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ABSTRACT Epstein-Barr virus (EBV) has established lifelong infection in more
than 90% of humanity. While infection is usually controlled by the immune system,
the human host fails to completely eliminate the pathogen. Several herpesviral pro-
teins are known to act as immunoevasins, preventing or reducing recognition of
EBV-infected cells. Only recently were microRNAs of EBV identified to reduce im-
mune recognition further. This Gem summarizes what we know about immuno-
modulatory microRNAs of herpesviruses.
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Epstein-Barr virus (EBV) is a successful human herpesvirus that infects about 90% of
the human population. Upon infection, EBV reprograms resting, quiescent B lym-

phocytes, the main reservoir of this virus, to become activated, antigen-presenting cells,
which become targets of the host’s immune surveillance. EBV nonetheless can establish
a latent lifelong infection in the memory B cell compartment, in part through its virally
encoded immunoevasins, i.e., proteins that fend off both the innate and adaptive
immune responses of its human host (1).

MicroRNAs (miRNAs) are small regulatory RNAs of 19 to 22 nucleotides (nt) in length.
They usually bind to 3= untranslated regions (UTRs) of targeted mRNAs, affecting their
stability. Downregulation is often modest (�50%), and miRNAs are thought, therefore,
to “fine-tune” gene expression (2). Single miRNAs can potentially target hundreds of
different mRNAs, because the minimal requirement to bind the target mRNAs is the
6-nt-long “seed” sequence. Similarly, single mRNAs can be bound and regulated by
multiple miRNAs forming a complicated regulatory network. Human miRNAs are in-
volved in a wide range of physiological functions, such as development, growth,
differentiation, apoptosis, stress response, and immune regulation (2, 3).

EBV was the first virus found to encode miRNAs (4, 5) and is the largest reservoir of
miRNAs among human herpesviruses known to date. EBV encodes at least 44 miRNAs,
which can potentially regulate hundreds of genes, but their identity is just beginning
to emerge. EBV miRNAs are expressed in all phases of its complicated life cycle as well
as in EBV-associated tumors (6). Accumulated evidence has shown that EBV miRNAs
promote survival and proliferation of infected B cells early during infection as well as in
tumor cells (7–10), but viral miRNAs were also found to modulate immune evasion (11,
12). Viral miRNAs in different herpesviruses are rarely conserved (13), but some regulate
the same targets (14, 15).

In this Gem, we focus on miRNAs of EBV and other human herpesviruses and their
recently identified functions in regulating innate and adaptive immune responses (Fig.
1). We also discuss the potential roles of circulating viral miRNAs and their possible
implications in clinical practice.
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VIRAL miRNAS AND INNATE IMMUNITY

Innate immune responses form the first line of defense against infectious agents,
but viral miRNAs target several cellular transcripts in this pathway to escape immediate
detection (Fig. 1). Type I interferons (IFN), secreted in response to viral infection, play
a central role in antiviral immunity. They activate STAT transcription factors, which in
turn induce the transcription of IFN-stimulated genes (ISGs) in infected and neighbor-
ing cells, leading to multiple antiviral functions. Diverse herpesviral miRNAs target
components of the type I IFN signaling pathway, including STATs (16, 17), limiting the
antiviral effects of ISGs.

Another important component of innate immunity is natural killer (NK) cells, which
sense different activating and inhibitory molecules on the surface of stressed or virally
infected cells. When induced upon stress, the major histocompatibility complex (MHC)
class I polypeptide-related sequence B (MICB) surface molecule activates NK cells by
binding to its receptor natural killer group 2D (NKG2D) (18). Several miRNAs of human
herpesviruses, including EBV, Kaposi’s sarcoma-associated herpesvirus (KSHV), and
human cytomegalovirus (HCMV), have been reported to control the MICB transcript,
reducing NK cell recognition and killing of virally infected cells (14, 19).

The regulation of inflammation is a common goal of viral miRNAs. Cytokine synthe-
sis is regulated by EBV miRNAs upon infectious stimuli in nasopharyngeal cancers (NPC)
(20) as well as by KSHV miRNAs in lymphomas (21). Human miR-155 regulates inflam-
mation by Toll-like receptor signaling pathways. By targeting SHIP1/SOCS1 and TAB2,
miR-155 can exert positive and negative effects on the proinflammatory responses to
an invading pathogen, respectively (3, 22). Interestingly, KSHV miR-K12-11 mimics this
human miRNA (15), and EBV also induces miR-155, because the latent membrane
protein 1 (LMP1) of EBV activates its expression (23). Conversely, LMP1 itself is a direct
target of several EBV miRNAs (24, 25), suggesting that they reduce or limit LMP1
signaling and may thus fine-tune innate immune responses directed against EBV.

