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ABSTRACT: Heavy fuel oil (HFO) particulate matter (PM) emitted by marine
engines is known to contain toxic heavy metals, including vanadium (V) and nickel
(Ni). The toxicity of such metals will depend on the their chemical state, size
distribution, and mixing state. Using online soot-particle aerosol mass spectrometry
(SP-AMS), we quantified the mass of five metals (V, Ni, Fe, Na, and Ba) in HFO-PM
soot particles produced by a marine diesel research engine. The in-soot metal
concentrations were compared to in-PM2.5 measurements by inductively coupled
plasma-optical emission spectroscopy (ICP-OES). We found that <3% of total PM2.5
metals was associated with soot particles, which may still be sufficient to influence in-
cylinder soot burnout rates. Since these metals were most likely present as oxides,
whereas studies on lower-temperature boilers report a predominance of sulfates, this
result implies that the toxicity of HFO PM depends on its combustion conditions.
Finally, we observed a 4-to-25-fold enhancement in the ratio V:Ni in soot particles
versus PM2.5, indicating an enrichment of V in soot due to its lower nucleation/
condensation temperature. As this enrichment mechanism is not dependent on soot formation, V is expected to be generally
enriched within smaller HFO-PM particles from marine engines, enhancing its toxicity.

■ INTRODUCTION

Marine engines represent a major source of atmospheric
particulate matter (PM), with global emissions comparable to
road traffic and aviation.1 As close to 70% of shipping emissions
occur within 400 km of coastlines,2 and marine-engine PM may
contribute significantly to local mortality.3 The remaining 30%
of emissions are the major source of anthropogenic air
pollution in the marine environment.
Ocean-going marine engines typically operate on the cheap

residual fuel known as Heavy Fuel Oil (HFO). Due to its high
sulfur content, HFO has already been prohibited within the so-
called Sulfur Emission Control Areas (SECAs, coastal zones
near Europe and North America). However, as ∼80% of global

shipping in 2015 originated from ports outside of SECAs,4 large
urban populations remain exposed to significant levels of HFO
exhaust.5−7

Epidemiological studies have suggested a connection
between HFO-combustion PM and mortality8 as well as
morbidity.9 Multiple toxic species are found in HFO; HFO PM
is rich in transition metals and polycyclic aromatic hydro-
carbons (PAHs), both of which play a role in its toxicity.10−14 A
significant mass fraction of these transition metals may be
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present in the smaller PM fractions,15−19 such as PM2.5 (PM
with diameters <2.5 μm), which are small enough to penetrate
to and affect the human bronchi and alveoli.20 When insoluble,
such particles may remain in the lungs for days,21−24 catalyzing
oxidative stress.25 The even smaller PM0.1 size fraction is more
likely to pass through exhaust aftertreatment systems26 and are
small enough to enter the bloodstream after inhalation.24 The
passage of PM0.1 through aftertreatment systems is particularly
noteworthy, as such aftertreatment systems are required in
SECAs when HFO is combusted.
The most abundant trace metal in HFO is vanadium(V),

which is also particularly toxic.27 Nickel (Ni) and other metals
are present in smaller amounts. Such metals are typically
present as oxides, though ∼10% exist as organometallic
compounds.28−30 Some fraction of these metallic compounds
may vaporize during fuel combustion before nucleating into
new particles.18,31,32 These nucleated particles may then act as
in-flame condensation nuclei for soot formation,16,33 leading to
metal or metal-oxide inclusions in soot with diameters of ∼5−
10 nm.34 These inclusions have the potential to influence soot
emissions by catalyzing soot oxidation.31,35,36 The inclusions
may be composed of metal alloys or oxides, such as Ni, Ni2Fe,
Fe2S, V2O3, and Ni3Fe2O3.

