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Direct lineage reprogramming is 


an emerging strategy for 

harnessing the cellular plasticity of differentiated cells for 
lineage conversion into desired target cell types for disease 

modeling and tissue repair1–4. While direct lineage reprogramming 
from starting to target-cell type classically occurs without cell 
division, thereby sharply contrasting with reprogramming toward 
induced pluripotency5, little is known about the inter mediate 
states that bridge the trajectory between start and end points.  
Two models have been proposed, according to which direct repro-
gramming is mediated either through direct conversion between 
fully differentiated states or through reversal to a developmentally 
immature state6. Furthermore, reprogramming efficiency and final 
differentiation outcomes are highly cellular-context-dependent, 
for which the underlying reasons are only incompletely under-
stood7,8. Analyses of the transcriptome alterations induced by the 
reprogramming factors have yielded fundamental insights into the 
molecular mechanisms of iN conversion9–12. For instance, a single 
factor, Ascl1, can reprogram mouse astrocytes into iNs with high 
efficiency13, while the same factor induces a muscle cell-like fate in 
mouse embryonic fibroblasts (MEF) alongside neuronal fates11,14. 
Efficient reprogramming of MEFs into iNs requires co-expression 
of additional factors (for example, Brn2, Ascl1 and Myt1l, col-
lectively referred to as BAM)9,11,12,15. Moreover, Ascl1 induces a 
GABAergic neuron identity in mouse astrocytes10,13, while BAM-
transduced fibroblasts predominantly adopt a glutamatergic pheno-
type15, raising questions of how 






the respective reprogramming 

Q1

Q2 Q3

trajectories translate into distinct iN transmitter and subtype 
identities.

In the present study, by analyzing transcriptomes at population 
and single cell level, we aimed to reconstruct the trajectories under-
lying direct lineage conversion of adult human brain pericytes into 
iNs by forced expression of Ascl1 and Sox2 (AS)16. This allowed 
us to scrutinize the contribution of the starting cell population's  
heterogeneity to the variability in reprogramming success. By iden-
tifying cells of distinct reprogramming competence, we were able 
to reconstruct a trajectory of productive AS-mediated iN genera-
tion, allowing us to uncover intermediate states during successful 
conversion. Unexpectedly, we found that despite the absence of cell 
division, cells in the productive trajectory passed through a neural 
stem cell-like state. Transiently induced genes, many of which are 
core components of signaling pathways, typified this intermediate 
state, and interference with these signaling pathways demonstrated 
their functional importance for the reprogramming process. Finally, 
the productive reprogramming trajectory revealed an unexpected 
point of bifurcation into lineages whose transcriptomes were domi-
nated by transcription factor families involved in the specification 
of GABAergic and glutamatergic subclasses of forebrain neurons.

Results
Ascl1 and Sox2 synergism in inducing neuronal gene expression 
in pericytes. We have recently shown that adult human brain peri-
cytes can be reprogrammed into iNs via forced expression of the 
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transcription factors Ascl1 and Sox2, and time-lapse imaging showed 
that this conversion occurs in the absence of cell division, qualifying 
it as direct lineage reprogramming16. Given that adult human brain 
pericyte reprogramming into functional iNs requires co-expression 
of Sox2 alongside Ascl116, we first addressed the contribution of 
each factor individually or in combination with the gene expression 
programs underlying pericyte-to-neuron conversion (Fig. 1a,b). We 
performed RNA-seq of early-passage cultured human brain peri-
cytes, obtained from three different adult donors and transduced 
with retroviruses encoding a reporter for control, Ascl1, Sox2, or AS 
at early stages (2 d postinfection (dpi) and 7 dpi) of reprogramming 

(Fig. 1a). Unexpectedly, Sox2 only induced minor changes in gene 
expression, at both 2 and 7 dpi (Fig. 1c, Supplementary Fig. 1a,e, 
and Supplementary Table 1). In contrast, Ascl1 and AS substantially 
altered gene expression at both stages (Fig. 1c and Supplementary 
Fig. 1a,e,f). Notably, Ascl1 and AS changed the expression of dis-
tinct sets of genes. We noticed that several of the Ascl1-only altered 
genes are expressed in cells of the mesodermal lineage, indicative  
of a failure to cross the lineage barrier toward neurogenesis. In 
sharp contrast, AS resulted in significant induction of genes 
related to neurogenesis (Fig. 1d, and Supplementary Fig. 1e,f, and 
Supplementary Table  1). Moreover, we detected upregulation of 
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Fig. 1 | Ascl1–Sox2 synergism is required for pericyte-to-iN reprogramming. a, Schematic of experiments in this figure. Cells expressing Ascl1 and/
or Sox2 are fluorescently labeled and isolated by fluorescence-activated cell-sorting (FACS) for bulk and scRNA-seq analyses at indicated timepoints 



