COGEDE 1535 1-5

ARTICLE IN PRESS

Available online at www.sciencedirect.com

ScienceDirect

58

Understanding direct neuronal reprogramming – from 1

- pioneer factors to 3D chromatin 3
- Jovica Ninkovic^{1,2,3} and Magdalena Götz^{1,2,4}
- Cell replacement therapies aim at reestablishment of neuronal 5
- circuits after brain injury, stroke or neurodegeneration. 6
- Recently, direct reprogramming of resident glial cells into the 7
- affected neuronal subtypes has become a feasible and 8
- promising option for central nervous system regeneration. 9
- Direct reprogramming relies on the implementation of a new 10
- transcriptional program defining the desired neuronal identity in 11
- fully differentiated glial cells implying the more or less complete 12
- down-regulation of the program for the former identity of the 13
- glial cell. Despite the enormous progress achieved in this 14
- regard with highly efficient in vivo reprogramming after injury, a 15
- number of hurdles still need to be resolved. One way to further 16
- improve direct neuronal reprogramming is to understand the 17
- molecular hurdles which we discuss with the focus on 18
- chromatin states of the starting versus the reprogrammed cells. 19

Addresses

- ¹Institute of Stem Cell Research, Helmholtz Center Munich, Germany 20
- 21 ²Physiological Genomics, Biomedical Center, University of Munich,
- 22
- Permany Institute of Cell Biology, Biomedical Center, University of Munich, 23 24 Germany
- ⁴Munich Cluster for Systems Neurology SYNERGY, LMU, Munich, 25
- 26 Germany

Corresponding author: Götz, Magdalena (magdalena.goetz@helmholtzmuenchen.de)

- Current Opinion in Genetics & Development 2018, 52:xx-yy 27
- 28 This review comes from a themed issue on Cell reprogramming, 29 regeneration and repair
- 30 Edited by Knut Woltjen and Alex Bortvin

https://doi.org/10.1016/j.gde.2018.05.011 31

0959-437X/© 2018 Published by Elsevier Ltd. 32

even in the inflamed environment after invasive stab 43 wound injury amazing conversion rates of over 90% have 44 been achieved including behavioural recovery [9,11, 45 13,15–18], but there is still some room for improvement. 46 For example, long term survival of the induced neurons, 47 generation of exact neuronal subtype identity and the 48 appropriate long-range connectivity are still unresolved 49 challenges (for recent review see Grade and Götz [19]; 50 Barker et al., in press). Towards this aim, it is essential to 51 understand the conversion process at the molecular level, 52 and particularly identify the molecular hurdles (for recent 53 review see Gascon et al. [17]). Here we discuss the power 54 and limitations of pioneer TFs (TFs) and their effects on 55 3D chromatin architecture, a so far unexplored field in 56 direct neuronal reprogramming (Figure 1). 027

The power and limits of TFs

Direct lineage conversion relies on the implementation of 59 the transcriptional program of the desired cell type, neurons 60 in this case, and the downregulation of the transcriptional 61 program defining the identity of the starting cell, glia in this 62 case [9, 20-26]. Implementing the new neuronal fate is 63 mostly achieved in direct reprogramming by utilizing genes 64 specifying neurons in development [27]. The choice is 65 mostly for TFs that are very potent during development, 66 such as the master regulator Pax6 or the proneural bHLH 67 TFs. However, it is important to notice that direct repro-68 gramming starts in a very different cellular and transcrip-69 tional context, namely in a differentiated cell of a different 70 identity, rather than in a neural stem or progenitor cell from 71 which neurons normally differentiate. Thus, it would be 72 plausible to expect that the developmental factors do not 73 entirely copy the canonical programs and progenitor states 74 we learned about from the development, but also employ 75 non-canonical molecular programs and pass though 76 unusual intermediate (progenitor) state. Indeed, single 77 cell RNA-sequencing after Ascl1 mediated induction of 78 neuronal fate in fibroblasts revealed intermediate states, 79 including the lineage bi-furcation leading to either neuro-80 nal or myogenic fate [28°]. The neuronal fate can be 81 stabilized by the addition of the transcriptional repressor 82 Myt1L [29[•]]. Myt1L represses genes specific for other 83 lineages and thereby stabilizes the neuronal fate [29^{*}]. 84 This function resembles the concept of terminal selectors, 85 a single or group of TFs specifying neuronal subtypes 86 during development and maintaining this identity by 87 repressing others [30-32]. Importantly, the terminal selec-88 tor concept applies to closely related alternative fates 89 within neural tissue. In contrast, the alternative fates in 90 reprogramming are developmentally distant from the new 91