33 Popovicheva et al.33 identified
these compounds in a ship-exhaust PM sample using scanning
electron microscopy (SEM), which provided single-particle
elemental as well as morphological information. However, only
a limited number of particles can be analyzed quantitatively by
SEM due to its labor intensity.
In contrast to SEM, online aerosol mass spectrometry

provides the opportunity to quantify metals in aerosol particles
with high throughput. The recently developed Soot-Particle
Aerosol Mass Spectrometer (SP-AMS),37 which uses a 1064
nm-laser vaporizer to specifically vaporize particles which
absorb light efficiently at that wavelength, has the ability to
selectively quantify metals in soot particles since few materials
other than soot do so.37−40 Here, we operated the SP-AMS
laser vaporizer in tandem with the standard AMS thermal
vaporizer41 to obtain additional information about particle
composition.
In this manuscript, we refer to the particles vaporized by the

SP-AMS laser (and not the AMS thermal vaporizer) as soot
particles. Since these particles have aerodynamic diameters in
the range of 60 to 600 nm (discussed further below), soot
particles are a subcategory of PM2.5. A soot particle is a flame-
synthesized particle primarily comprised of an aggregate of
refractory black carbon (rBC) spherules, where rBC is the light-
absorbing, insoluble, graphene-like PM that vaporizes at ∼4000
K.42,43 It follows that soot may contain additional condensed
material, such as sulfates and organics, as well as metal
inclusions. We note that in the primary engine emissions
studied here, the mass fraction of organics and sulfate internally
mixed with soot was negligible,44 so that the potentially
ambiguous scenario of a particle containing only 10% rBC is
irrelevant here. In HFO PM, a second type of rBC particle may
be observed: char. Char particles are the supermicron,
graphitized, often porous carbonaceous residues of fuel
droplets.16,32,33,45 Due to their different formation mechanisms,
the trace-element composition of soot particles will be different
than that of char particles. Crucially, the supermicron diameter
range of char particles means that they are too large to be
measured by the SP-AMS, so that SP-AMS measurements are
intrinsically selective for soot particles, whereas filter samples
may include both soot and char.

In this work, we present SP-AMS measurements of the
internally mixed metal content of soot generated by a marine
four-stroke diesel research engine operated on HFO. We use
the term “metals” to describe the metal mass fraction of alloys,
oxides, or other compounds. (Our observations indicate that
metal alloys and/or oxides were the dominant species present
in our sample.) The specific metals measured were vanadium,
nickel, iron, sodium, and barium (V, Ni, Fe, Na, and Ba). In
addition to the SP-AMS data, additional measurements of rBC
mass concentration by laser-induced incandescence (single-
particle soot photometer, SP2) and bulk PM2.5 metal content
by inductively coupled plasma-optical emission spectroscopy
(ICP-OES) are presented. SEM measurements were performed
to exclude the presence of char particles in our samples. Finally,
measurements on two metal-free distillate fuels (marine gas oil,
MGO, and diesel fuel) are used as controls.

■ MATERIALS AND METHODS

Experimental Section. The engine used in this study was a
four-stroke, single-cylinder research engine installed at the
Institute of Piston Machines and Internal Combustion Engines
at the University of Rostock in Germany. The engine has a 150
mm bore and a 180 mm stroke and operates at a nominal 1500
rpm with a maximum power of 80 kW. The engine can be
operated with both HFO and distillate fuels (here, MGO and
diesel fuel, with diesel defined according to EN 590), and its
layout represents a typical medium-speed large-bore engine.
Further details are provided in Streibel et al.34 Engines of these
dimensions may be used on smaller ships as a main power
supply, on large ships for ancillary power (at sea or while
harbored), or as a backup power supply, e.g., in hospitals.
Aerosol samples from the engine exhaust were taken through

an insulated sampling probe at 300 °C to a cyclone with a
nominal cutoff diameter of 2.5 μm and then 10-fold diluted by a
two-stage sampling system (Venacontra, DAS, Finland). The
first dilution stage employed a porous-tube dilutor46,47 in which
compressed air flowed through pores in a cylindrical sampling
volume to provide a sheath flow and minimize wall losses of
vapors and particles. The second stage employed an ejector
dilutor with a total flow rate of 150 L min−1, which provides a
good mixing of the sample with dilution air. Dilution ratios
were calculated in real time from CO2(g) measurements. Four
parallel PM2.5 filter samples were collected simultaneously with
a modified speciation sampler (Rupprecht & Patashnik 2300,
Thermo Scientific, Waltham, USA). The PM2.5 samples were
collected either on quartz-fiber filters (T293, Munktell,
Sweden), PTFE membrane filters (PFF, Zefluor 1 μm, Pall,
USA), or polycarbonate (Millipore, UK) with a flow rate of 10
normal liters per minute each. The quartz-fiber filters were
conditioned before sampling by baking at 500 °C for at least 12
h. Filters were stored in sealed glass containers until sampling.
Immediately after sampling, the filter samples were stored at
−25 °C. Thermal/optical EC was determined with a DIR
Model 2001a carbon analyzer according to the Improve A
protocol.48

