International Journal of Epidemiology, 2018, 1-12
Original article

Original article

Comparison of metabolite networks from
four German population-based studies

Khalid Igbal,’*' Stefan Dietrich,%3" Clemens Wittenbecher,?3
Jan Krumsiek,** Tilman Kiihn,®> Maria Elena Lacruz,®
Alexander Kluttig,?® Cornelia Prehn,’ Jerzy Adamski,
Martin von Bergen,® Rudolf Kaaks,®> Matthias B Schulze,??
Heiner Boeing" and Anna Floegel™"°

3,7,8

'Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal,
Germany, “Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-
Rehbruecke, Nuthetal, Germany, *German Center for Diabetes Research (DZD), Miinchen-Neuherberg,
Germany, *Institute of Computational Biology, Helmholtz Zentrum Miinchen, Neuherberg, Germany,
German Cancer Research Center (DKFZ), Division of Cancer Epidemiology, Heidelberg, Germany,
®Institute of Medical Epidemiology, Biostatistics and Informatics, Martin Luther University Halle-
Wittenberg, Halle, Germany, "Institute of Experimental Genetics, Genome Analysis Center, Helmholtz
Zentrum Miinchen, German Research Center for Environmental Health, Neuherberg, Germany,
8 ehrstuhl fiir Experimentelle Genetik, Technische Universitat Miinchen, Freising, Germany, ®*Helmholtz
Centre for Environmental Research—UFZ, Leipzig, Germany and "Leibniz Institute for Prevention
Research and Epidemiology—BIPS, Bremen, Germany

*Corresponding author. Department of Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Arthur-
Scheunert-Allee 114-116, 14558 Nuthetal, Germany. E-mail: khalid.ighal@dife.de

"These authors contributed equally to this work.
Editorial decision 17 May 2018; Accepted 28 May 2018

Abstract

Background: Metabolite networks are suggested to reflect biological pathways in health
and disease. However, it is unknown whether such metabolite networks are reproducible
across different populations. Therefore, the current study aimed to investigate similarity
of metabolite networks in four German population-based studies.

Methods: One hundred serum metabolites were quantified in European Prospective
Investigation into Cancer and Nutrition (EPIC)-Potsdam (n=2458), EPIC-Heidelberg
(n=812), KORA (Cooperative Health Research in the Augsburg Region) (n=3029) and
CARLA (Cardiovascular Disease, Living and Ageing in Halle) (n=1427) with targeted
metabolomics. In a cross-sectional analysis, Gaussian graphical models were used to
construct similar networks of 100 edges each, based on partial correlations of these
metabolites. The four metabolite networks of the top 100 edges were compared based
on (i) common features, i.e. number of common edges, Pearson correlation (r) and ham-
ming distance (h); and (ii) meta-analysis of the four networks.

Results: Among the four networks, 57 common edges and 66 common nodes (metabo-
lites) were identified. Pairwise network comparisons showed moderate to high similarity
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(r=63-0.96, h=7-72), among the networks. Meta-analysis of the networks showed that,
among the 100 edges and 89 nodes of the meta-analytic network, 57 edges and 66
metabolites were present in all the four networks, 58-76 edges and 75-89 nodes were
present in at least three networks, and 63-84 edges and 76-87 edges were present in at
least two networks. The meta-analytic network showed clear grouping of 10 sphingoli-
pids, 8 lyso-phosphatidylcholines, 31 acyl-alkyl-phosphatidylcholines, 30 diacyl-
phosphatidylcholines, 8 amino acids and 2 acylcarnitines.

Conclusions: We found structural similarity in metabolite networks from four large stud-
ies. Using a meta-analytic network, as a new approach for combining metabolite data from
different studies, closely related metabolites could be identified, for some of which the bio-
logical relationships in metabolic pathways have been previously described. They are can-
didates for further investigation to explore their potential role in biological processes.
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pathways

Key Messages

based studies.

* Metabolite networks constructed with Gaussian graphical models showed similar structures across four population-

* We suggest meta-analysis of metabolite networks as a novel approach to identifying biological pathways.
* The identified associations between metabolites in the meta-analytic network, particularly for phospholipids and
amino acids, are candidates for further investigation to explore their role in health and disease.