Brain injury induces an orchestrated reaction of resident 33 glial cells and infiltrating monocytes [1-6], leading to 34 changes in the extracellular matrix (ECM) and formation 35 of non-functional glial scar tissue [1,3,7]. Direct reprogram-36 ming of reactive scar forming glial cells is a novel approach 37 to reduce scar formation and simultaneously replace the 38 degenerated neurons at the injury site [8,9°]. Glial cells are 39 converted to a neuronal fate bypassing the progenitor stage 40 (direct reprograming) by expression of neurogenic fate 41 determinants in vitro or in vivo [10,11,12",13,14]. Recently 42

www.sciencedirect.com

Current Opinion in Genetics & Development 2018, 52:1-5

Please cite this article in press as: Ninkovic J, Götz M: Understanding direct neuronal reprogramming-from pioneer factors to 3D chromatin, Curr Opin Genet Dev (2018), https://doi.org/ 10.1016/j.gde.2018.05.011

ARTICLE IN PRESS

2 Cell reprogramming, regeneration and repair

Changes in the 3D chromatin organization (triangles) are associated with the reprogramming trajectories (blue and magenta) from starting state to the final alternative fate. Note that at the node of reprogramming trajectories has both chromatin organizations representing at least a part of alternative identity states and one chromatin organization needs to be over-written in order to achieve successful reprogramming.

fate, but seemingly closely related to the starter cell fate 92 (fibroblasts and muscles are both mesoderm-derivative, 93 [28[•]]. One explanation for this may be that terminal selec-94 tors are not sufficient to repress fates more distant from thei 95 normal-function in the nervous system. These consider-96 ations prompt the question to which extent developmental 97 history (i.e. of fates closely related in their normal lineage) 98 applies in direct reprogramming (for review see Masser-99 dotti et al. [33°]). 100

One additional outcome of clashing cell identity programs 101 is cell death. For example, excessive ROS levels that arise 102 during direct neuronal reprogramming causing most of 103 the cell death [9[°]] may be due to dysregulation during the 104 metabolic conversion of glycolytic astrocytes into neurons 105 relying predominantly on oxidative phosphorylation. 106 Indeed, the neurogenic TFs seem to induce transcrip-107 tional short-cuts in direct reprogramming, such as the fast 108 activation of relatively mature neuronal hallmarks, for-109 example, of ion channel fast as 4 hours after Neurog1 110 transduction [25]. In regard to the metabolic conversion 111 this may imply changing the metabolism towards oxida-112 tive phosphorylation prior to implementing the protective 113 machinery. 114