following transduction. b, Representative micrographs of cultured human pericytes expressing pericyte markers PDGFRB and SMA, before (left) and after 
transformation (right) into TUBB3+ and GABA+ iNs by overexpressing AS at 46 dpi (n >  30). Nuclei are stained with DAPI. Scale bar, 50 µ m.  
c, Bulk RNA-seq with pericytes derived from three individual donors was performed at 2 and 7 dpi with Ascl1-only, Sox2-only, or AS. Bar graph shows the 
number of differentially expressed (DE) genes (adjusted P value (Padj) <  0.01; calculated according to Benjamini–Hochberg) in each condition compared to 
pericytes transduced with a control vector. The Euler diagram shows the overlap of the DE genes at 7 dpi. Note that the majority of DE genes results  
from AS synergism. d, Heatmaps show normalized expression (z-score) of representative DE genes highlighting the induction of mesodermal, 
neurogenesis-related, and GABAergic signature genes at both 2 and 7 dpi. e, scRNA-seq was performed at 2 and 7 dpi on cells transduced with Ascl1-only 
(n = 82 cells at 2 dpi and 64 cells at 7 dpi) and AS (n = 86 cells at 2 dpi and 48 cells at 7 dpi). Principal component analysis (PCA; calculated on a total of 
280 cells) followed by t-SNE shows that the pericyte signature is diminished in many 7-dpi Ascl1-only and strongly diminished in the majority of 7-dpi AS 
cells, concomitant with the acquisition of a mesoderm and GABAergic neuron (iGN) signature in Ascl1-only and AS-cells, respectively. Signatures were 
calculated by summing the expression of the fate-determinants highlighted in d (Supplementary Table 5). f, The iGN signature is plotted for all Ascl1-only 
and AS cells relative to the pericyte signature.

Q4
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several transcription factors and noncoding RNAs playing key roles 
in forebrain GABAergic neurogenesis17,18 (Fig. 1d, Supplementary 
Fig. 1e,f, and Supplementary Tables 1 and 2). Yet we also observed 
a significant increase in NEUROG2 expression (Fig. 1d), which is 
associated with diverse excitatory neuron identities.

Comparison of the genes upregulated by Ascl1-only or by AS 
with those transactivated by Ascl1 in mouse neural stem cells19 
revealed a progressive induction of direct Ascl1 neural stem cell 
target genes between 2 and 7 dpi (Supplementary Fig.  1b and 
Supplementary Table 3). However, many of the direct Ascl1 neural 
stem cell target genes became induced only upon co-expression of 
Sox2 (Supplementary Fig.  1c,d), indicating that the proposed on-
target pioneer factor activity of Ascl19,19 is highly context-dependent.

To further dissect the differences in the early gene expression 
programs induced by Ascl1 or AS, we measured 280 single-cell 
transcriptomes of Ascl1- (n = 146) and AS-expressing (n = 134) 
cells by single-cell RNA-seq at 2 and 7 dpi. Principal component 
analysis followed by t-stochastic neighbor embedding (t-SNE) of 
single-cell transcriptomes revealed an early and progressive separa-
tion of Ascl1-only and AS-expressing cells (Fig. 1e). Pericyte iden-
tity genes (for example, PDGFRB, COL1A1, and CAV1) became 
downregulated in Ascl1- and AS-expressing cells (Supplementary 
Fig. 1g), but only the latter acquired a GABAergic neuron fate sig-
nature (DLX1/2, DLX5/6, SATB1, etc.; Fig. 1e and Supplementary 
Fig. 1h). In agreement with our bulk RNA-seq data and published 
data from MEF-to-neuron reprogramming11, Ascl1-expressing cells 
induced myocyte differentiation genes (for example, MUSTN1; 
Supplementary Fig. 1h). Occasionally, individual AS cell transcrip-
tomes clustered with those of Ascl1-only cells, suggesting failed AS 
synergism as a potential mechanism underlying reprogramming 
failure (Fig.  1f). Overall, these data demonstrate that Ascl1 alone 
is unable to induce a neuronal program in adult human brain peri-
cytes but requires synergism with Sox2.