SP-AMS and SP2 (single particle soot photometer, described
below) samples were taken following an additional 100-fold
dilution relative to the filter samples, using two 10-fold ejector
dilutors (PALAS GmbH, Germany). To allow a comparison
between the real-time and filter-based measurements, real-time
measurements were averaged over the filter sampling periods
(typically 30 min), unless specified otherwise. Other real-time
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measurements from these experiments are reported else-
where.44

SEM was performed on HFO particles collected on
polycarbonate filters (Millipore, UK) at a representative engine
load of 50% load. A few nanometers of gold were deposited
onto the filters to enhance sample conductivity prior to
measurement with a Hitachi SU3500. The elemental
composition of 56 particles was measured by Energy Dispersive
X-ray spectroscopy (EDX) with the SEM. Simultaneous high-
resolution images of the EDX-measured particles were not
obtained. As these SEM-EDX measurements were performed as
a supplement to the other measurements, they were much
more limited in scope.
Inductively Coupled Plasma-Optical Emission Spec-

troscopy (ICP-OES). Inorganic elements were determined
from PTFE filter samples using inductively coupled plasma-
optical emission spectroscopy (ICP-OES, Spectro Ciros Vision,
SPECTRO Analytical Instruments GmbH & Co. KG, Kleve,
Germany). Each precisely weighed sample was added to a
quartz vessel containing concentrated aqueous HNO3 (ana-
lytical grade, Suprapur, Merck, Germany). The HNO3 was sub-
boiling distilled before use. The samples were then digested in a
microwave digestion system (Paar GmbH, Germany) and
diluted with deionized water (Milli-Q, Millipore, Germany)
before measurement. The ICP-OES analytical procedure is
described in full detail in the SI.
Single Particle Soot Photometer (SP2). A single particle

soot photometer (SP2; Droplet Measurement Technologies,
CO, USA) was employed to measure rBC mass concentrations
by laser-induced incandescence38,49 using a 1064 nm
continuous-wave laser. Data were analyzed using the PSI SP2
Toolkit version 4.112. The SP2 quantitatively measures the
rBC mass of single particles between ∼0.7 fg (∼80 nm rBC
mass-equivalent diameter, drBC) and ∼200 fg (∼600 nm) with
unit collection efficiency. Outside of this range, smaller particles
are not detected; larger particles are still counted, but rBC mass
is not quantified due to signal saturation. The rBC mass-
equivalent diameter drBC was calculated according to a BC
density of 1800 kg m−3.50 The SP2 was operated as described in
Laborde et al.51 Mass calibration was performed with nebulized
reference rBC particles (fullerene-enriched soot, Alfa Aesar;
stock 40971, lot FS12S011), which have been validated as a
reference by Laborde et al.52 The reference rBC particles were
mass-classified (Aerosol Particle Mass analyzer model 3061,
Kanomax) in order to determine a linear mass-response curve.
The SP2 also measures particle scattering cross sections, which
provides optical sizing of the particles (including non-rBC
material); the scattering detectors were calibrated using 269 nm
spherical polystyrene latex size standards.
Lognormal fits to the measured drBC size distributions were

used to infer correction factors to account for unmeasured rBC
mass in particles smaller or larger than the size-detection limits
given above. An uncommonly large correction factor of 1.46
was obtained for HFO, due to the presence of a significant
fraction of high-mass particles from residual fuel that saturated
the detector of the SP2. This is discussed in detail in a separate
manuscript44 and is not relevant to this manuscript, considering
the overall low in-soot metal concentrations reported here.
Soot-Particle Aerosol Mass Spectrometer (SP-AMS).