compacted chromatin, increase the TF target site acces-124 sibility and foster the binding of other, lineage specific 125 TFs to instruct the fate specification of progenitors during 126 development [38-40]. Therefore, it is not surprising that a 127 number of neuronal reprogramming cocktails contain the 128 pioneer TFs Ascl1, Neurog2, NeuroD or Sox2 [10,12", 129 17,18,20,21,25,28°,29°,33°,37,41°,42,43,44°,45°°]. These 130 pioneering factors are then combined with a number of 131 cooperating, lineage specific factors that define different 132 neuronal subtype lineages. Following the developmental 133 logic of pioneering TF function [40], it is plausible to 134 speculate that binding of the pioneer TF precedes the 135 binding of the lineage specific, cooperating TFs and is 136 necessary to establish the competence of the target cell to 137 implement the developmental programs introduced by 138 the cooperating factor. However, this concept has to be 139 revised in reprogramming as - at least in some cases -140 binding of the pioneering-TF is dependent on the coop-141 erating TFs [46]. Finally, according to the developmental 142 concept of pioneer TFs they would establish mainly 143 competence for a fate, rather than implementing the 144 new identity. Again this seems to be different in direct 145 reprogramming as Ascl1, a bona-fide pioneering factor, is 146 capable to instruct astrocytes to generate GABA-ergic 147 neurons that fire action potentials without any further 148 cooperating TFs [10,23,25,36]. However, in this case 149 some of the cooperating lineage-specific TFs may already 150 be present in astrocytes and hence not needed to be 151 added exogenously. Taken together, direct reprogram-152 ming is implemented by the coordinated action of pio-153 neer and cooperating lineage specific TFs with especially 154 the former opening closed chromatin sites. But is this 155 action of the pioneering TF sufficient to overcome all 156 epigenetic barriers? 157

Pioneering factors and epigenetic landscape 1.58 Appropriate changes in the chromatin of the somatic cell 159 and acquisition of the adequate metabolic state have been 160 identified as a major hurdle in direct lineage reprogram-161 ming [9, 17, 25, 26, 44]. The chromatin is highly structured 162 in the differentiated cell to ensure existence of the coherent 163 transcriptional programs defining the cellular identity 164 [17,25,26] and a number of epigenetic mechanisms includ-165 ing chromatin remodelling factors, REST complex and 166 DNA methylation have been implicated in direct repro-167 gramming. Based on the classical Waddington epigenetic 168 landscape model, the major difference between the fate 169 specification during development and direct reprogram-170 ming could be the igher order chromatin organization due 171 tele sequence of events leading to the establishment of 172 the lineage barriers. According to the Waddington model, 173 lineage barriers are established as the progenitor roles 174 downhill in the epigenetic landscape and the mountains 175 between the valleys act as lineage barriers stabilizing the 176 specific fate. The fate stabilization also includes the desired 177 chromatin organization that favours binding of the devel-178 opmental TFs in the active chromatin as well as the 179

Figure 1

How can we then identify reprogramming short-cuts and 115 the barriers that these short-cuts need to overcome? One 116 wide-spread, pragmatic approach is using a cocktail of 117 developmentally active TFs and then subtracting TFs 118 that are not needed to overcome the lineage barriers 119 [17,27,34,35]. Interestingly, this approach almost invar-120 iantly ends with pioneer TFs either on their own or 121 together with other TFs [12**,13-15,20,21,23,24,36,37]. 122 Pioneer TFs are defined by their capacity to bind 123

Current Opinion in Genetics & Development 2018, 52:1-5

www.sciencedirect.com

Please cite this article in press as Ninkovic J, Götz M: Understanding direct neuronal reprogramming — from pioneer factors to 3D chromatin, Curr Opin Genet Dev (2018), https://doi.org/ 10.1016/j.gde.2018.05.011

establishment of the repressed chromatin domains decreas-180 ing or inhibiting the binding of the alternative lineage 181 specific TFs. The reprogramming would require the rewir-182 ing of the epigenetic landscape to allow cells to cross the 183 developmentally established hills of the Waddington 184 model. However, as discussed above, reprogramming of 185 necessarily follows the logic of developmental lineages. 186 Therefore, the James-Cook Island model may be better 187 suited to visualize the ease of fate conversion with some still 188 submerged hurdles, such as corals [33*]. In either model or 189 picture, the epigenetic hurdles need to be overcome. While 190 pioneer TFs can achieve opening of some important closed 191 sites, alternative or aberrant fates observed in direct repro-192 gramming may be due to incomplete resolution of higher 193 order chromatin. This prompts the question why only some 194 alternative lineages emerge and according to which logic 195 they emerge. Answering this question will be crucial to 196 predict the alternative fates and improve the conversion to 197 the appropriate fully differentiated cellular identity. 198