Pericyte heterogeneity and reprogramming competence. 
To define the competence of adult human brain pericytes for 
AS-induced reprogramming, we next compared the transcrip-
tomes of control pericytes with those of AS-transduced cells at 
early and later stages of reprogramming. To our surprise, t-SNE 
analysis revealed that control cells fell into two discernible clusters 
(Fig. 2a,b and Supplementary Fig. 2a,b), here referred to as group 
1 and group 2 pericytes, with differentially enriched gene ontology 
terms (Supplementary Fig. 2c and Supplementary Table 4). While 
both groups highly expressed several classical pericyte genes (i.e., 
PDGFRB, CAV1, DCN, etc.; Fig.  2a and Supplementary Fig.  2b), 
other pericyte-associated genes such as ANGPT1, APOE, and LEPR 
were differentially expressed (Supplementary Fig.  2a,b), and such 
differential expression could be confirmed on the protein level 
(Fig.  2c,f and Supplementary Fig.  2d). Notably, transcriptomes of 
AS-transduced cells exhibited distinct degrees of relatedness to the 
two pericyte starting populations, with cells undergoing successful 
reprogramming being more similar to group 2 pericytes (Fig. 2d,e). 
These data strongly suggest that the two pericyte groups differed 
markedly in their response to AS. In fact, t-SNE analysis indicated 
that productive reprogramming toward neurogenesis originated 
specifically from group 2 pericytes (Fig. 2a,e). In contrast, group 1 
pericytes appeared to give rise to a distinct population positive for 
the hypothalamic neuronal marker PMCH but lacking expression 
of other neuronal genes, which thus precluded identifying these 
cells as hypothalamic neurons (Fig.  2a). Besides AS-transduced 
cells clustering differentially with group 1 and group 2 pericytes, 
we observed two smaller clusters of AS-transduced cells enriched in 
genes involved in cell-cycle progression (for example, MKI67) and 
potentially an alternative fate marked by the expression of POU2F3. 
To independently corroborate differential neurogenic competence 
of group 1 and group 2 pericytes, we used fluorescence-activated 

cell sorting to purify these populations via antibodies specific 
to the leptin receptor, encoded by the LEPR gene (Fig.  2f,g and 
Supplementary Fig.  2a,b). Consistent with the observation that  
iNs may originate from group 2 pericytes, we found that leptin-
receptor-negative cells were more prone to undergo AS-induced 
neurogenesis than leptin-receptor-positive cells (Fig.  2h). These 
data provide experimental evidence that the two pericyte starter 
populations display distinct degrees of reprogramming competence.

Transient activation of a neural stem cell-like program. We next 
reconstructed the transcriptome trajectory of reprogramming-com-
petent pericytes into iNs by pseudotemporal ordering20 (Fig.  3a). 
Genes that mark pericyte identity, such as PDGFRB, CAV1, and 
CFH, became gradually downregulated. Conversely, genes asso-
ciated with the acquisition of a neuronal fate were progressively 
upregulated with more linear (for example, CHD7 and DLX5) or 
nonlinear dynamics (for example, SNAP25; Fig.  3b,c), possibly 
reflecting distinct gene expression waves during early and later 
phases of neuronal differentiation. Notably, we identified a set of 
genes that became upregulated early during the reprogramming 
process, but then declined again as neuronal differentiation pro-
gressed (Fig. 3b,c). We refer to these genes as ‘switch genes’. These 
include genes involved in the regulation of cell signaling such as 
NOG, LEFTY2, DKK1, and NOTCH2, suggesting that modulation 
of signaling pathways is important during early phases of produc-
tive reprogramming (see below). The conspicuous dynamics of the 
regulation of these genes urged us to interrogate their expression 
during mouse embryonic development. Notably, the switch genes 
were markedly enriched in the germinal zones of the developing 
CNS containing the neural stem cells (Fig. 3d and Supplementary 
Fig.  3a). This strongly suggests that cells undergoing productive 
reprogramming by AS transiently acquire a neural stem cell-like 
state. This was further corroborated when analyzing the expression 
levels of these genes in human fetal brain tissue21, where higher lev-
els of expression were found in distinct human neural stem cells 
(i.e., apical and basal radial glia) as compared to neurons (Fig. 3e). 
Consistent with the upregulation of the switch genes during suc-
cessful reprogramming, mapping the switch gene signature onto 
the t-SNE plot shown in Fig. 2a revealed its specific occurrence in 
the cell population that connects productive group 2 pericytes with 
iNs (Fig. 3f). In contrast, the switch gene signature was absent from 
transcriptomes of AS-transduced cells in the immediate neighbor-
hood of group 1 pericytes (Fig. 3f), indicating that acquisition of a 
neural stem cell like-state is critical for AS-mediated pericyte-to-iN 
reprogramming. Of note, mapping the same switch gene signature 
onto previously published single-cell transcriptomes undergoing 
MEF-to-iN reprogramming11 revealed an unexpectedly high base 
level of switch gene expression in the MEF starting population, 
and its expression did not increase at any stage along the MEF-
to-neuron axis but was found to be strongly decreased in neurons 
(Supplementary Fig. 3b). These data are indicative of fundamental 
differences in the reprogramming trajectories of these two distinct 
reprogramming pathways. Notably, time-lapse imaging of pericytes 
during AS reprogramming revealed the occurrence of different  
cellular morphologies: while at early phases of reprogramming, 
cells displayed a flat, fibroblast-like morphology, at subsequent 
phases, processes undergoing dynamic turnover akin to multipolar  
progenitors appeared (Fig. 3g and Supplementary Video 1). Finally, 
at the end of the reprogramming process, neuron-like cells dramati-
cally decreased their motility and protruded processes of increased 
stability. Thus, the cellular behavior and morphology are consistent 
with the notion of distinct cellular states underlying the reprogram-
ming of pericytes into iNs.