Introduction

Metabolomic profiling is increasingly used to discover bio-
markers that reflect early perturbations linked to disease
risk or to objectively measure food intake and other envi-
ronmental exposures.'™ Thereby, many novel biomarkers
have been identified that may improve assessment of vari-
ous exposures or predict disease risk.>*® One important
step in the process of biomarker discovery is usually the
replication of results in different study populations to re-
duce the chance of type one error.

High-throughput metabolomics is often analysed using
correlation-based networks to infer biological relationships
in the data.”>® This approach has been successfully applied
in several single studies to identify novel metabolic path-
ways.” ' However, little is known about whether these
metabolite networks can be replicated across different pop-
ulations. So, the question arises as to whether the correla-
tion structure of the identified metabolites is similar across
different studies that include study participants with differ-
ent characteristics (e.g. age and lifestyle). This should be a
prerequisite to replicating metabolomic results in different
populations.

Moreover, metabolic profiles from different studies are
frequently assessed, but meta-analysis of metabolite net-
works has not been conducted in the metabolomics field.
Partial-correlation-based network comparisons and meta-
analysis of such networks can help to identify consistent
relationships between metabolites, which may be further
investigated for their potential role in biological processes.

Probabilistic graphical models such as Gaussian graphi-
cal models (GGMs) are interesting methods proposed for
analysis of metabolomics data.'> A GGM is an undirected
graph that identifies independence between two variables
conditional on all others and has been suggested as an ef-
fective tool to recover metabolic pathways from metabolite
concentrations.'” This approach can be further used to
combine metabolomics data of different studies by meta-
analysing network edges (partial correlations between two
metabolites adjusted for the other metabolites) and con-
structing a meta-analytic metabolite network to represent
the association between metabolites and their underlying
metabolic pathways. This meta-analytic network may
identify metabolites that are linked in certain metabolic
pathways.
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Against this background, the present study aimed to
compare and meta-analyse the metabolite correlation net-
works to assess their stability and identify closely related
metabolites in four large German population studies, in-
cluding the European Prospective Investigation into
Cancer and Nutrition (EPIC)-Potsdam, EPIC-Heidelberg,
KORA (Cooperative Health Research in the Augsburg
Region) and CARLA (Cardiovascular Disease, Living and
Ageing in Halle).

Methods

This study was based on metabolomic measurements of
participants from four German population-based studies
(EPIC-Potsdam, EPIC-Heidelberg, KORA and CARLA).
Ethical approval for all four studies was obtained from rel-
evant ethical-approval committees. Written informed con-
sent was obtained from all participants in the included
studies.

Description of the study populations

EPIC-Potsdam and EPIC-Heidelberg comprise 27 548 and
25 540 study participants, respectively. Study design and
methods in EPIC-Potsdam and EPIC-Heidelberg were simi-
lar and have been described in detail elsewhere.'*'* For
measurements of serum metabolites, a random subcohort
was established in 2006 in EPIC-Potsdam (17 =2483) and
2009 in EPIC-Heidelberg (1 = 843)."> The KORA study is
conducted in Southern Germany'® and included 3044 par-
ticipants, who took part in the survey (KORA F4) from
2006 to 2008. The CARLA study included 1779 partici-
pants with baseline examinations between 2002 and 2006.
Serum metabolites were assessed for 1427 participants.
Details of KORA and CARLA were described
where.'”'® After exclusion of participants with missing

else-

data on any covariate (#=23) or metabolites (7=48),
2458 participants in EPIC-Potsdam, 812 in EPIC-
Heidelberg, 3029 in KORA and 1427 in CARLA were
available for analysis.

Blood-sample collection and assessment of
covariates

Blood samples from all participants were collected at base-
line or follow-up (KORA) using standard protocols as de-
scribed elsewhere. %720 Age, sex, weight and height were
collected at baseline in all studies. Body mass index (BMI)
was estimated as: (weight in kilogrammes)/(height in

metres)>.

