
ARTICLE IN PRESS 
Available online at www.scienoedirect.com Cufrenl Opinion in 

Genetics 
& Development 

ScienceDirect 

ELSEVIER 

3 

Understanding direct neuronal reprogramming -from 
pioneer factors to 30 chromatin 
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s Cell replacement therapies aim at reestablishment of neuronal 
• circuks after brain Injury, stroke or neurodegeneration. 
1 Recently, dh'ect reprogramming of resident glial cells into the 
• affected neuronal subtypes has become a feasible and 
9 promising option for central nervous system regeneration. 
10 Direct reprogramming relies on the implementation of a new 
11 transcriptional program defining the desired neuronal Identity In 
" fuly differentiated glial cells implying the more or less complete 
" down-regulation of the program for the former Identity of the 
" glial cell. Despite the enormous progress achieved In this 
,, regard w~h highly efficient in vivo reprogramming after Injury, a 

" number of hurdles still need to be resolved. One way to further 
11 Improve direct neuronal reprogramming Is to understand the 
" molecular hurdles which we discuss with the focus on 
19 chromatin states of the starting versus the reprogrammed cells. 
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33 Brain injury induces an orchestrated reaction of resident 
"' glial cells and infiltrating monocytes [1-6], leading to 
JS changes in the extracellular matrix (ECM) and formation 
"' of non -functional glial scar tissue [1 ,3,7]. Direct reprogram-
37 mingof reactive scar forming glial oells is a novel approach 
" to reduce scar formation and simultaneously replace the 
,. degenerated neurons at the injury site [8,9"]. Glial oells are 
«> converted to a neuronal fare bypassing the progeniror stage 
•1 (direct reprograming) by expression of neurogenic fare 
42 determinants i11vi1ro or i11vivo [1 0, 11,12- , 13, H ]. Recently 
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even 1n rbe inflamed envtrorunent after invasive srah ., 
wound injury amazing conversion rates of over 90% have .. 
been achieved including behavioural recovery [9",11, ., 
13,15-18], but there is still some room for improvement. .. 
For example, long term survival of d1e induced neurons, ~ 
generation of exact neuronal subrype identity and the .. 
appropriate long-range connectivity are still unresolved ... 
challenges (for recent review see Grade and Gotz [19); .., 
Barker eta/., in press). Towards this aim, ir is essential ro s1 
understand d1e conversion process ar the molecular level, n 
and particularly identify the molecular hurdles (forrecem ss 
review see Gascon e1 a/. [17]). Here we discuss d1e power " 
and limitations of pioneer TFs (Tfs) and d1eir effecrs on ss 
30 chromatin architecture, a so far unexplored field in ,. 
direct neuronal reprogramming (Figure 1). Qf' 

The power and l imits of TFs .511 

Direct lineage conversion relies on d1e impl ementarion of " 
the transcriptional program ofrhe desired cell rype, neurons ro 
in rhi~ case, and d1e downregularion of the transcriptional •• 
program defining the idenriry of the scarring cell, glia in this ., 
case [9",20- 26]. Implementing the new neuronal fare is ., 
mostly achieved in direct reprogrammingbyurilizinggenes .. 
specifying neurons in development [27]. The choice is ., 
mostly for TFs rhar are very potent during development, .. 
such as d1e master regularor Pax6 or d1e prone ural bH LH "' 
TFs. However, iris important ro notice that direct repro- .. 
gramming starts in a very differem cellular and rranscrip- "' 
rional context, namely in a differentiated oell of a differem .,. 
idenriry, rad1er d1an in a neural srem or progen iror cell from " 
which neurons normally differentiate. Thus, ir would be 12 

plausible ro expect rhar the developmental factors do not n 
entirely copy rh e canonical programs and progeniror scares .,. 
we learned about from the development, bur also employ ,, 
non-canonical molecular programs and pass !hough ,. 
unusual imermediare (progeniror) stares. Indeed, single n 
cell RNA-sequencing afrer Ascll mediated induction of 78 

neuronal fare in fibroblasts revealed intermediate stares, ..., 
including the lineage bi-furcation leading ro either neuro- "' 
nal or myogenic fare [28"]. The neuronal fare can be ., 
stabilized by the addition of the transcriptional repressor .. 
Myr1 L [29"]. Myr1 L represses genes specific for other " 
lineages and d1ereby stabilizes the neuronal fare [29"]. .. 
This function resembles d1e conoepr of renninal selectors, liS 

a single or group of TFs specifying neuronal subrypes "" 
during developmem and maintaining this idenriry by ., 
repressing others [30-32]. 1mportandy, the terminal selec- "' 
ror concept applies ro closely related alternative fares .. 
wid1in neural tissue. In contrast, the alternative fares in "" 
reprogramming are developmentally distam from d1e new 9 1 
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2 Cell reprogramming, regeneration and repair 

FigLre 1 

Changes n the 30 chromatn organizatioo (triangles) are associated 
woh the reprogralm"lilg trajectories {blue and magenta) from starting 
stat e to the final alternative fate. Note that at the node of 
reprogramming t rajectories has both chromatin organizations 
representing at least a part of alternative identity states and one 
chromatin organization needs to be over-written in order to achieve 
successful reprogramming. 