Modulation of signaling pathways. The conspicuous regulation 
of several components of signaling pathways known to play key 
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Fig. 2 | Pericyte heterogeneity correlates with distinct reprogramming competence. a, PCA (total of 419 cells) followed by t-SNE reveals heterogeneity 
during iN reprogramming, with genes marking distinct clusters colored on the adjacent t-SNE plots. Control-transduced pericytes (green) segregate into 
two distinct clusters. One cluster links to cells that express iN fate determinants (productive), whereas the other cluster is unlinked to iN reprogramming 
(unproductive). Cells expressing MKI67 and other hallmarks of cycling cells are observed, as well as a group of cells expressing POU2F3. b, Heatmap 
shows the expression of genes that correlate with PC1 from PCA on control pericytes only. Hierarchical clustering reveals two distinct groups of 
pericytes with selected genes indicated below the heatmap. c, Left: micrographs showing cultured human brain pericytes stained against the pan-
pericyte marker PDGFRB. Right: the same field of view of cultured human brain pericytes stained against pericyte group 1 marker ITGA6 and pericyte 
group 2 marker CD4. Nuclei are stained with DAPI (n =  3 individual pericyte donors; two independent experiments). Scale bar, 50 µ m. d, Cells from the 
productive reprogramming cluster in a have a higher similarity to group 2 pericytes, while cells from the unproductive reprogramming clusters have a 
higher similarity to group 1 pericytes. e, Lineage network based on pairwise correlations between cells suggests that group 2 pericytes (lighter green 
population) are more competent to contribute to productive iN reprogramming. f, Top: violin blots show the density distribution of RNA expression of 
LEPR in pericyte groups 1 (31 cells) and 2 (44 cells). Bottom: representative flow cytometry plots show LEPR expression in cultured human brain pericytes 
(four independent experiments). g, Human brain pericytes were sorted based on LEPR expression (group 1 marker), plated, and transduced with AS to 
induce lineage conversion. Micrographs show AS-transduced pericytes at 35 dpi, with inset showing higher magnification of reprogrammed pericytes that 
acquired neuronal morphology and GABA immunoreactivity (n =  4). Nuclei are stained with DAPI. Scale bars, 50 µ m. h, Quantification of reprogramming 
efficiency (dots represent 




independent individual experiments; n =  4; data are represented as boxplots with whiskers; two-tailed unpaired Student's t test; 

***P =  0.000593) reveals that the LEPR– pericyte subpopulation is more competent to iN reprograming using AS, confirming predictions



 from  

scRNA-seq. Boxplots show median, quartiles (box), and range (whiskers).

Q5
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roles during neural induction and neural stem cell maintenance22, 
such as the BMP inhibitor NOG, the ACTIVIN/NODAL inhibi-
tor LEFTY2, and NOTCH2 and its downstream targets HEY1 
and ID1, prompted us to investigate whether these pathways are 
of functional importance for successful reprogramming. To test 
the importance of modulation of NODAL and BMP signaling, 
we treated pericytes during early phases of reprogramming with 
recombinant NODAL (1 µ g/mL) and BMP4 (30 ng/mL; Fig. 4a,b). 
These treatments resulted in a significant reduction of reprogram-
ming as determined by the number of TUBB3+ cells amongst 
AS-transduced cells (Fig.  4c). Conversely, inhibition of BMP, 
ACTIVIN/NODAL, and TGF-β  signaling via the small molecules 
dorsomorphin (1 μ M) and SB431542 (10 μ M) caused a threefold 
increase in the number of reprogrammed iNs (Fig. 4d,e). To address 
the relevance of NOTCH signaling in the reprogramming process, 
we treated AS-transduced pericytes with the γ -secretase inhibitor 
N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl 
ester (DAPT). DAPT treatment (10 μ M) resulted in a marked 
increase in the number of iNs (Fig. 4d,e). This finding is consistent 
with the role of NOTCH signaling in neurogenesis inhibition and 
neural stem cell maintenance23.