199	Understanding	hig	gher	order	chromatin	cha	nges du	ring
200	reprogramming	+	pion	eering	efficient	full	lineage	re-
201	specification.	\mathcal{D}						

As for transcription factor function, our knowledge about 3D 202 chromatin looping changes during cell fate acquisition 203 comes largely from development [47,48,49] with few stud-204 ies examining these changes in direct reprogramming-so 205 far only in the context of induction of pluripotency from 206 somatic cells [50°]. Parts of the single chromosomes self-207 interact and form topologically associating domains (TADs) 208 with the help of architectural proteins such as CTCF or 209 cohesin [51,52]. During neural differentiation (most often 210 from ES cells) many if not most newly appearing TADs are 211 associated with active transcription, but are not formed by 212 CTCF, that is involved in most chromatin loops in ES cells. 213 Indeed, the association of different TADs is highly dynamic 214 during differentiation across different lineages [48,50,53]. 215 The neural lineage-specific non-CTCF loops are instead 216 formed by the TF YY1 and mostly involved in smaller loops 217 within larger TADs [50°]. Most interestingly for direct 218 reprogramming, also lineage-specific TFs, such as Pax6, 219 NeuroD2 and Tbr 48°] suggesting that these functions 220 may explain why these TFs are also powerful in reprogram-221 ming. However, to which extent these or other TFs can truly 222

TAD forming proteins to implement this re-compartmen-235 talization in the appropriate manner for a given cell type, 236 for example, neurons. Indeed, direct reprogramming from 237 neural towards pluripotent stem cells is accompanied by 238 retaining some NSC-specific TADs and issing some ESC-239 specific TADs which is accompanied by respective changes 240 in transcription of the genes affected [50°]. In this case, these 241 aberrant loops can be fixed by growing the cells in 2i/LIF 242 conditions to convert them to fully reprogrammed iPSCs. 243 Such mis-wiring of the chromatin may also explain why 244 direct reprogramming can also result in aberrant fates, such 245 as muscle cells in neuronal reprogramming. Imprecise 246 TADs or inappropriate formation of new TADs within 247 the wrong larger TAD area that belongs to the previous 248 lineage might be leading to the establishment of aberrant 249 fate Therefore, understanding the higher order chromatin 250 structures and changes during reprogramming is essential to 251 avoid incomplete re-wiring and aberrant transcription. This 252 is not only essential to achieve a fully functional new cell 253 identity, but also for utilizing these cells for repair purpose. 0354

Co	onflict of interest statement	255
1.2	thing declared.	
140	ucciared.	Q456
Re	ferences and recommended reading	257
	ers of particular interest, published within the period of review,	258
	e been highlighted as	259
	of special interest of outstanding interest	
1.	Burda JE, Sofroniew MV: Reactive gliosis and the multicellular	260
	response to CNS damage and disease. Neuron 2014, 81:229-	261
	248.	262
2.	Myer DJ, Gurkoff GG, Lee SM, Hovda DA, Sofroniew MV:	263
	Essential protective roles of reactive astrocytes in traumatic	264
	brain injury. Brain 2006, 129:2761-2772.	265
3.	Sofroniew MV: Molecular dissection of reactive astrogliosis	266
	and glial scar formation. Trends Neurosci 2009, 32:638-647.	267
4.	Kizil C, Dudczig S, Kyritsis N, Machate A, Blaesche J, Kroehne V:	268
	The chemokine receptor cxcr5 regulates the regenerative	269
	neurogenesis response in the adult zebrafish brain. Neural Dev	270
	2012, 7:27.	271
5.	Kizil C, Kaslin J, Kroehne V, Brand M: Adult neurogenesis and	272
	brain regeneration in zebrafish. Dev Neurobiol 2012, 72:429-	273
	461.	274
6.	Kyritsis N, Kizil C, Zocher S, Kroehne V, Kaslin J, Freudenreich D, Itzsche A, Brand M: Acute inflammation initiates the	275
	regenerative response in the adult zebrafish brain. Science	276
	2012, 338 :1353-1356.	277
7.	Robel S, Beminger B, Götz M: The stem cell potential of glia:	278
	lessons from reactive gliosis. Nat Rev Neurosci 2011, 12:88-104.	279
8.	Ninkovic J, Gotz M: Fate specification in the adult brain -	280
	lessons for eliciting neurogenesis from glial cells. Bioessays	281
	2013, 35:242-252.	282
9	Gascon S. Murenu F. Masserdotti G. Ortega FO. Busso G.	