Metabolomic profiling

Metabolites were quantified in all four populations in se-
rum blood samples using the AbsoluteIDQ™ p150 and
p150 Kits (Biocrates Life Scienes AG, Innsbruck Austria)
together with FIA- and LC-ESI-MS/MS (flow injection
analysis/liquid chromatography-electrospray ionization-
tandem mass spectrometry) as described in detail by
Romisch-Margl et al®' and Zukunft et al** The
AbsoluteIDQ™ p150 Kit was applied for samples of
EPIC-Potsdam”® and CARLA,** the AbsoluteIlDQ™ p180
Kit for samples of the KORA F4 study” and the
MetaDisIDQ™ Kit for samples of EPIC-Heidelberg.'*~"?
Metabolite measurements of EPIC-Potsdam, KORA and
CARLA samples were performed in the Genome Analysis
Center at the Helmholtz Zentrum Miinchen and for EPIC-
Heidelberg in Leipzig. To ensure comparability, only those
metabolites were included in the analysis, which were
quantified by all three metabolite kits. In addition, metabo-
lites below the limit of detection and those with very high
analytic variance in any of the four studies were excluded,
leaving 100 metabolites for the present analysis. The final
metabolite set contained hexose (sum of six-carbon mono-
saccharides without distinction of isomers), 2 acylcarni-
tines (Cx:y; x =number of carbon atoms, y=number of
double bonds), 10 sphingolipids, 12 amino acids, 35 acyl-
alkyl-, 32 diacyl- and 8 lyso-phosphatidylcholines (PC)s
(Supplementary Table 1, available as Supplementary data
at IJE online).

Statistical analysis

Metabolite concentrations were log-transformed to ap-
proximate normality. Distributions of the metabolite con-
centrations were visually assessed using QQ-Plot and
Histogram, which showed approximately normal distribu-
tion. However, long tails and potential outliers were
detected for some metabolites. QQ-Plots for the top 20
metabolites from the study sample are shown in
Supplementary Figures 1-5, available as Supplementary
data at IJE online. Therefore, a non-parametric approach
was also used to confirm that major findings do not vary
by choice of method. Means, standard deviations and coef-
ficients of variation (CV) were calculated for each metabo-
lite in all studies adjusted for age, sex and BMI. For
comparison of metabolic profiles, each individual study
metabolite network was estimated using the GGM ap-
proach. In the first step, a partial-correlation matrix of the
100 metabolites was estimated for each study sample.
In the second step, the top 100 highly correlated metabolite
pairs (edges) were selected to construct networks in the re-

spective samples. The minimum partial correlation was
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0.19 in the network of Heidelberg, 0.25 in the networks of
Potsdam, 0.24 in the network of KORA and 0.26 in the
network of CARLA. We selected the first 100 edges with
the highest correlation, so that the identified networks are
similar but interpretable, and the correlations are high
enough to have biological relevance, since only highly cor-
related metabolites have been suggested to be biologically
related.”® Identified networks were exported to Cytoscape
for visualization.”” The same analyses were repeated using
Spearman’s rank partial correlation. First, Spearman’s
rank correlation for all the metabolites was estimated and
then the top 100 highly correlated metabolite pairs (edges)
were selected from each sample to construct respective
networks.

To assess the similarity between network structures,
correlations between each pair of networks were estimated
using gcor function from R-package sna.*® For this pur-
pose, the networks (edge lists) were converted into adja-
cency matrices, which in turn were used to estimate
product—-moment correlation. To estimate structural simi-
larity between the four networks, hamming distance was
determined using the same R-package. Hamming distance
is the number of changes required to transform one net-
work into another,?” e.g. if the hamming distance between
two networks X and Y is 1, then one change (i.e. an addi-
tion or deletion of one edge) will result in an identical
structure of the two (X and Y) networks. A lower ham-
ming distance reflects a similarity in network structures.
The hamming distance was estimated by transforming the
networks into adjacency matrices. The adjacency matrices
were then used to estimate the hamming distance with
(code) hdist in sna R-package. For easier comparison, the
numbers of common edges in each combination of the
four metabolite networks were visualized using a Venn
diagram, which was constructed using R-package
VennDiagram.?” Commonality of the four networks was
reflected by visualizing the common edges of the four net-
works estimated by both the Pearson and Spearman partial
correlations. As metabolites in EPIC-Heidelberg were
quantified in a different laboratory, though using a stan-
dardized approach, a second network of common edges
was constructed for EPIC-Potsdam, CARLA and KORA