Though AS induction leads to productive iN reprogram-
ming, we observed that maturation seemed to stall at 14 dpi, 
either because cells at later timepoints failed to mature further or 
because of a technical bias against harvesting healthy iNs at later 
stages (Fig. 3a). Our data showed that productive reprogramming 
involved inhibition of BMP signaling, and blocking BMP signal-
ing appeared to promote maturation, as suggested by increased 
morphological iN complexity (Fig. 4e). We therefore analyzed the 
effect of the BMP inhibitor dorsomorphin during early phases of 
the reprogramming process on subsequent neuronal maturation 
(Fig.  5a). Dorsomorphin-treated AS-induced neurons exhibited 
markedly increased morphological complexity and soma size 
(Fig. 5b,c and Supplementary Fig. 4a), as well as increased mem-
brane capacitance and decreased membrane resistance (Fig.  5d 
and Supplementary Fig.  4b). Single-cell RNA (scRNA)-seq on 
dorsomorphin-treated AS-induced neurons revealed that genes 
associated with synapse formation and synaptic function showed 



increased expression relative to untreated AS-transduced cells 
(Fig.  5e). In line with enhanced iN maturation, we also noted 
enhanced GABA and PVALB immunoreactivity (Supplementary 
Fig. 4c).
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successful pericyte-

to-neuron reprogramming (timepoints specified within the images). Arrows indicate a successfully reprogrammed pericyte throughout the



 different 

morphological changes mentioned below the images. Scale bar, 50 µ m.
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Bifurcation into distinct iN lineages. These data prompted us to 
have a closer look at the neuronal subtype specification induced 
by AS with or without dorsomorphin (ASD). We focused on iNs 
that expressed both SNAP25 and MAP2 and analyzed 20 AS and 
72 ASD cells. The majority of AS and ASD iNs exhibited a fore-
brain GABAergic interneuron program characterized by coor-
dinated expression of multiple members of the DLX gene family 
(Fig.  5f). Notably, we found evidence for further subspecification 
among the DLX-expressing iNs. We observed distinct clusters of 
VIP-expressing neurons, some of which also co-expressed CCK. 
Likewise, we noted two clusters specifically expressing SST (Fig. 5f).

However, we also noted a subset of iNs that expressed a transcrip-
tion factor of the glutamatergic lineage, NEUROG2. Notably, these 
iNs also expressed downstream targets NEUROD1 and NEUROD4, 
consistent with the expression of a telencephalic glutamatergic 
neuron program10,24. The fact that this subset also expressed RELN 
(Fig. 5f) may indicate that these iNs acquire a Cajal–Retzius neu-
ron-like program. It is noteworthy that, while the majority of DLX1-
expressing cells were NEUROG2– and many high-NEUROG2+ cells 

were DLX1–, we observed some outliers expressing both genes 
(Supplementary Fig.  4d). This may reflect the possibility that the 
definitive decision between the two major neuron lineages (GABA 
versus glutamate) had not yet taken place in these cells. To reveal the 
developmental trajectory toward a DLX- or NEUROG2-dominated 
fate, we employed pseudotemporal ordering of the transcriptomes 
of AS cells of the productive path and 14-dpi ASD cells. Notably, we 
observed a bifurcation of the trajectory into DLX- or NEUROG2-
dominated pathways, which preceded neuronal differentiation 
marked by SNAP25 expression (Fig. 5g and Supplementary Fig. 4e). 
Projecting the switch gene signature identified in Fig. 3c onto the 
reprogramming path revealed that the transient expression of neural 
stem cell-like genes occurred and ceased before lineage bifurcation 
(Fig.  5h). Consistent with the increased maturation of ASD cells, 
the distribution of ASD transcriptomes was shifted farther along the 
trajectory of pericyte-to-iN reprogramming (Fig. 5i). We corrobo-
rated the emergence of DLX- or NEUROG2-expressing inhibitory 
and excitatory neuronal lineages using an alternative scRNA-seq 
method and a second pericyte donor (Supplementary Fig. 5).
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cultures (green) and stained with anti-TUBB3 (magenta). Note the increased appearance of reprogrammed pericytes that acquired neuronal 