The Soot-Particle Aerosol Mass Spectrometer (SP-AMS;
Aerodyne Inc., USA) employs a 1064 nm, continuous-wave
laser to vaporize rBC as well as internally mixed impurities.37

The resulting vapor molecules are neutral,53 except for those

metals with exceptionally low ionization energies.40,54 Vapor-
ized species are analyzed by a high-resolution time-of-flight
mass spectrometer after electron ionization.
The above-mentioned vaporization laser was alternately

switched on and off, similarly to Corbin et al.39 With the
laser off, nonrefractory PM (nrPM) is flash vaporized on a 600
°C porous-tungsten vaporizer and subsequently analyzed
similarly. These measurements are subsequently referred to as
“AMS” measurements. The porous-tungsten vaporizer is also
present in laser-on mode, in which case it vaporizes any nrPM
which does not absorb sufficiently at 1064 nm, such as
externally mixed OM or sulfate particles. The AMS measure-
ments were used to obtain the reported OM concentrations,
sulfate concentrations, and elemental ratios H:C and O:C
following standard methods;41,55−57 further details are provided
in the SI. The ionization efficiency of the AMS (and SP-AMS)
was calibrated using 300 nm mobility-diameter-selected
ammonium nitrate (NH4NO3) particles.41 The ionization
efficiencies relative to nitrate (RIEs) used for OM and sulfate
were 1.4 and 1.2, respectively.58,59

SP-AMS rBC mass concentrations CrBC,SP‑AMS were quanti-
fied from the sum of carbon-cluster ions (C1−9

+ ) using an RIE of
0.2.37,39,60 We note that the ratio C1

+:C3
+ was unity for our

samples, in contrast to the previously reported value39 of 0.6
(Figure S1). CrBC,SP‑AMS is proportional to the mass of rBC
reaching the SP-AMS laser vaporizer, which must depend on
the transmission efficiency Ez of particles from the SP-AMS
aerodynamic lens to its laser vaporizer. Ez is a function of the
particle free-molecular-regime aerodynamic diameter,61 which
is a function of the soot-aggregate monomer diameter,
morphology, and internal mixing.61−64 The reliable constraint
of Ez for SP-AMS mass quantification is a topic of current
research63,64 and outside the scope of this work, as evaluated
and discussed in the SI. Below, we therefore used the SP2-
measured rBC mass concentrations CrBC,SP2 to normalize
CrBC,SP‑AMS (eq 3) since the reliability of the SP2 in measuring
rBC mass concentrations independently of mixing state has
been thoroughly confirmed by previous studies.52,65,66

We quantified in-soot metal concentrations with the SP-AMS
using the method recently demonstrated by Carbone et al.40

That is, we used the RIEs reported by Carbone et al. to quantify
the concentrations of V, Ni, Fe, Ba, and Na vaporized by the
SP-AMS laser as CM,SP‑AMS. We note that the RIEs reported by
Carbone et al. for Na and Ba (only) result in conservative
lower-limit concentration estimates, as detailed in the SI. This
does not apply to the concentrations reported for V, Ni, or Fe,
for which quantification is accurate.
Each metal signal was quantified from the signal of its most

abundant isotope. These isotopic signals were integrated to
obtain peak areas, which were then divided by the relative
abundance of that isotope to yield the total mass concentration
CM,SP‑AMS of that metal. A peak-specific SP-AMS limit of
quantification of 20 ng m−3 was estimated for all metal ions via
a novel procedure, described in the SI. Each relative abundance
was directly measured and validated as consistent with
literature. A small mass fraction of Fe (12%) and V (3.5%)
was present as metal-oxide ions (MOx

+); the mass of Fe or V in
oxide ions was quantified and added to the corresponding mass
of metal ions when reporting the mass concentrations of these
species. The SI provides complete details on this novel
procedure, as well as on the above-mentioned isotopic
abundances and metal-oxide ions.
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Calculated Quantities. The mass ratio of a given metal M
to BC in PM2.5 was calculated as