Table 1. Sample characteristics of the included studies®

only. For meta-analysis of the four networks, a random-
effect meta-analysis of partial-correlation coefficients was
conducted using all common edges. For meta-analysis, par-
tial-correlation coefficients were transformed to fisher
Z-scores and back-transformed after analysis. The correla-
tion coefficients from meta-analysis were used to construct
a meta-analytic metabolite network by selecting 100 highly
correlated metabolite pairs, as was done for the individual
networks. Due to high heterogeneity among studies, a
combined metabolite network of all studies was con-
structed and common edges of all the metabolites observed
in each study were visualized over the meta-analytic net-
work in Cyroscape. Network analyses were adjusted for
age, sex and BMI, which are related to metabolite
differences.

Results

EPIC-Potsdam and EPIC-Heidelberg study populations
were similar with respect to age, sex and BMI, whereas the
study populations in KORA and CARLA were older and
had a lower percentage of women and a higher BMI com-
pared with the two EPIC studies (Table 1).

Considerable differences were found for metabolite
concentrations (mean and CV) between the four studies
(Supplementary Table 1, available as Supplementary data
at IJE online). Overall, 29 metabolites in Potsdam,
50 metabolites in Heidelberg, 20 metabolites in KORA
and 59 metabolites in CARLA showed high variation
(>30% CV) in concentration.

The metabolite networks of the four studies are shown
in Supplementary Figures 5-8, available as Supplementary
data at IJE online. All networks identified clusters of
sphingolipids, lyso-PCs, diacyl-PCs and acyl-alkyl-PCs, al-
beit with large variation in network topologies, i.e. connec-
tion between metabolites. Amino acids showed the highest
variation in network connectivity, although with consistent
clustering of tryptophan, tyrosine and phenylalanine in all
networks. Hexoses (represented as a single metabolite)
were connected with amino acids valine and tryptophan
only in CARLA. Two acylcarnitines were connected as a
pair in all the studies except in EPIC-Potsdam. The highest

Characteristics” EPIC-Potsdam EPIC-Heidelberg KORA CARLA
(n=2458) (n=23812) (n=3029) (n=1427)
Age (years) 50.3 (9.0) 50.7 (7.9) 56 (13.3) 63.3(9.7)
Sex (women %) 61.2 54.9 S51.5 44.9
BMI (kg/m?) 26.1(4.3) 25.6 (4.2) 27.6 (4.8) 28.1 (4.5)

2Shown are mean values and standard deviations.

"Blood samples from EPIC-Potsdam, KORA and CARLA were analysed in the same laboratory. Samples from KORA were analysed using a different kit.
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variation in metabolites topology was observed in the
network of EPIC-Heidelberg as compared with other
networks (Figure 1a and Table 2). Pairwise comparison of
the networks showed the greatest similarity represented by
the lowest hamming distance and the highest correlation
between EPIC-Potsdam and KORA. EPIC-Heidelberg’s
metabolite network was the most dissimilar from all other

(@)
CARLA KORA
Heidelberg ~, Potsdam
e
’

[

i

\

1 100

networks, as it showed a high hamming distance and lower
correlation (Figure 1b).

Overlap of the common edges among the different com-
binations of the four studies is shown in Figure 1b. The
highest overlap of the edges was observed between EPIC-
Potsdam and CARLA. The metabolite network of EPIC-
Heidelberg showed the smallest overlap of edges with the

(b)

CARLA

KORA

Potsdam

Heidelberg

Figure 1. (a) Edges overlap among four studies included in the study. Shown are the numbers of edges. (b) Pearson’s correlation and hamming dis-
tance between metabolite networks of the studies included in the study. The upper triangle shows the hamming distance and the lower triangle
shows correlation among the networks. The lower values of the hamming distance show greater similarity whereas the lower value of correlation

shows less similarity between the networks.