111	ming. However, to which extent these of other 11 scan utily
223	instruct new TADs and if so whether this works only within
224	larger TADs and an appropriate manner remains to be
225	determined. In this regard, it is interesting to consider that
226	high mobility group proteins, such as Sox2, are involved in
227	many direct reprogramming protocols - even for different
228	lineages, such as neurons or pluripotent stem cells [14,54].
229	Sox2 has the capacity to alter the chromatin structure [55]
230	and promote reprogramming in vitro [24] and in vivo together
231	with the pioneering factor Ascl1 [18]. As the pioneer factors
232	bind repressed chromatin, they could act as drivers in the
233	chromatin re-compartmentalization during direct repro-
234	gramming. However, they may need architectural and

Petrik D, Deshpande A, Heinrich C, Karow M, Robertson SR et al.: Identification and successful negotiation of a metabolic checkpoint in direct neuronal reprogramming. Cell Stem Cell 2016.

The first demonstration of metabolic roadblocks in direct glia to neuron 285 conversion in vivo. 286

www.sciencedirect.com

Current Opinion in Genetics & Development 2018, 52:1-5

283

284

Please cite this article in press at Ninkovic J, Götz M: Understanding direct neuronal reprogramming-from pioneer factors to 3D chromatin, Curr Opin Genet Dev (2018), https://doi.org/ 10.1016/j.gde.2018.05.011