=‐
‐C

C
(M:BC)in PM

M,ICP OES

EC,PM
2.5

2.5 (1)

where CM,ICP‑OES is the mass concentration of that metal M in
the PM2.5, and CEC,PM2.5

is the EC mass concentration measured
by the thermal−optical IMPROVE protocol after the PM2.5

cyclone for the same filter, representing CrBC,PM2.5
, which

previous studies have found to agree well with rBC mass
concentrations.52,65,67

The mass ratio of a given metal M to rBC in soot particles
was determined as

=‐
‐

‐

C

C
(M:BC)in soot

M,SP AMS

rBC,SP AMS (2)

where CM,SP‑AMS and CrBC,SP‑AMS are the mass concentrations of
metal M and of rBC measured by SP-AMS. We observe that the
ratio (M:BC)in‑soot is approximately equal to the mass fraction
of the metal in soot, since CM,SP‑AMS was on the order of 1% and
since the presence of nonrefractory material internally mixed
with the measured soot particles was negligible, as shown
elsewhere.44 However, the discussion below is not dependent
upon this observation.
Following from eq 2, the emission factor of a given metal M

per mass of CO2 is

= = ‐C
C

C

C
EF

(M:BC)
M

M

CO

in soot rBC,SP2

CO2 2 (3)

This equation uses CrBC,SP2 rather than CrBC,SP‑AMS or
CEC,PM2.5

, respectively, because of the Ez issues noted above
and because of the high time resolution of the SP2 relative to
the thermal−optical analysis. Emission factors for other PM
components were calculated similarly to eq 3, replacing CM
with the appropriate measurement.

Uncertainties. ICP-OES PM2.5 uncertainties were calcu-
lated as the quadratic sum of the standard deviation of the
background, and 5% of the signal of the latter is an estimated
proportional error68. When averaging data to ICP-OES-filter-
sampling periods, the standard error of the mean was used.
SP-AMS and AMS uncertainties were calculated by

combining peak-integration uncertainties with ion-counting
uncertainties.69 Peak-integration uncertainties were obtained
with an improved-efficiency implementation of the Monte
Carlo calculations described by Corbin et al.69 The peak-width
uncertainty used was 3%. We estimate that the worst-case
uncertainty of the metal RIEs reported by Carbone et al.40 are
on the order of ∼20%.
SP2 calibration and particle-counting uncertainties were

generally smaller than the engine variability, such that the
standard error of a typical mean rBC mass concentration
(representing temporal variability) was larger than the
propagated statistical uncertainty. The SP2 correction factor
for the mass fraction of rBC particles that were too large or too
small to be quantified, described above, resulted in a correction
factor for HFO of 1.46 ± 0.15, where 0.15 is the estimated day-
to-day variability of the 1.46 correction factor.

■ RESULTS AND DISCUSSION

Overview of PM2.5 Composition. The composition of the
ship-engine HFO PM was dominated by OM, BC, and sulfates.
Since ammonia and nitrate emission factors were negligible, we
infer that the dominant sulfate species was sulfuric acid. The pie
chart in Figure 1 shows the mean relative emission factors of
OM, BC, sulfate, and ash for a typical engine load of 50%. Note
that these emission factors reflect the composition of the
primary particulate emissions of this engine and do not account
for the formation of secondary sulfate and secondary OM,
which may occur in the atmosphere on a time scale of hours for
OM and days for sulfate. More details on these emission factors
are given in Corbin et al.,44 and the relationship between such
emission factors and engine load has been discussed by Müller
et al.70 Ash is defined as all elements other than CHOS and was