Table 2. Number of connected nodes (metabolites) in individual and combined metabolite networks in the four studies

Name of study Metabolites® (number)

Hexoses AC AA LysoPC DiA-PC AA-PC SL Total

(1) 2) (12) (8) (32) (35) (10) (100)
Heidelberg (H) 00 02 06 08 30 29 10 85
Potsdam (P) 01 02 09 08 30 32 10 92
CARLA (C) 00 02 06 08 30 33 10 89
KORA (K) 00 00 08 08 29 31 10 86
HP 00 02 05 08 30 27 10 82
HC 00 02 03 08 30 27 10 80
HK 00 00 03 08 29 26 10 76
PK 00 00 07 08 29 30 10 84
PC 00 02 06 08 30 31 10 87
CK 00 00 05 08 29 31 10 83
HPK 00 00 03 08 29 25 10 75
HPC 00 02 03 08 30 26 10 79
HCK 00 00 02 08 29 26 10 75
PCK 00 00 05 08 29 30 10 82
HPCK (Common network) 00 00 02 08 29 17 10 66
Meta-analytic network 00 02 08 08 30 31 10 89

?AC, acylcarnitines; AA, amino acids; LysoPC, lyso-phosphatidylcholines, DiA-PC, diacyl-phosphatidylcholines; AA-PC, acyl-alkyl- phosphatidylcholines;

SL, sphingolipids.
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Figure 2. Common edges of the serum metabolite network of the four studies: EPIC-Heidelberg, EPIC-Potsdam, CARLA and KORA. Nodes represent
metabolites and edges are partial correlations between two metabolites adjusted for the other metabolites as well as age, sex and BMI. Continuous
black lines represent positive and dashed lines represent inverse partial correlations. The thicknesses of the edges are proportional to the strength of
the correlations. Nodes with different border colours represent different metabolite classes: black: amino acids; purple: lyso-phosphatidylcholines;
sky-blue: sphingolipids; green: diacyl-phosphatidylcholines; red: acyl-alkyl-phosphatidylcholines.

other networks. Overall, 66 edges were consistently detected
in all four networks, interlinking 80 metabolites (Figure 2).
The other 20 out of 100 metabolites were unconnected and
are not shown. Lyso-PCs, diacyl-PCs and sphingolipids con-
sistently grouped together across all studies (Supplementary
Figures 1-4, available as Supplementary data at IJE online).
Among the four networks, in EPIC-Potsdam (nodes=91),
CARLA (nodes=95) and KORA (nodes =96), a relatively
large number of metabolites were integrated in the networks,
whereas 20 metabolites (mainly amino acids and acyl-alkyl
PCs) remained unconnected in EPIC-Heidelberg (Table 2).

A structural comparison of the four networks showed
57 common edges and 66 commonly connected nodes
(Table 3), which are shown in a common network
(Figure 2). The common network showed smaller cluster-
ing of similar classes of metabolites (Figure 2). Notably,
sphingolipids, lyso-PCs and subgroups of acyl-alkyl-PCs
and tryptophan, tyrosine and phenylalanine were clustered
together. Due to differences between EPIC-Heidelberg and
the other studies, we also constructed a common network
of EPIC-Potsdam, CARLA and KORA, which showed

higher similarity of the metabolite network structures
among the three studies (Figure 3).

The meta-analytic network of the partial-correlation
coefficients represented by the 100 highly correlated me-
tabolite pairs (edges) across the four studies is shown in
Figure 4. Meta-analysis of the networks revealed that,
among the 100 edges connecting 89 nodes of the meta-
analytic network, 57 edges connecting 66 metabolites were
present in all the four networks, 58-76 edges connecting
75-89 nodes were present in at least three networks and
63-84 edges connecting 76—-87 nodes were present in at
least two networks. The meta-analytic network showed
clear clusters of the paired acylcarnitines, sphingolipids,
lyso-PCs and three clusters of amino acids. Large but dif-
ferently connected clusters of acyl-alkyl-PCs and diacyl-
PCs formed the dominant structure of the networks.
Comparison of this network with the common network of
four studies showed dissimilarity in a number of edges
(Figure 5). However, it was very similar to the combined
network of Potsdam, KORA and CARLA (Supplementary
Figure 9, available as Supplementary data at IJE online).
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Table 3. Number of connected nodes (metabolites) and edges in individual and common metabolite networks in the four

studies
Name of study Metabolites® (number)
Hexoses AC AA LysoPC DiA-PC AA-PC SL Total No of Edges
(1) (2) (12) (8) (32) (35) (10) (100) (100)
Pearson r-based networks
Heidelberg (H) 00 02 06 08 30 29 10 85 100
Potsdam (P) 00 00 08 08 29 31 10 86 100
CARLA (C) 01 02 09 08 30 32 10 92 100
KORA (K) 00 02 06 08 30 33 10 89 100
Common network 00 00 02 08 29 17 10 66 57
Spearman’s rank-based networks
Heidelberg (H) 00 02 07 08 30 29 10 86 100
Potsdam (P) 00 00 08 08 30 31 10 87 100
CARLA (C) 01 02 08 08 30 32 10 91 100
KORA (K) 00 02 0S 08 30 32 10 87 100
Common network 00 00 00 07 26 20 10 65 56

