40]. Therefore, itis not surprising thata
number of neuronal reprogramming cockeails contain the
pioneer TFs Ascll, Neurog2, Neurol) or Sox2 [10,12°%,
17,18,20,21,25,28%,29° 33",37.41°,42.43,44° 45*"]. These
pioneennag factors are then combined with a number of
cooperating, lineage specific factors that define different
neuronal subtype lineages. Following the developmental
logic of pioneering TF funcrion [40], it is plausible to
speculate that binding of the pioneer TF precedes the
binding of the lineage specific, cooperating TFs and is
necessary to establish the competence of the targercell to
implement the develoomental programs introduced by
the cooperating factoi>~However, this concept has to be
revised in reprogramming as—at least in some cases —
hinding of the pioneering TF is dependent on the coop-
erating T'Fs [46]. Finally, according to the developmental
concept of pioneer TFs they would establish mainly
competence for a fare, rather than implementing the
new identity. Again this seems to be different in direct
reprogramming as Ascll, a bona-fide pioneering factor, is
capable to instruct astrocytes to generate GABA-ergic
neurons that fire action potentials without any further
cooperating TFs [10,23,25,36]. However, in this case
some of the cooperating lineage-specific TFs mavalready
be present in astrocytes and hence not needed to be
added exogenously. Taken together, direct reprogram-
ming 15 implemented by the coordinared action of pio-
neer and cooperating lineage specific TFs with especially
the former opening closed chromatin sites. But is this
action of the pioneering T'F sufficient to overcome all
epigenetic barriers?

Pioneering factors and epigenetic !andscape@

Appropriate changes in the chromartin of the somatic ce
and acquisition of the adequate metabolic state have been
identified as a major hurdle in direct lineage reprogram-
ming [9%,17,25,2644"]. The chromatin is highly strucrured
inthe differentiated cell to ensure existence of the coherent
transcriptional programs defining the cellular identity
[17,25,26] and a number of e pigenetic mechanisms includ-
ing chromartin remodelling factors, REST complex and
DNA methylation have been implicated in direct repro-
gramming. Based on the classical Waddington epigenedc
landscape model, the major difference between the fate
specification durine development and direct reprogram-
ing could be thCZgher order chromatin organization due
::- sequence of events leading to the establishment of
the lineage barriers. According to the Waddington model,
lineage barriers are established as the progenitor roles
downhill in the epigenetc landscape and the mountains
between the valleys act as lineage barriers stabilizing the
specificfare. The fare stabilization alsoincludes the desired
chromann organization that favours binding of the devel-
opmental T'Fs in the active chromatin as well as the
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establishmentof the repressed chromatin domains decreas-
ing or inhibiting the binding of the alternative lineage
specific TFs. The reprogramming would require the rewir-
ing of the epigenetic landscape to allow cells to cross the
developmentally established hills of the Waddineton
model. However, as discussed above, rﬂpmgrammin;imlel:
necessarily follows the logic of developmental lineages.
T'herefore, the James-Cook Island model may be bemer
suited to visualize the ease of fate conve sion with some still
submerged hurdles, such as corals [33%]. In either model or
picture, the epigenetic hurdles need tobe overcome. While
pioneer TFs canachieve openingof some important closed
sites, altemarive or aberrant fates observed in direct repro-
gramming may be due to incomplete resolution of higher
orderchromatin. "This prompts the question why only some
alternanve lineages emerge and according to which logic
they emerge. Answering this question will be crucial to
predict the alternaave fates and improve the conversion to
the appropriate fully differentiated cellular identity.

Understanding higher order chromarin changes during
reprogramming — pioneering efficient full lineage re-
specification.

As for transcription factor function, our knowledge abour 3D
chromatin looping changes during cell fare acquisition
comes largely from development [47,48° 49] with few stud-
ies examining these changes in direct reprogramming — so
far only in the context of induction of pluripotency from
somatic cells [530*]. Pars of the single chromosomes self-
interact and form topologically associating domains ("TADs)
with the help of architectural proteins such as C'TCF or
cohesin [51,52]. During neural differentacion (most often
from ES cells) many if not most newly appearing TADs are
associated with active transcription, but are not formed by
CTCF, that is involved in most chromatin loops in ES cells.
Indeed, the associaton of different "TADs 15 highly dvnamic
during differentiation across different lineages [48°,50°,53].
The neural lineage-specific non-CTCF loops are instead
formed by the T'F YY1 and mosdy involved in smallerloops
within larger TADs [50%]. Most interestingly for direct
reprogramming, alselineage-specific TFs, such as Pax6,
NeuroDD2 and Thr Q[IE'] suggesting that these funcrions
may explain why these T'Fs are also powerful in reprogram-
ming. However, to which extent these orother T'Fscan wruly
instruct new 'TADs and if so whether this works only within
larger TADs and2) an appropriate manner remains to be
determined. In this regard, it is interesting to consider that
high mobility group proteins, such as Sox2, are involved in
many direct reprogramming protocols —even for different
lineages, such as neurons or pluripotent stem cells [14,54].
SoxZ has the capacity w alter the chromartin structure [55]
and promote reprogramming i# vt [ 24] and inero toge ther
with the pioneerng factor Ascll [18]. As the pioneer factors
bind repressed chromatin, they could act as drivers in the
chromarin re-compartmentalization during direct repro-
gramming. However, they may need architectural and

TAD forming proteins to implement this re-comparnmen-
talization in the appropriate manner for a given cell type,
for example, neurons. Indeed, direct reprogramming from
neural towards plunipotent stem cells s accompamed by
retaining some NSC-specific TADs an » issing some ESC-
specific TADs which is accompanied by respective changes
in transcription of the genesaffected [507]. In this case, these
aberrant loops can be fixed by growing the cells in Zif/LIF
conditions to convent them tw fully reprogrammed 1PSCs.
Such mis-wiring of the chromatin may ako explain why
direct reprogramming can also result in aberrant fates, such
as muscle cells in neuronal reprogramming. Imprecise
TADs or inappropriate formation of new TADs within
the wrong larger TAD area that belongs w the previous
lineage might be leading to the establishment of aberrant
fa[erﬂfn re, undestanding the higher order chromatin
structures and changes during reprogramming is essental to
avoid incomplete re-wiring and aberrant transcripton. This
is not only essential to achieve a fully functional new cell
identiry, burt also for utilizing these cells for repair purpose.
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