92 fare, but seemingly closely related ro the starter cell fare 
93 (fibroblasts and muscles are both mesoderm-derivatives) 
9• [28•]. One explanation for rhis may be d1at terminal selec-
95 tors are norsufficient ro repress fares more d isrant from their 
96 normal function in d1e nervous system. These consider-
97 ations prompt rh e question to which ex rent developmental 
98 history (i.e. of fares closely related in their nonnallineage) 
99 applies in direct reprogramming (for review see Masser-
100 dotti eta/. [33. ]). 

101 One add irional outcome of clashing cell identity programs 
102 is cell dead1. For example, excessive ROS levels that arise 
103 during direct neuronal reprogramming causing most of 
104 rhecell death [9. ]maybeduerodysregulation duringd1e 
1o5 metabolic conversion of glycolytic asuocyres into neurons 
106 relying predominantly on oxidative phosphorylation. 
1o7 Indeed, d1e neurogenic TFs seem ro induce uanscrip-
108 tiona) short-cuts in direct reprogramming. such as the fast 
109 activation of relatively marure neuronal hallmarks, for 
110 example, of ion channels as fast as 4hours after Neurog1 
111 uansducrion [25]. In regard ro rhe metabolic conversion 
112 d1is may imply changing d1e metabolism row-ards oxida-
113 rive phosphorylation prior to implementing me protective 
114 machinery. 

115 How can we then identify reprogramming short-cues and 
116 the barriers that these short-cuts need to overcome? One 
m wide-spread, pragmatic approach is using a cocktail of 
118 developmentally active TFs and then subtracting TFs 
119 that are not needed ro overcome d1e I ineage barriers 
120 (17,27,34,35]. Interestingly, this approach almost invar-
121 iandy ends with pioneer TFs either on their own or 
122 rogerher wid1 other TFs [12 .. , 13-15,20,21 ,23,24,36,37]. 
123 Pioneer TFs are defined by their capacity to bind 
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compacted chromatin, increase the TF target sire acces- 1" 

sibiliry and fosrer the binding of other, lineage specific 125 

TF s ro instruct the fate specification of progeni rors during 126 

d evelopmem [38-40]. Therefore, it is nor surprising rhat a 121 

number of neuronal reprogramming cocktails contain d1e 1211 

pioneer TFs Ascii, NeurogZ. NeuroD or Sox2 [10,12••, 120 

1 7,18,20,21 ,25,28·,29• ,>3• ,37 ,41• ,42,43,44 • ,45••1. These 100 

pioneering facrors are then combined with a number of 131 

cooperating, lineage specific facrors that define different 132 

neuronal subtype lineages. Following the developmental 133 

logic of pioneering TF function [40], it is plausible ro "' 
speculate d1at binding of d1e pioneer TF precedes the 13S 

binding of the lineage specific, cooperating TFs and is 136 

necessary ro establish me competence of the target cell to "' 
implemem the developmental programs imroduced by 138 

the cooperating factors. However, this concept has robe 139 

revised in reprogramming as-at least in some cases- 1«1 

binding of the pioneering TF is dependem on d1e coop- 1<1 

erating TFs [46). Finally, according ro dle developmental 142 

concept of pioneer TFs they would establish mainly 143 

competence for a fate, rather than im plem eming the 1 .. 

new identity. Again this seems ro be differem in direct 1.., 
reprogramming as Ascii, a bona-fide pioneering factor, is 146 

capable ro instruct astrocyres ro generate GABA-ergic 147 

neurons d1at fire action potemials wid1out any furd1er 148 

cooperating TFs [1 0,23,25,.l6]. However, in this case 149 

some of d1e cooperating lineage-specific TF s may already 1so 

be presem in asuocyres and hence nor needed ro be 151 

added exogenously. Taken rogerher, direct reprogram- 1>2 

ming is implemented by d1e coordinated action of pio- 1SJ 

neer and cooperating lineage specific TFs with especially ,, 
the former openi11g closed chromatin sires. But is this 1ss 

action of the pioneering TF sufficient to overcome all 156 

epigen eric barriers? 157 

Pioneering factors and epigenetic landscape 1ss 

Appropriate changes in d1e chromatin of the somatic cell 159 

and acquisition of d1e adequare metabolic state have been "" 
identified as a major hurdle in direct lineage reprogram- 161 

ming [9.,17,25,26,44•]. The chromatin is highly srrucrured 11>2 

in the differentiated cell ro ensureexisrenceofrhecoherent "" 
transcriptional programs defining the cellular identity 1M 

[17,25,26] and a number of epigenetic mechanisms includ- 165 

ing cl1romarin remodelling facrors, REST complex and 166 

DNA med1ylation have been implicated in direct repro- 167 

gramming. Based on d1e classical Waddingron epigenetic 168 

landscape model, the major difference between the fate 1., 
specification during developmem and direct reprogram- 110 

ming could be d1 e higher order chromatin organization due 111 

to the sequence of evencs I eading ro the establishment of 112 

the lineage barriers. According to d1e Waddington model, m 
I ine-age barriers are established as the progenitOr roles 174 

downl1ill in the epigenetic landscape and the mountains 175 

between the valleys act as lineage barriers stabilizing the 1.,. 
specific fate. 'I11efare stahilizarion also includes d1edesired m 
chromatin organization that favours binding of the devel- 178 

opmental TFs in the active chromatin as well as d1e 1,. 
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Understanding d irect neuronal rep rogramming Ninkovic and Gotz 3 