ARTICLE IN PRESS

4 Cell reprogramming, regeneration and repair

287 288 289	10.	Heinrich C, Blum R, Gascon S, Masserdotti G, Tripathi P, Sanchez R, Tiedt S, Schroeder T, Gotz M: Directing astroglia from the cerebral cortex into subtype specific functional neurons. PLoS Biol 2010, 8:e1000373.	 Amamoto R, Arlotta P: Development-inspired reprogramming of the mammalian central nervous system. Science 2014, 343:1239882. 	340 341 342
407		neurons. PLOS Biol 2010, 6.e10003/3.	28. Treutlein B, Lee QY, Camp JG, Mall M, Koh W, Shariati SA, Sim S,	
290	11.	Guo Z, Zhang L, Wu Z, Chen Y, Wang F, Chen G: In vivo direct	 Neff NF, Skotheim JM, Wernig M et al.: Dissecting direct 	
291	1967.62	reprogramming of reactive glial cells into functional neurons	reprogramming from fibroblast to neuron using single-cell	343
292		after brain injury and in an Alzheimer's disease model. Cell	RNA-seq. Nature 2016, 534:391-395.	344
293		Stem Cell 2014, 14:188-202.	The first analysis of the transcriptional programs in the direct reprogram-	345
NG9 3 Y			ming at the single cell level. It allowed for the first time to appreciate the	346
	12.	Grande A, Sumiyoshi K, López-Juárez A, Howard J, Sakthivel B,	imergence of the alternative fate during the reprogramming with pioneer-	347
		Aronow B, Campbell K, Nakafuku M: Environmental impact on	ing factor.	348
294		direct neuronal reprogramming in vivo in the adult brain. Nat	ing ration.	
295		Commun 2013:4.	29. Mall M, Kareta MS, Chanda S, Ahlenius H, Perotti N, Zhou B,	
296 297		nuscript describes the cross-talk between transcriptional regulatory work and the environmental stimuli in vivo.	 Grieder SD, Ge X, Drake S, Euong Ang C et al.: Myt1 i safeguards neuronal identity by actively repressing many non-neuronal 	349
			fates. Nature 2017, 544:245-249.	350
298	13.	Torper O, Ottosson DR, Pereira M, Lau S, Cardoso T, Grealish S,	Paper provides the molecular basis for the repression of both original and	351
299		Parmar M: In vivo reprogramming of striatal NG2 glia into functional neurons that integrate into local host circuitry. Cell	alternative fate.	352
300		Rep 2015, 12:474-481.	30. Doitsidou M, Flames N, Topalidou I, Abe N, Felton T, Remesal L,	3.53
		10p 2010, 12.114 401.	Popovitchenko T, Mann R, Chalfie M, Hobert O: A combinatorial	
301	14.	Heinrich C, Bergami M, Gascon S, Lepier A, Vigano F, Dimou L,	regulatory signature controls terminal differentiation of the	354
		Sutor B, Beminger B, Gotz M: Sox2-mediated conversion of NG2	dopaminergic nervous system in C. elegans. Genes Dev 2013,	355
302		glia into induced neurons in the injured adult cerebral cortex.	27:1391-1405.	3.56
303		Stem Cell Rep 2014, 3:1000-1014.		
1000		diam dam hop 2014, 0.1000 1014.	31. Hobert O: Regulatory logic of neuronal diversity: terminal	357
304	15.	Pfisterer U, Kirkeby A, Torper O, Wood J, Nelander J, Dufour A,	selector genes and selector motifs. Proc Natl Acad Sci US A	358
50		Bjorklund A, Lindvall O, Jakobsson J, Parmar M: Direct	2008, 105:20067-20071.	359
305		conversion of human fibroblasts to dopaminergic neurons.		
306		Proc Natl Acad Sci U S A 2011, 108:10343-10348.	32. Hobert O: Regulation of terminal differentiation programs in	360
		100 Hat Add 00 0 0 A 2011, 100.10040-10040.	the nervous system. Annu Rev Cell Dev Biol 2011, 27:681-696.	361
307	16.	Torper O, Pfisterer U, Wolf DA, Pereira M, Lau S, Jakobsson J,		
400		Bjorklund A, Grealish S, Parmar M: Generation of induced	 Masserdotti G, Gascon S, Gotz M: Direct neuronal 	
308		neurons via direct conversion in vivo. Proc Natl Acad Sci U S A	 reprogramming: learning from and for development. 	362
309		2013, 110:7038-7043.	Development 2016, 143:2494-2510.	363
		2010, 110,1000 1040.	Besides discussing the molecular logic of direct reprograming, this paper	364
310	17	Gascon S, Masserdotti G, Russo GL, Gotz M: Direct neuronal	also provides so far the most completed and comperhensive list of factors	365
311		reprogramming: achievements, hurdles, and new roads to	used for direct neuronal reprogramming.	366
312		success. Cell Stem Cell 2017, 21:18-34.		-
TOSIX.			34. Ninkovic J, Gotz M: Signaling in adult neurogenesis: from stem	367
313	18.	Heinrich C, Bergami M, Gascón S, Lepier A, Dimou L, Sutor B,	cell niche to neuronal networks. Curr Opin Neurobiol 2007,	368
		Beminger B, Götz M: Sox2-mediated conversion of NG2 glia	17:338-344.	369
314		into induced neurons in the injured adult cerebral cortex. Stem	35. Ninkovic J, Gotz M: How to make neurons - thoughts on the	370
315		Cell Rep 2014. (in press).		371
		con nop zorn (in proso).	molecular logic of neurogenesis in the central nervous	372
316	19.	Grade S, Götz M: Neuronal replacement therapy: previous	system. Cell Tissue Res 2015, 359:5-16.	312
317		achievements and challenges ahead. Regener Med 2017.	36. Berninger B, Costa MR, Koch U, Schroeder T, Sutor B, Grothe B,	373
			Gotz M: Functional properties of neurons derived from in vitro	-
318	20.	Vierbuchen T, Ostermeier A, Pang ZP, Kokubu Y, Sudhof TC,	reprogrammed postnatal astroglia. J Neurosci 2007, 27:8654-	374
	181	Wernig M: Direct conversion of fibroblasts to functional		375
319		neurons by defined factors. Nature 2010, 463:1035-1041.	8664.	315
100-10		and the second descent of the second descent of the second descent	37. Blum R, Heinrich C, Sanchez R, Lepier A, Gundelfinger ED,	376
320	21.	Wapinski OL, Vierbuchen T, Qu K, Lee QY, Chanda S, Fuentes DR,	Berninger B, Gotz M: Neuronal network formation from	
		Giresi PG, Ng YH, Marro S, Neff NF et al.: Hierarchical	reprogrammed early postnatal rat cortical glial cells. Cereb	377
321		mechanisms for direct reprogramming of fibroblasts to	Cortex 2011, 21:413-424.	378
322		neurons. Cell 2013, 155:621-635.	CONEX 2011, 21.413-424.	374
1925			38. Morris SA: Direct lineage reprogramming via pioneer factors; a	379
323	22.	Heins N, Malatesta P, Cecconi F, Nakafuku M, Tucker KL,	detour through developmental gene regulatory networks.	380
	100	Hack MA, Chapouton P, Barde YA, Gotz M: Glial cells generate	Development 2016, 143:2696-2705.	381
324		neurons: the role of the transcription factor Pax6. Nat Neurosci		
325		2002, 5:308-315.	39. Iwafuchi-Doi M, Zaret KS: Pioneer transcription factors in cell	382
			reprogramming. Genes Dev 2014, 28:2679-2692.	383
326	23.	Heinrich C, Gotz M, Berninger B: Reprogramming of postnatal		
327		astroglia of the mouse neocortex into functional, synapse-	40. Zaret KS, Carroll JS: Pioneer transcription factors: establishing	384
32.8		forming neurons. Methods Mol Biol 2012, 814:485-498.	competence for gene expression. Genes Dev 2011, 25:2227-	385