morphology following dorso +  SB (n =  4) and DAPT (n =  7) treatment compared to the untreated cells. Nuclei are stained with DAPI. Scale bars, 50 µ m.
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from 3 independent experiments). c, Single-cell neuromorphology reconstruction by Sholl analysis on dorsomorphin treated AS-transduced cells was 
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assessment of AS and ASD cells. Membrane capacitance (CN) is plotted as a function of the membrane resistance (RN). AS cells have greater RN but 
smaller CN compared to ASD cells. e, Violin blots show the density distribution of expression of selected neuronal maturation genes in neuronal (SNAP25+, 
MAP2+, PDGFRB–) AS cells (n = 20) and ASD cells (n = 75). f, PCA followed by hierarchical clustering was used to characterize neuronal cells (SNAP25+, 
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SNAP25+, MAP2+, PDGFRB– AS and ASD (n = 71), and AS +  overexpressed NEUROG2 (ASN; n = 21) cells used for this analysis. Boxplots show the strong 
increase of NEUROG2 and decrease in DLX2 gene expression in ASN cells as compared to AS and ASD cells.
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To test whether NEUROG2 indeed suffices to induce a gluta-
matergic phenotype, we overexpressed NEUROG2 alongside AS 
(Supplementary Fig.  4f). NEUROG2 overexpression resulted in 
the almost complete suppression of DLX2 (Fig.  5j), suggesting 
that NEUROG2 can divert iNs from adopting predominantly a 
GABAergic phenotype toward generating mostly glutamatergic 
neurons. Accordingly, we found that NEUROG2-overexpressing AS 
neurons exhibited vesicular glutamate transporter immunoreactiv-
ity (Supplementary Fig. 4g).

Discussion
Here we have shown that reprogramming success of adult human 
brain pericytes into iNs by the transcription factors Ascl1 and 
Sox2 (AS) critically depends on cellular context, as revealed by 
the observation that pericyte heterogeneity is a key determinant 
for reprogramming competence. Successful reprogramming by AS 
encompasses the passage through a neural stem cell-like interme-
diate state, yet it occurs in the absence of cell division. Moreover, 
regulation of signaling pathways during the neural stem cell-like 
state was of functional importance for the reprogramming outcome. 
This data indicates that AS-mediated reprogramming involves the 
unfolding of developmental programs and argues for the engage-
ment of hierarchical developmental gene-regulatory networks6 
rather than direct interconversion between two states of terminal 
differentiation. Finally, we found that, following the transition 
through a neural stem cell-like state, the reprogramming trajec-
tory eventually bifurcates to give rise to two distinct branches char-
acterized by DLX- or NEUROG-dominated gene expression and 
indicative of bifurcation into GABAergic or glutamatergic lineages, 
respectively. This provides a mechanistic explanation for the com-
mon observation that a single reprogramming cocktail can yield 
neurons of distinct neurotransmitter phenotypes15,25.

We observed that the reprogramming competence of adult 
human brain pericytes is highly variable and a main source for this 
variability is pericyte heterogeneity. Heterogeneity of pericytes has 
been described in many tissues and may reflect distinct embry-
onic origins26. Our scRNA-seq experiments revealed two distinct 
populations, one of which, characterized by high LEPR expression, 
displayed markedly reduced reprogramming propensity. Notably, 
a recent study using scRNA-seq showed that several of the het-
erogeneously expressed genes are also expressed at highly variable 
levels in acutely isolated human midbrain pericytes27, which might 
indicate that similar heterogeneity occurs in vivo. However, our 
study may actually underestimate overall pericyte heterogeneity, as 
we included in our scRNA-seq analysis only retrovirus-transduced 
cells, for which ongoing cell division at the time of transduction is 
required. We would also expect that proliferative pericytes do not 
perfectly match pericytes under resting conditions, but may be 
more akin to those found to undergo cell division in response to 
severe CNS injury28.

Revealing the cell-context requirements for reprogramming is 
of greatest importance if direct lineage reprogramming is to be of 
therapeutic value. Many reprogramming-factor cocktails that work 
well with mouse cells (for example, MEFs) are rather inefficient 
with human cells, and in particular, when the cells are of adult-tis-
sue origin. It will be therefore a fruitful field of investigation to iden-
tify, in addition to transcriptome differences, epigenetic disparities 
between the two subpopulations of pericytes identified here. This 
may yield potential molecular targets for improved reprogramming 
strategies that may apply to other adult human somatic cell types.

A key finding of our study is the observation that AS-transduced 
cells pass through a neural stem cell-like state before differentiating 
into iNs. This neural stem cell-like state is characterized by expres-
sion of a battery of genes that are normally expressed in neural stem 
cells or progenitor cells during forebrain embryonic development, 
referred to here as switch genes as they are dynamically regulated 

during the reprogramming process. While referring to the state 
characterized by switch gene expression as a neural stem cell-like 
state, we do not equate it to a bona fide neural stem cell state. This 
distinction is warranted given the absence of classical markers of 
neural stem cells such as MSI1 (Musashi) or NES (Nestin) during 
the switch state, some anomalies in gene regulation such as DLX5 
expression preceding DLX1 expression in time, and above all the 
absence of cell division and of a transcriptomic signature of an 
active cell cycle. We hypothesize that genes induced during the 
switch state represent a neural stem cell gene-expression module 
specifically regulated by Ascl1 and Sox2 and that other transcrip-
tion factors may be required to induce other neural stem cell mark-
ers. Notably, the AS-induced neural stem cell expression module 
appears to be sufficient to drive the trajectory toward neuronal dif-
ferentiation.