VIRAL miRNAS AND ADAPTIVE IMMUNITY

Among the main components of the adaptive immune response are T cells and
antigen-presenting cells (APCs). Antigen presentation of viral peptides by APCs, i.e.,
EBV-infected B cells, is a multistep process and viral EBV miRNAs interfere with these
steps to reduce the immunogenicity of infected cells. Cytokines and chemokines
enhance adaptive immune responses, and herpesviruses appear to use their miRNAs to
reduce the inflammatory microenvironment of infected cells as well (Fig. 1).

Levels of viral antigens. Controlling the abundant expression of viral genes can be
a strategy of viral miRNAs, thus limiting levels of viral antigen. As a first example, simian
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FIG 1 Immunoevasive functions of herpesviral miRNAs. miRNAs of the human herpesviruses EBV, KSHV,
and CMV target cellular and viral genes regulating the antiviral responses of innate and adaptive
immunity. Shown are key genes downregulated by viral miRNAs. TLR, Toll-like receptor.
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virus 40 (SV40)-encoded miRNAs were found to reduce SV40 T antigen expression,
protecting infected cells from T cell recognition (26). Similarly, EBV miRNAs have been
reported to target several viral genes downregulating them. Viral miRNAs limit the
expression of the EBV proteins EBNA1 (25), LMP1 (27), and LMP2A/B (28) in infected B
cells early after infection (Fig. 2). EBNA1 is required to maintain the viral genome in
infected cells and to distribute genomes equally to daughter cells in mitosis. This
protein is commonly expressed during latent infection and has the intrinsic ability to
prevent processing and presentation of its epitopes on MHC class I molecules (29).
Nevertheless, EBNA1 is a target of effector T cells, but viral miRNAs also limit EBNA1’s
immunogenicity, reducing its protein levels (25). These findings suggest that viral
miRNAs can act as immunoevasins not only in lytic but also in latent infection.

Antigen processing and presentation. Recently, herpesvirus miRNAs were found
to regulate cellular genes involved in antigen processing and presentation. HCMV
miRNA miR-US4-1 was reported to control MHC class I antigen presentation by target-
ing ERAP1 (30), but this finding is controversial (31). ERAP1 is an aminopeptidase that
optimizes peptide-MHC class I binding, and its downregulation leads to a reduced
killing of infected cells by virus-specific T cells (30). We reported that EBV miRNAs also
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FIG 2 EBV miRNAs globally control antiviral adaptive immune responses in infected cells. Upon infection,
the viral DNA genome circularizes, and viral coding and noncoding RNAs are expressed immediately. EBV
miRNAs support the evasion of adaptive immunity at several levels. 1, Viral miRNAs downregulate viral
transcripts to limit viral antigen synthesis: miR-BART22 controls LMP2A/B, several BART miRNAs control
LMP1, and EBNA1 is controlled by unidentified viral miRNAs; 2, reduced levels of LMP1 may lead to lower
levels of antigen presentation because LMP1 activates coreceptors and MHC expression; 3, viral miRNAs
control antigen processing for MHC class I-mediated presentation regulating the expression of TAP2, a
target of miR-BHRF1-3 and -BART17; 4, miR-BART1 and -BART2 control the expression of the lysosomal
enzymes IFI30 and LGMN, respectively; a third lysosomal enzyme, CTSB, is controlled by both miR-BART2
and -BHRF1-2, reducing the capacity to present antigenic epitopes on MHC class II molecules to CD4�

T cells; 5, secretion of the NK cell ligand CXCL-11 is reduced by miR-BHRF1-3 while the mRNA encoding
inflammatory cytokine IL-12 (and two additional cytokines, IL-12B and IL-23) is directly bound by five EBV
miRNAs, resulting in suppressed Th1 differentiation. Other inflammatory cytokines, such as IL-6, are also
reduced by viral miRNAs.
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regulate antigen processing and epitope transport in infected primary human B cells
(25, 27), downregulating the transporter associated with antigen processing (TAP)
complex and lysosomal enzymes affecting MHC class I- and class II-mediated epitope
presentation, respectively (Fig. 2).

EBV miRNAs not only reduce the processing but also interfere with the presentation
of viral antigens. We observed that cell surface MHCs and costimulatory molecules,
necessary components for effective antigen presentation, are decreased by viral
miRNAs. MHC and costimulatory molecules do not seem to be direct targets of viral
miRNAs (25, 27) (Fig. 2), but these surface molecules might be under the control of
LMP1, which is limited by several EBV miRNAs (24, 25, 44). LMP1 mimics CD40 signals
in B cells and thus induces MHCs and costimulatory molecules; LMP1 downregulation
by viral miRNAs reduces the immunogenicity of EBV-infected cells. It thus appears that
several viral miRNAs balance LMP1 expression during latent infection in B cells.