Figure 1. Trace-element composition of the fuel (mass fraction) and of the PM2.5 and soot (emission factors). All elements except C, H, O, and S are
shown. The inset pie chart shows the overall PM composition, including OM elemental composition. Uncertainties are standard errors of the mean
(s.e.m.) for the PM samples and 10% for the fuel composition. Si in PM2.5 was not determined (n.d.). Other missing bars correspond to below-LOD
signals; LODs are given in the text and in Tables S2 and S3.
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measured by ICP-OES. Note that this definition excludes the
oxygen contained in metal oxides.
The pie chart of Figure 1 also includes the OM to OC mass

ratio (OM/OC) and the elemental ratios H/C and O/C, all
from the high-resolution AMS data55,56 (see the SI for details).
The OM/OC, required to convert thermally evolved carbon
measurements to total OM mass, was 1.2 on average. This is
lower than the value of 1.6 recommended for urban aerosols by
Turpin and Lim,71 due to the near absence of oxygen in our
OM (O/C 0.02 ± 0.02, H/C 1.87 ± 0.07).
Using SEM, we identified soot aggregates, spherical, tar-ball-

like particles, and irregular ash particles in the HFO PM. No
porous char cenospheres45 were observed. This observation
rules out the hypothesis that supermicron char particles, not
detectable by SP-AMS due to their size, influenced our results.
Applying SEM-EDX to 56 randomly chosen micron-sized
particles, we detected Ca, S, Al, Zn, V, Si, and Ni in irregular
combinations. This irregularity highlights the strength of the
SP-AMS, which sampled ∼105 particles per second, such that
counting statistics are a negligible source of uncertainty.
Obtaining a comparable SEM-EDX data set was infeasible for
this study. We reiterate here that the SP-AMS methodology we
have employed has been directly validated in the laboratory40

and does not rely on the SEM for quantification.
Emission Factors of Trace Metals in Soot Particles.

The trace-element compositions of the fuel (relative to the bulk
mass) and PM2.5 (as emission factors) are shown by the
leftmost and central bars in Figure 1, respectively. These
compositions were both measured by ICP-OES. Overall, HFO
contained ∼110 mg/kg of trace metals (with signals above
LOD), whereas MGO and diesel contained negligible amounts
(only Fe in MGO was above the general detection limit of 0.1
mg/kg, at 0.2 mg/kg). Trace elements in both the HFO fuel
and PM were dominated by V, with Ni, Na, Ca, Fe, and other
less-abundant species present. The relative presence of V and
Ni is discussed further below. The ratio of fuel composition to
emission factor for each element was ∼2−10 in PM2.5 and
∼100 in soot (Figure 1, Figure S4).
The rightmost bars for each metal in Figure 1 show that the

emission factors of metal inclusions in soot particles, as
measured by the SP-AMS (“in-soot metals”, eq 3), were much
lower than for the PM2.5. This is primarily because the PM2.5
measurements additionally include externally mixed metal
oxides and salts. V concentrations were a factor of 25 lower
in soot than in the PM2.5. For Ni, this factor was 84. Given that
the rBC mass was a factor of four lower than the overall PM2.5
mass (Figure 1), this translates to a relative depletion of metals
in soot by about an order of magnitude, compared to the metals
present in the overall PM2.5. The error bars in Figure 1 indicate
standard errors of the respective means. These were much
larger for in-soot metals than for in-PM2.5 metals, indicating a
substantial variability in the internal mixing of soot with each
metal. Note that this variability does not indicate noise in the
SP-AMS data; it is much greater than the expected instrument
precision (discussed in the SI). In addition, the metal-in-soot
concentrations were not correlated with the total PM2.5 metal
concentrations (Figure S9), demonstrating the independence of
these two quantities.
We note that the reported metal ions were generally atomic

ions (M+) of the respective metals, with two exceptions. First, a
very small mass fraction of V (3.5%) was observed as VO+ (see
the SI and Table S5). Second, a more substantial mass fraction
of Fe (12%) was observed as FeO+ and Fe2O

+. Oxide ions of all

other reported metals were not present. This indicates that the
metallic species present in our samples were either metallic
compounds or oxides which thermally degraded upon
heating.72

We did not observe metal-sulfate ions in the SP-AMS mass
spectra, in spite of the presence of substantial amounts of
sulfate mass in the PM (Figure 1). This is not a limitation of
the SP-AMS. Carbone et al.40 used an SP-AMS to measure
VSOx, CaSOx, and FeSOx ions in PM generated by a heating
station operated on an aqueous emulsion of HFO and distillate
fuel. This difference between our results and those of Carbone
et al. provides physical insight into the composition of HFO
PM. In particular, since emulsions lead to lower combustion
temperatures,73 resulting in the preferential formation of metal
sulfates rather than oxides,18,32 the absence of metal sulfates in
our mass spectra represents an indicator of combustion
temperature. Our results therefore indicate that studies which
use laboratory combustors74,75 may produce PM which is not
representative of the HFO PM produced by four-stroke marine
diesel engines. Toxicological studies should therefore use ship
engines13 rather than boilers12,76 to simulate marine pollution.