24. Karow M, Sanchez R, Schichor C, Masserdotti G, Ortega F, 41. Pataskar A, Jung J, Smialowski P, Noack F, Calegari F, Straub T, Heinrich C, Gascon S, Khan MA, Lie DC, Dellavalle A et al.: Tiwari VK: NeuroD1 reprograms chromatin and transcription Reprogramming of pericyte-derived cells of the adult human factor landscapes to induce the neuronal program. EMBO J brain into induced neuronal cells. Cell Stem Cell 2012, 11:471-2016, 35:24-45. 476. An important contribution in understanding the chromatin reorganization 25. Masserdotti G, Gillotin S, Sutor B, Drechsel D, Imler M, and its interplay with lineage-specific transcriptional factors during Jorgensen HF, Sass S, Theis FJ, Beckers J, Berninger B et al.: development. Transcriptional mechanisms of proneural factors and REST in 42. Brulet R, Matsuda T, Zhang L, Miranda C, Giacca M, Kaspar BK, regulating neuronal reprogramming of astrocytes. Cell Stem Nakashima K, Hsieh J: NEUROD1 instructs neuronal Cell 2015, 17:74-88. conversion in non-reactive astrocytes. Stem Cell Rep 2017, 8:1506-1515. 26. Ninkovic J, Steiner-Mezzadri A, Jawerka M, Akinci U, Masserdotti G, Petricca S, Fischer J, von Holst A, Beckers J, 43. Pereira M, Birtele M, Shrigley S, Benitez JA, Hedlund E, Parmar M, Lie CD et al.: The BAF complex interacts with Pax6 in adult Ottosson DR: Direct reprogramming of resident NG2 glia into neural progenitors to establish a neurogenic cross-regulatory neurons with properties of fast-spiking parvalbumintranscriptional network. Cell Stem Cell 2013. containing interneurons. Stem Cell Rep 2017, 9:742-751.