'"' esrablishmen r of the repressed chromatin domains decreas-
''' ing or inhibiting d1e binding of the alternative lineage 
"" specific TF s. '111e reprogramming would require the rewir-
,., ing of the epigenetic landscape ro allow ceUs ro cross the 
,., developmentally established hills of the Waddingron 
,., model. However, as discussed above, reprogramming nor 
'"" necessarily follows d1e logic of developmental lineages. 
,., Therefore, d1e James-Cook Island model may be better 
"" suited ro visualize rheeaseoffare conversion widl some still 
,., submerged hurdles, such as corals [33•]. In either model or 
'"' picrure, d1e epigenetic hurdles need robe overcome. While 
191 pioneerTFs can achieve openi ngof some i mporcant closed 
,., sires, alternative or aberrant fares observed in direct repro-
,., gramming may be due ro incom plete resolution of higher 
,., order chromatin. This promprs the question why only some 
,., alternative lineages emerge and according ro which logic 
''"' they emerge. Answering this question will be crucial ro 
'"' predict d1e alternative fares an d improve the conversion ro 
,.. the appropriare fully differentiated cellular identity. 

,., U nderscandi ng higher order chromatin changes during 
200 reprogramming - pioneering efficient full lineage re-
201 specification. 

"" As for transcription facror function, our knowledge abour 30 
"" chromatin looping changes during cell fare acquisition 
'"" comes largely from developmem 147,48. ,49] with fewsrud-
ns ies examining d1ese changes in direct reprogramming- so 
"" far only in d1e context of induction of pluriporency from 
7JI somatic cells [so· ]. Parts of the single chromosomes self-
~ imeracrand form topologically associating domains (TAOs) 
VI with d1e help of archirecrural proteins such as CTC F or 
210 cohesin IS 1,52). During neural differentiation (most often 
211 from ES cells) many if nor most newly appearing TADs are 
2 12 associared with active rran~cription, bur are nor formed by 
2u CTCF, that is involved in most chromatin loops in ·Es ceUs. 
21• Indeed, the association of differem TAOs is highly dynamic 
21s during differentiation across different lineages f48•,so•,S3]. 
21• '111e neural lineage-specific non.CTCF loops are instead 
211 formed by the TF YYl and mosdy involved in smaller loops 
211 within larger TAOs [so·]. Most imeresringly for direct 
219 reprogramming, also lineage-specific TFs, such as Pax6, 
2n NeuroD2 and Tbrl [48•) suggesting dm these functions 
221 may explain why these TFs are also powerful in reprogram-
222 ming. However, ro which ex rent d1ese or orherTF scan auly 
m insaucr new TAOs and if so whed1er this works only wid1in 
,.. larger T ADs and in an appropriate manner remains ro be 
22S determined. In this regard, it is inreresring to consider d1at 
ns high mobility group proteins, such as Sox2, are involved in 
m many direct reprogramming prorocols - even for differem 
228 lineages, such as neurons or pluripotent stem cells [14,54). 
229 Sox2 has d1e capacity ro alter d1e chromatin structure [55] 
n~ and pro more reprogramming in vittv [24] and in vivo rogether 
211 with the pioneering facror Ascii [18]. A~ the pioneer factors 
m bind repres~ed chromatin, they could act as drivers in the 
m chromatin re-<:omparcm entalizarion during direct repro-
214 gramming. However, d1ey may need architectural and 
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TAD forming proteins ro implemem d1is re-<:omparrmen- .ns 

talizarion in the appropriate manner for a given cell type, ns 
for example, neurons. Indeed, direct reprogramming from n1 

neural rowards pluripotent srem cells is accompanied by 238 

retaining some NSC-specific TAOs and missing some ESC- w 
specific TAOs which is accompanied by respective changes .., 
in transcription ofd1e genes affected [so·]. In this case, d1ese '" 
aberrant loops can be fixed by growing d1e cells in 2i/LIF 212 

conditions to convert d1em ro fully reprogrammed iPSC~. w 
Such mis-wiring of the cl1romarin may al~o explain why us 
direct reprogramming can also result in aberram fares, such w 
as muscle cells in neuronal reprogramming. Imprecise .,. 
T ADs or inappropriate fonnarion of new TAOs wid1in w 
d1e wrong larger TAD area that belongs ro d1e previous "" 
lineage might be leading to the establishment of aberrant .., 
fares. '111erefore, undersmnding d1e higher order chromatin ~ 
scrucrures and changes during reprogramming is essential ro 2SJ 

avoid incomplere re-wiring and aberram transcription. 'l11is 2S2 

is nor only essential ro achieve a fully functional new cell m 
identity, bur also for utilizing these cells for rep-air purpose. Ql" 
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