?AC, acylcarnitines; AA, amino acids; LysoPC, lyso-phosphatidylcholines, DiA-PC, diacyl-phosphatidylcholines; AA-PC, acyl-alkyl- phosphatidylcholines;
SL, sphingolipids.
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Figure 3. Common edges of the serum metabolite network of the three studies: EPIC-Potsdam, CARLA and KORA. Nodes represent metabolites and
edges are partial correlations between two metabolites adjusted for the other metabolites as well as age, sex and BMI. Continuous black lines repre-
sent positive and dashed lines represent inverse partial correlations. The thicknesses of the edges are proportional to the strength of the correlations.
Nodes with different border colours represent different metabolite classes: black: amino acids; purple: lyso-phosphatidylcholines; sky-blue: sphingoli-
pids; green: diacyl-phosphatidylcholines; red: acyl-alkyl-phosphatidylcholines.
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Figure 4. Meta-analytic serum metabolite network of the four studies: EPIC-Heidelberg, EPIC-Potsdam, CARLA and KORA. Nodes represent metabo-
lites and edges are partial correlations between two metabolites adjusted for the other metabolites as well as age, sex and BMI. Continuous black
lines represent positive and dashed lines represent inverse partial correlations. The thicknesses of the edges are proportional to the strength of the
correlations. Nodes with different border colours represent different metabolite classes: yellow: acylcarnitines; black: amino acids; purple: lyso-phos-
phatidylcholines; sky-blue: sphingolipids; green: diacyl-phosphatidylcholines; red: acyl-alkyl-phosphatidylcholines.

The networks constructed using Spearman’s rank partial
correlations are shown in Supplementary Figures 10-14,
available as Supplementary data at IJE online. All the indi-
vidual networks and common networks showed high simi-
larity to the corresponding networks constructed using
Pearson’s partial correlations (Table 3).

Discussion

In this study, we generated and compared the metabolite
networks of four German population-based studies.
Moreover, we applied a novel meta-analytic approach to
combine metabolite networks to identify potentially stable
correlation structures across all studies. Comparison of
metabolite networks revealed overall considerable hetero-
geneity in network topologies. However, specific metabo-
lite subgroups showed high consistency in the networks.
Consistent network structures were detected for sphingoli-
pids, lyso-PCs, acyl-alkyl-PCs and diacyl-PCs and among
the amino acids tryptophan, tyrosine and phenylalanine.
The meta-analytic network also showed clear grouping of
the metabolite classes and was, in addition, sensitive for

further plausible biological links. Consistent links between
metabolites from the same group may reflect the same un-
derlying metabolic pathways as the common determinants
of the correlation structure across the study populations.

In the identified common as well as meta-analytic net-
works, we observed connections of sphingolipids with PCs,
which could be related to the biosynthesis pathway of the
sphingolipids. The synthesis of sphingolipids require enzy-
matic transfer of phosphocholines from PCs to ceramide,
which in turn is converted to sphingolipids.*” The linkage
between these two classes could also be due to limitation
of the measurement kit owing to possible interference in
the measurement of different metabolites.>! In addition,
we observed a consistent connection between the aromatic
amino acids phenylalanine, tryptophan and tyrosine.
Phenylalanine is a substrate for tyrosine biosynthesis®”
and, with tryptophan, the two are also precursors of cate-
cholamines.?? In these networks, we also observed that the
majority of stable edges connected metabolites that are
known to be directly related by a single metabolic reaction
step. This supports the idea that the reproducible correla-
tion structure of metabolites likely reflects linkage in
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Figure 5. Comparative network of the common network and the meta-analytic network of the four studies: EPIC-Heidelberg, EPIC-Potsdam, KORA
and CARLA. Nodes represent metabolites and edges are partial correlations between two metabolites adjusted for the other metabolites as well as
age, sex and BMI. Black edge colours represent common edges in the common network and the meta-analytic network, whereas the grey colour rep-
resents edges present only in the meta-analytic network. Similarly, the white colour of nodes represents common nodes in the compared networks,
whereas the red colour represents nodes present only in the meta-analytic network. Nodes with different border colours represent different metabo-
lite classes: yellow: acylcarnitines; black: amino acids; purple: lyso-phosphatidylcholines; sky-blue: sphingolipids; green: diacyl-phosphatidylcholines;

