

IMAGE

Conditional CRH overexpressing mice: an animal model for stress-elicited pathologies and treatments that target the central CRH system

A Lu^{1,6}, MA Steiner¹, N Whittle², AM Vogl¹, SM Walser¹, M Ableitner¹, D Refojo¹, M Ekker³, JL Rubenstein⁴, GK Stalla¹, N Singewald², F Holsboer¹, CT Wotjak¹, W Wurst^{1,5} and JM Deussing¹

¹Max Planck Institute of Psychiatry, Kraepelinstrasse, Munich, Germany; ²Department of Pharmacology and Toxicology, University of Innsbruck, Innsbruck, Austria; ³Department of Biology, Center for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, ON, Canada; ⁴Nina Ireland Laboratory of Developmental Neurobiology, University of California San Francisco, San Francisco, CA, USA and ⁵Institute for Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany

Molecular Psychiatry (2008) 13, 989; doi:10.1038/mp.2008.107

Conditional mouse mutants overexpressing corticototropin-releasing hormone (CRH) restricted to the central nervous system exhibit enhanced active stress-coping behavior. A highly flexible gain-of-function mouse model was created by combining the properties of the ubiquitously expressed ROSA26 locus with those of the Cre/loxP system. The knock-in of a Crh-LacZ expression unit, which is sensitive to activation by Cre recombinase, allows the spatio-temporally controlled overexpression of CRH at different dosages. In control mice (left), only endogenous CRH expression was detectable in the brain, whereas heterozygous (middle) and homozygous (right) CRH-COE-Nes mice expressed increasing levels of exogenous CRH throughout the brain. The pattern of CRH induction paralleled the activation of the simultaneously introduced LacZ reporter gene (left brain half). CRH-COE-Nes mice exhibited a marked gene-dosage-dependent increase in active stress-coping behavior as reflected by reduced immobility in the forced swim test (bottom), which depends on catecholaminergic transmission and enhanced activation of the locus coeruleus. For more information on this topic, please refer to article by Deussing et al. on pages 1028–1042.