Switch genes include components of several signaling path-
ways, such as the ACTIVIN/NODAL (LEFTY2), BMP (NOG), 
and NOTCH (HES5, HEY1, ID1, NOTCH2) signaling pathways. 
By activating or inhibiting the ACTIVIN/NODAL and BMP path-
ways during the early phase of reprogramming through recombi-
nant ligands or pharmacologically, we showed that these pathways 
exert an important influence on reprogramming efficiency. The 
fact that inhibition of ACTIVIN/NODAL and BMP signaling is 
required for reprogramming is consistent with the fact that inhi-
bition of these pathways is important for neural induction during 
embryonic development22, can be used for driving human pluripo-
tent stem cells toward neural lineages29, and enhances transcrip-
tion factor-mediated reprogramming25,30. Crucially, we found that 
inhibition of NOTCH signaling promoted reprogramming. This is 
consistent with the role of NOTCH signaling in preventing neuro-
nal differentiation of neural stem cells31. The conspicuous induc-
tion of the NOTCH ligand DLL1 during reprogramming suggests 
that DLL1+ cells exert a differentiation inhibitory effect on other 
AS-transduced cells, an inhibition that can be relieved pharmaco-
logically. Notably, iNs appear to express Myt1, which has recently 
reported to be induced cell-autonomously by Ascl1 and to repress 
Notch signaling32. Likewise, its close relative Myt1l, a widely used 
component of the BAM reprogramming cocktail, has been shown 
to repress Notch signaling12. This suggests that the BAM cocktail 
exhibits similarities to AS’ mechanism of reprogramming, but that 
the addition of the postmitotic repressor Myt1l serves to curtail 
molecular pathways of the switch state that keep neuronal differen-
tiation in check. Another intriguing aspect of NOTCH2 expression 
during reprogramming is the fact that Notch2 has been recently 
found to repress cell cycle-related genes and drive neural stem cells 
to quiescence, which may account in part for the lack of cell division 
during the switch state33.

Unexpectedly, we found that human brain pericytes repro-
grammed by AS bifurcate into lineages dominated by transcrip-
tion factors that specify inhibitory and excitatory neuron fates. 
This bifurcation was corroborated using two distinct scRNA-seq 
platforms (Fluidigm C1 and 10 ×  Genomics). While the DLX gene 
family-dominated branch was enriched for genes characteristic of 
GABAergic neuron lineage (for example, GAD1 and GAD2), the 
NEUROG-expressing branch expressed other transcription fac-
tors characteristic of the glutamatergic neuron lineage, such as 
NEUROD1 and NEUROD4. Moreover, cells of the latter lineage also 
expressed RELN, suggesting similarities to the Cajal–Retzius sub-
type of glutamatergic neurons. The fact that forced expression of 
Neurog2 in AS-transduced pericytes suppresses DLX gene expres-
sion may indicate that lineage bifurcation is driven by mutual cross-
repression of NEUROG and DLX family genes. Our data raise the 
intriguing possibility that the bipotent neural stem cell-like state 
observed during AS reprogramming relates to the suggested com-
mon precursor generating both glutamatergic and GABAergic neu-
rons in the cerebral cortexes of human and nonhuman primates34.
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Overall, our study not only provides new insights into the biol-
ogy underlying iN reprogramming, but also sheds light on the 
capacity of two transcription factors, Ascl1 and Sox2, to cooperate 
in the generation of diverse neuronal subtypes, a cooperation that 
may be relevant during human brain development. The identifica-
tion of molecular programs that establish cellular intermediates and 
lineage bifurcations during iN reprogramming provides avenues for 
improving lineage conversion of human brain-resident cells toward 
therapeutically relevant cell types.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41593-018-0168-3.
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Methods
Culture of primary human pericytes. Primary pericytes were derived as 
described previously from adult human brain tissue16,35. Briefly, specimens of 
cerebral cortex were obtained from standard surgical interventions of patients 
aged 19–70 years old and of both sexes. The study was approved by the ethical 
committee of the Medical Faculty of the LMU Munich, and written informed 
consent was obtained from all patients. Human tissue was enzymatically (TrypLE, 
Life technologies) and mechanically dissociated, and, following centrifugation at 
1,000 rpm for 5 min and resuspension in pericyte medium, cells were plated in 
T75 cell-culture flasks. Pericyte growth medium consisted of DMEM high glucose 
with Glutamax, 20% FBS, and penicillin/streptomycin. Medium was changed 
twice per week and subcultivation at a ratio of 1:3 was performed every 10–14 d. 
Cells were grown under low-oxygen conditions (5% O2, 5% CO2; Galaxy 170R, 
New Brunswick).