Controlling chemokines and cytokines. Several chemokines and cytokines that
regulate antiviral inflammatory responses are targets of multiple viral miRNAs. EBV
miR-BHRF1-3 targets CXCL11 (32), a chemoattractant of T cells, and thus may reduce
local inflammation and T cell recruitment (Fig. 2). After EBV infection, primary B cells
secrete various inflammatory cytokines, including interleukin-6 (IL-6) and IL-12. We
found reduced levels of these cytokines in B cells expressing EBV miRNAs early in
infection. At least five viral miRNAs directly target IL-12p40 transcript, hence reduc-
ing the secretion of IL-12 and IL-23, both being members of the IL-12 family, from
infected B cells. The best known function of IL-12 is promoting the differentiation
of naive CD4� T cells to antiviral Th1 cells, a function inhibited by EBV miRNAs (27)
(Fig. 2).

In the lytic phase during de novo virus synthesis, multiple viral proteins are ex-
pressed that act as immunoevasins to protect the cells from virus-specific effector T
cells. During the early days of infection in the prelatent phase, comparatively few viral
immunomodulatory proteins are expressed (33). During this early phase and presum-
ably also during latency, EBV uses its many nonimmunogenic miRNAs as alternative
immunoevasins to protect the virus-infected cells from adaptive immune responses.

CIRCULATING VIRAL miRNAS

Extracellular, circulating miRNAs in the bloodstream are considered potential bio-
markers as a result of their disease-specific expression patterns. Circulating miRNAs of
EBV have been proposed to serve as diagnostic markers in patients with nasopharyn-
geal carcinoma, for example (34).

The biological functions of circulating viral miRNAs are under investigation. EBV
miRNAs contained within extracellular vesicles (EVs) were reported to be released
constantly from lymphoblastoid B cell lines (35, 36). EVs can be taken up by different
cell types, including monocytes and monocyte-derived dendritic cells (35), plasmacy-
toid dendritic cells (37), and epithelial cells, mainly via caveola-dependent endocytosis
(38). Transfer of viral miRNAs to cells can lead to the repression of target genes (35); for
example, miR-BART15 represses the inflammasome protein NLRP3 in a monocytic cell
line (39). The putative functions of EV-contained miRNAs are controversial, because
their abundance in EVs is low (40). Interestingly, infectious EBV particles also contain
miRNAs (41), suggesting that they can be passively delivered, i.e., transduced during
infection to exert so far unknown but perhaps immunoevasive functions in recipient
cells.

OUTLOOK

EBV expresses viral miRNAs in the prelatent phase immediately after infection,
during latency, and in the lytic, productive phase. Particularly in the prelatent and latent
phases, when the expression of viral immune evasion proteins is limited, the many viral
miRNAs are likely to have important immunoevasive functions. Viral miRNAs are
nonimmunogenic and are transcribed and processed like miRNAs of the cellular host.
EBV and other herpesviruses (except betaherpesviruses such as cytomegalovirus) en-
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code miRNAs in gene clusters, ensuring their simultaneous expression and potential
cooperative functioning. The IL-12 and the STAT1 signaling pathways, which are
targeted by multiple miRNAs encoded by EBV or KSHV, respectively, are revealing
examples of the potential of viral miRNAs to repress single genes or pathways, a
function that goes well beyond the fine-tuning of single genes.

In this light, it is remarkable to learn that miRNAs of different members of the
herpesvirus family are distinct, sharing little sequence conservation, with few excep-
tions (15, 42). Lack of sequence conservation imposes a general difficulty for researchers
because conservation across species is one of the best parameters to predict the targets
of miRNAs. Instead, each herpesvirus has evolved its own set of miRNAs, probably to
adapt to the RNA synthetic networks in the different cell types human herpesviruses
infect. miRNAs of different herpesviruses rarely target the identical transcripts in the
different host cells but rather alter the same global functions, such as antiviral
immunity.

During infection, herpesviruses use their miRNAs to evade immune surveillance by
the host. EBV-associated tumor cells also express viral miRNAs (6), and it seems
plausible that they also reduce the anti-tumor response of infiltrating immune cells.
Several strategies have been developed recently to block miRNA functions directed at
indications other than EBV-associated diseases, and some have reached the phase of
clinical studies (43). If successful, similar blocking of viral miRNAs in EBV-associated
tumors may restore functional anti-tumor immunity and thereby benefit patients with
these tumors.
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