red: acyl-alkyl-phosphatidylcholines.

metabolic pathways.>* Our results are supported by an ear-
lier KORA study which showed that the GGM has high
sensitivity and specificity in identifying reactions that are
one step apart.'? The same study, which is also included in
this analysis, likewise reported that reactions that were
two steps apart were reflected by negative correlations in
the network. This was also observed in our study, e.g.
SM.C16.1 and SM.C18.0 were negatively correlated in the
common and meta-analysed networks.

The compared networks also showed a clear separation
of amino acids and acylcarnitines and separate clustering
of sphingolipids and diacyl- and acyl-alkyl-PCs. These
findings are in agreement with earlier results observed in
KORA and EPIC-Potsdam.* The modular structure of the
metabolites may reflect metabolic pathways including bio-
synthesis, degradation and metabolism and interaction be-
tween the different classes of metabolites. Such biological
interrelations were shown to be detectable in metabolo-
mics data in observational studies, which could be repro-
different For example,

duced across populations.'?

PC.ae.C32: 1 and PC.ae.C32: 2 reflect Steaoryl-CoA desa-
turasel Steaoryl-CoA desaturase 5 desaturation and a pair
of PC.aa.C38: 5§ and PC.aa.C40: 5 reflects various
fatty acid elongations.’ Likewise, correlation between
phenylalanine, tryptophan and tyrosine denotes amino-
acid-associated pathways.>® Some of the consistent rela-
tionships between metabolites identified in the networks
might hint towards so far unknown links. Such metabolites
might be better candidates for further investigation to iden-
tify their role on the metabolic pathways.

In addition, for comparison of the four metabolite net-
works, we also constructed a meta-analytic metabolite net-
work that shared higher similarity with the common
networks from the three studies including EPIC-Potsdam,
KORA and CARLA and less similarity with common net-
works including EPIC-Heidelberg. The heterogeneity
among the identified networks may partly be attributed to
the differences in health/disease status of the four popula-
tions, differences in diet, fasting status, medication/supple-
ment use or lifestyle factors. Technical differences related
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to metabolite-concentration measurements in different lab-
oratories or use of different kits could also have partly
resulted in the observed differences. Indeed, it is already
known that biochemical assay assessments, sample han-
dling and other factors such as storage etc. are some of the
reasons affecting reliability and are often addressed in
3739 In addition, EPIC-
Potsdam and EPIC-Heidelberg had similar study protocols,

metabolomic measurements.

sample preparation, storage conditions and relatively simi-
lar population characteristics. However, large differences
in the networks of the two populations were observed.
Therefore, the difference between EPIC-Heidelberg and
the other studies may partly be related to smaller sample
size and technical issues such as metabolomic measurement
in a different laboratory with different kits.

We also observed differences between the common net-
work and the meta-analytic network. However, it must be
noted that these differences are not unexpected, as the two
were created using two different approaches, i.e. (i) by
combining the common edges in all the networks in one
network and (ii) meta-analysis of the four networks. It is
important to underline that the meta-analytic network was
created using an inverse variance approach, which gives
higher weight to the studies with large sample sizes, i.e.
KORA, EPIC-Potsdam and CARLA, respectively. This had
a large influence on the effect size (partial correlations).
Consequently, it resulted in a network that is more similar
to the common network of the three larger studies.
Nevertheless, the random meta-analytic approach is ad-
vantageous over the approach that was based on simple
structural similarity, as the former takes both within- and
between-studies variation into account. It should also be
noted that many of the additional edges that were detected
by the meta-analytic approach again corresponded to
known metabolic reaction steps.