Metal to BC Mass Ratios in Soot and PM2.5. The mass
ratios of each quantified metal to BC are shown in Figure 2 for

each metal where in-soot concentrations were quantified by SP-
AMS. These ratios are shown for the specific cases of in-soot
mass, (M:BC)in‑soot, and in-PM2.5 mass (M:BC)in‑PM2.5

. The ratio
(M:BC)in‑soot was less than 0.03 in all cases, corresponding to a
few percent or less mass contribution to the refractory mass of
soot particles. For toxicology studies, this depletion means that
only a small fraction of the metal mass is rendered biologically
inaccessible by incorporation into soot particles.
However, this small mass fraction may be sufficient to

catalyze BC oxidation within the engine. Such BC oxidation is a
major factor in determining the BC emissions of an engine,
since the vast majority of BC produced by a flame is generally
destroyed (oxidized) before leaving it.42

Figure 2. Metal:BC mass ratios in soot and in PM2.5. The ratios were
obtained from the in-soot and in-PM2.5 metal concentrations (defined
respectively by eq 2 and eq 1) in combination with the in-soot BC
mass or all-PM2.5 BC mass, as defined in those equations. For soot, the
data points are colored darker for higher CSP‑AMS,M concentrations.
Fewer data points are plotted for soot due to limited availability of SP2
data. Boxes show 25−50−75th percentiles; error bars are s.e.m.
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To evaluate this hypothesis, we compare our measured in-
soot metal content to the data reported by Bladt et al.,35 who
observed a large change in temperature-programmed oxidation
results for BC with 10 mass% of Fe and higher. Although those
authors did not report measurements below 5 mass%, their
reported exponential dependence of oxidation temperature on
Fe mass% suggests that our observed few percent metal content
may have a significant influence on BC emissions. We also note
that in addition to BC oxidation, the presence of metals may
influence BC formation.36 These effects would mean that the
soot emission factors of HFO are a function of the metal
content of the fuel, which is expected to vary significantly
between fuels.77 Further study is required to establish whether
this fuel-to-fuel variability is substantial in the context of
engine-to-engine variation.
The high outlier for Fe in Figure 2 is noteworthy, suggesting

that (Fe:BC)in‑soot may have been externally mixed for this
point. Uniquely to all other SP-AMS-quantified metals, this
outlier corresponds to a period of measurement where
CSP‑AMS,Fe was poorly correlated with CSP‑AMS,rBC. We conclude
that this point was likely biased high due to the anomalous
presence of light-absorbing Fe or Fe compounds.
Enhanced Vanadium-to-Nickel Ratio in Soot. The ratio

V:Ni has been recommended for the source apportionment of
residual-fuel PM in atmospheric studies. In this section we
examine whether this ratio changes between in-PM2.5 and in-
soot metals. Also, since metals are incorporated into soot
particles by vaporization/condensation, the metal-in-soot ratios
provide quantitative insights into the degree to which some
metals may be enhanced in ship-exhaust PM2.5 or PM0.1
particles relative to coarse-mode PM.
Our PM2.5 data (Figure 3) indicate a mean and standard

deviation V:Ni of 5.2 ± 0.5. This ratio is comparable to those

reported by two previous studies. Based on a source-
apportionment analysis of atmospheric data, Viana et al.78

suggested that a V:Ni of 4−5 is representative of HFO
combustion. Consistent with this range of values, Agrawal et
al.79 observed a ratio of 4.5 ± 0.1 for an in-use ship. However,

Lyyran̈en et al.16 reported a lower ratio, close to unity, possibly
due to a difference in fuel composition. Our PM2.5 data do not
show a dependence of V:Ni in PM2.5 on the engine load, also
consistent with Agrawal et al.79