Current Opinion in Genetics & Development 2018, 52:1-5

www.sciencedirect.com

Please cite this article in press at: Ninkovic J, Götz M: Understanding direct neuronal reprogramming ---- from pioneer factors to 3D chromatin, Curr Opin Genet Dev (2018), https://doi.org/ 10.1016/j.gde. 2018.05.011

ARTICLE IN PRESS

582.

Understanding direct neuronal reprogramming Ninkovic and Götz 5

pioneers to conquer the nucleosome. Mol Cell 2017, 65:581-

398 399	 Wapinski OL, Lee QY, Chen AC, Li R, Corces MR, Ang CE, Treutlein B, Xiang C, Baubet V, Suchy FP et al.: Rapid chromatin switch in the direct reprogramming of fibroblasts to neurons. Cell Rep 2017, 20:3236-3247. 	
400	The first report on chromatin changes during the direct neurona	al 50. Beagan JA, Gilgenast TG, Kim J, Plona Z, Norton HK, Hu G,
401	reprogramming.	 Hsu SC, Shields EJ, Lyu X, Apostolou E et al.: Local genome
402 403 404	 45. Smith DK, Yang J, Liu ML, Zhang CL: Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Rep 2016, 7:955-969. 	18:611-624. An important contribution to the understanding the 3D re-wiring during somatic reprogramming.
405	Description of the molecular logic of pioneering factor induced repro	
406 407	gramming. In addition, the paper point of Neurog2 as pioneering tran scription factor.	51. Dixon JR, Jung I, Selvaraj S, Shen Y, Antosiewicz-Bourget JE, Lee AY, Ye Z, Kim A, Rajagopal N, Xie W et al.: Chromatin architecture reorganization during stem cell differentiation.
408	 Donaghey J, Thakurela S, Charlton J, Chen JS, Smith ZD, Gu H, Pop R, Clement K, Stamenova EK, Karnik R et al.: Genetic 	Nature 2015, 518:331-336.
409 410	determinants and epigenetic effects of pioneer-factor occupancy. Nat Genet 2018, 50:250-258.	 Dixon JR, Selvaraj S, Yue F, Kim A, Li Y, Shen Y, Hu M, Liu JS, Ren B: Topological domains in mammalian genomes identified
411	 Lieberman-Aiden E, van Berkum NL, Williams L, Imakaev M, Ragoczy T, Telling A, Amit I, Lajoie BR, Sabo PJ, Dorschner MO 	by analysis of chromatin interactions. Nature 2012, 485:376- 380.
	et al.: Comprehensive mapping of long-range interactions	53. Schmitt AD, Hu M, Jung I, Xu Z, Qiu Y, Tan CL, Li Y, Lin S, Lin Y,
412	reveals folding principles of the human genome. Science 2009,	Barr CL et al.: A compendium of chromatin contact maps
413	326 :289-293.	reveals spatially active regions in the human genome. Cell Rep 2016, 17:2042-2059.
	48. Bonev B, Mendelson Cohen N, Szabo Q, Fritsch L,	and the state of t
	 Papadopoulos GL, Lubling Y, Xu X, Lv X, Hugnot JP, Tanay A et al.: 	54. Zhang S, Cui W: Sox2, a key factor in the regulation of
414	Multiscale 3D genome rewiring during mouse neural	pluripotency and neural differentiation. World J Stem Cells
415	development. Cell 2017, 171:557-572.e524.	2014 6:305-311
416	The first description of the 3D structural changes in the high order	
417	chromatin during neuronal differentiation.	55. Gaullier G, Luger K: PARP1 and Sox2: an unlikely team of

418 49. Phillips-Cremins JE, Sauria ME, Sanyal A, Gerasimova TI, Lajoie BR, Bell JS, Ong CT, Hookway TA, Guo C, Sun Y et al.:

www.sciencedirect.com			

Current Opinion in Genetics & Development 2018, 52:1-5

Please cite this article in press at Ninkovic J, Götz M: Understanding direct neuronal reprogramming --- from pioneer factors to 3D chromatin, Curr Opin Genet Dev (2018), https://doi.org/ 10.1016/j.gde.2018.05.011