A major strength of this study was that, for the first
time, metabolite networks between several large
population-based studies were compared using an innova-
tive meta-analytic networks approach. Thereby, the meta-
analytic network was based on metabolomic measure-
ments of almost 8000 participants, which represents a very
large sample size for the application of these sophisticated
metabolomic technologies. Metabolites were measured in
different population samples, which might have slightly
different environmental exposures despite living in the
same country. However, the aim of this study was to see
how similar these metabolite networks are in free-living
populations with less restricted conditions. This approach
was also chosen to better grasp the feasibility of replicating
metabolomic results in different populations, which is of-
ten demanded when validating metabolomics data. In ad-
dition, relatively similar analytic methods were used to

quantify the concentration of the metabolites, which
makes the data more comparable than data from other
platforms. Moreover, we reduced technical variation by in-
cluding only those metabolites that were above the detec-
tion level and showed good reliability in any of the four
studies.”’

This study also had certain limitations. We found differ-
ences in mean metabolite concentrations between the
cohorts, which are attributable to technical aspects (e.g.
different laboratories and kits, sample processing and stor-
age, etc.) as well as biological aspects (e.g. cohort differen-
ces such as age, sex, BMI, etc.). CVs of metabolite
measurements were similar between the cohorts and com-
parable to other metabolomic studies that measured the
same metabolites.”>*° However, a general limitation of
metabolomic studies is that many metabolites are mea-
sured simultaneously and CVs of metabolites are usually
higher than CVs of single biomarkers. Metabolite measure-
ments were assessed in two different laboratories and using
different kits, although the kits were from the same com-
pany. Further, metabolites were identified using a targeted
approach, which has limited coverage. It might have
resulted in missing many metabolites that are sharing simi-
lar metabolic pathways with the investigated metabolites.
However, to conduct a similar study with untargeted
metabolomic measurements may be challenging, as differ-
ent metabolites may be detected in different populations
and a number of metabolites will remain unidentified,
which may complicate comparison across several studies.
Another limitation of our study is that only one metabolite
measurement per sample was available for the current
study, so metabolite reliability could not be tested.
However, two earlier EPIC studies showed moderate to
good reliability of included metabolites over 4 months*?
and over 2 years.*” In addition, participants with prevalent
medical conditions were not excluded, which might have
affected the metabolomics profiles. Similarly, we did not
account for fasting state, as, due to logistic reasons in large
studies, the majority were non-fasting samples, which may
affect metabolite reliability.*°

The existing methods of network construction employ
either regression-based approaches or some thresholding
criteria for edge inclusions in the respective networks.
Nevertheless, using these approaches, the identified net-
works in different sample could be different, as the correla-
tion between variables may vary due to a number of
factors such as sample size, etc. Therefore, in order to con-
struct networks of similar sizes for comparison in our
study, we retained the 100 edges with the highest correla-
tion in all four cohorts. As we do not perform any model
selection, this method may result in inclusion of edges that
may not reflect important biological relationships or
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exclusion of edges that could be important in some biologi-
cal pathways. It is also important to note that GGM works
under the assumption of the Gaussian distribution of the
study variables. Therefore, we compared the QQ-plots
against normal distribution to ensure log-normality of the
metabolites concentrations. We observed some deviations
in the tails of several metabolites. Nevertheless, the results
were comparable with the non-parametric approach in
identifying highly correlated metabolites.

In summary, we observed considerable similarities in
metabolite sub-networks of sphingolipids, lyso-PCs, acyl-
alkyl-PCs and diacyl-PCs and amino acids across the four
populations, although large variations were observed in
overall networks. Variation may partly be explained by
technical issues, such as different laboratories and mea-
surement kits. These technical difficulties should be in-
vestigated further and also be taken into account when
replicating metabolomic results in different population-
based studies. Stable links observed within groups of bio-
chemically related metabolites may likely reflect close
interdependency of the connected metabolites in meta-
bolic pathways. Using the meta-analytic network as a
new approach for combining metabolic data from differ-
ent studies, closely related metabolites could be identi-
fied, for some of which the biological relationships in
metabolic pathways had been previously described.
The metabolites with observed relationships in the meta-
analytic network may be candidates for further investiga-
tion to explore their potential role in biological
processes.

Supplementary data

Supplementary data are available at IJE online.
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