Whereas V:Ni was similar between the fuel and the PM2.5,
V:Ni in soot particles was 20−100, which is 4- to 25-times
higher than in the PM2.5. This enhancement is well outside of
the SP-AMS uncertainty range. Source apportionment studies
based on SP-AMS or other laser-vaporization instruments with
high sensitivities to BC, such as laser desorption/ioniza-
tion,5,7,80,81 will therefore measure different V:Ni ratios than
ICP-OES or similar techniques. We note that the in-soot V:Ni
appeared to increase at lower engine loads, in contrast to the in-
PM2.5 V:Ni. Additional measurements at high engine loads are
needed in future studies to corroborate this potential trend.
We also attempted to measure the composition of micron-

sized particles using SEM-EDX, for comparison with the bulk
PM2.5 and soot particles results. However, this method was of
limited statistical power, as we found that sufficient amounts of
V and Ni were present in only 3 of 56 measured particles. The
V:Ni ratios of these particles was 2.44 ± 0.34, 1.07 ± 0.68, and
1.23 ± 0.28. This limited evidence suggests that the V:Ni ratio
of supermicron particles more closely resembles that of PM2.5
than that of soot.
When switching from HFO fuel to distillate fuels, we did not

observe V or Ni in the emissions. Thus, the possibilities of V
and Ni originating directly from the engine itself (e.g., via
abrasion) as well as the interference of resuspended particles
can be ruled out. Also, this shows that V:Ni is a specific tracer
for HFO emissions and allows ship-exhaust to be identified
only when HFO is the fuel. This presents a challenge to future
ship-exhaust source apportionment studies, as HFO emissions
must be minimized within SECAs.82 We note that the use of
exhaust scrubbers83 can be used to accomplish this
minimization and that exhaust scrubbers are least effective for
the smallest size fraction.26 Therefore, our observed enrichment
of toxic vanadium in soot particles indicates a per-mass
enhanced toxicity in scrubbed HFO exhaust.
Overall, we conclude that vanadium inclusions in soot were

more likely to form than nickel inclusions. We compare this
conclusion with the thermodynamical calculations of Sippula et
al.,18 which indicate that VO2 should be the first species to
nucleate in the engine, followed by iron and nickel (at 1200−
1300 °C). Our observations are in agreement with these
predictions.

Implications for HFO PM Toxicity. Since our observed
enhancement of vanadium in soot particles was attributed to
the higher-temperature condensation of vanadium in the engine
compared to other metals, this enhancement is independent of
the chemistry that leads to soot formation. Therefore, V is
expected to be enhanced not only in soot particles but also in
all small (diameters < 100 nm) particles emitted by HFO
combustion in marine diesel engines. This would mean that the
V:Ni relevant for source-apportionment of atmospheric PM to
HFO particles may depend on the measured size fraction.
Moreover, since vanadium is especially toxic,27 and since the
penetration of particles into the human lungs is size-dependent,
with smaller particles penetrating deeper into the lungs and
alveoli, this would correspond to an enhanced toxicity of
smaller HFO particles due to their enhanced vanadium content.
Although incorporation into soot particles would render this
vanadium biologically inaccessible, we observed (above) that
this effect sequesters <3% of the total PM2.5 vanadium. Relevant

Figure 3. Mass ratio V:Ni in soot particles and in the PM2.5 of HFO
exhaust. Also shown are the ranges of values measured in the fuel itself
(green thin line) and in field measurements of atmospheric particles
(gray shading, measured by Viana et al.78). The horizontal scatter of
the PM2.5 data is added for clarity only. Error bars are s.e.m.
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to this conclusion, we note that the translocation of insoluble
PM into the blood and subsequent accumulation in organs is a
strong function of particle size, being significantly enhanced for
diameters below ∼100 nm.24 The temperature dependence of
this small-particle enhancement in V also indicates that the
toxicity of HFO PM is dependent on the combustion
conditions, in particular on temperature, for a given fuel.
When performing size-resolved PM exposures, size-resolved
chemical composition determination is therefore essential.
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