Retroviral transduction and treatments of human pericytes. The retroviral 
backbone used for lineage conversion of pericytes into iNs allowed for the 
polycistronic expression of Ascl1 and Sox2 (connected via p2A) under the control 
of an internal chicken β -actin promoter with cytomegalovirus enhancer (CAG) 
together with either DsRed or GFP downstream of an internal ribosomal entry site 
(IRES). For control, cultures were transduced with a virus encoding only DsRed or 
GFP behind an IRES site as described previously13,16.

Retroviral transduction of primary pericyte cultures was performed 24 h after 
plating on either poly-d-lysine-coated glass coverslips or in T25 or T75 cell-culture 
flasks without coating, using VSV-G (vesicular stomatitis virus glycoprotein)-
pseudotyped retroviruses encoding neurogenic fate determinants as described 
previously16,35. Samples (pericyte donors, coverslips in 24-well plates or in T25 or 
T75 cell-culture flasks) were randomly assigned for transduction with different 
viruses. Twenty-four hours after transduction, the medium was replaced by a 
differentiation medium consisting of DMEM high glucose with Glutamax and B27 
supplement (Gibco). For growth factor or small-molecule treatments, addition 
was performed 1, 3, and 5 d following transduction. Factors were added to a final 
concentration of 1 μ M30,36 for dorsomorphin (Sigma-Aldrich), 10 μ M for DAPT 
(N-[N-(3,5-difluorophenacetyl)-l-alanyl]-S-phenylglycine t-butyl ester; Stem Cell 
Technologies), 10 μ M37,38 for SB431542 (Stem Cell Technologies), 30 ng/mL39,40 
for recombinant human BMP4 (Preprotech), and 1 μ g/mL41,42 for recombinant 
human NODAL (RnD Systems). Cells were allowed to differentiate under low-
oxygen conditions (5% O2, 5% CO2). Reprogramming efficiency was calculated 
by quantifying TUBB3-immunoreactive cells among reporter-positive transduced 
cells 3–5 weeks following transduction with retroviruses.

Fluorescence-activated cell sorting (FACS). For sorting of transduced cells 
for further culturing, bulk RNA-sequencing, or scRNA-sequencing, primary 
pericytes were detached from the culture dish using TrypLE for 4–6 min and 
subsequently resuspended in 500–1,000 µ L pericyte growth medium. Cell sorting 
was performed by taking advantage of the combined expression of Ascl1 and Sox2 
with a fluorescent reporter protein (either DsRed or GFP). Gating was achieved 
via subtracting the autofluorescence of nontransduced cells; control (DsRed or 
GFP only)-transduced cells were used as respective controls. Following sorting, 
cells were (i) collected in pericyte growth medium and plated on PDL-coated glass 
cover slips on 24-well plates for further culturing, (ii) directly collected into RLT 
buffer (Qiagen) and stored at –80 °C until RNA isolation for bulk RNA-seq, or 
(iii) prepared for single-cell loading onto a C1 Fluidigm chip for scRNA-seq. To 
separate LEPR+ and LEPR– pericyte populations, pericyte cultures were detached 
from the culture dish using TrypLE for 4–6 min and subsequently 1 ×  105–5 ×  105 
cells were resuspended in 100 µ L staining solution (PBS plus 0.5% BSA). Primary 
antibody (Alexa Fluor 647-conjugated CD295 (anti-LEPR; 1:20, BD Pharmingen, 
cat.no. 564376) was added and cells were incubated for 30 min on ice in the dark. 
After washing three times in staining solution, cells were resuspended in 500 µ L 
pericyte growth medium and subjected to cell sorting using a FACS Aria (BD). An 
Alexa Fluor 647-conjugated isotype control antibody (1:100, BD Pharmingen) was 
used to gate the proper populations.

Immunohistochemical staining. Cell cultures were fixed in 4% paraformaldehyde 
(PFA) in phosphate-buffered saline (PBS) for 15 min at room temperature. Cells 
were first pretreated in blocking solution consisting of 0.2–0.5% Triton X-100 and 
10% donkey serum in PBS for 60 min, followed by incubation with the primary 
antibodies in 100 µ L in the same solution for 1 h at room temperature or overnight 
at 4 °C. After extensive washing in PBS, cells were incubated in the same solution 
with appropriate species- or subclass-specific secondary 




antibodies conjugated 

to fluorophores. Coverslips were finally mounted onto a glass slide with an anti-
fade mounting medium (Aqua Poly/Mount; Polysciences, Warrington, PA). For 
multidimensional immunofluorescence staining, fixed cell cultures were subjected 
to sequential immunofluorescence staining/destaining cycles adapted from a 
technique published by Schubert et al.43.

Microscopy and time-lapse imaging. Immunocytochemical stainings were  
first examined with an epifluorescence microscope (BX61, Olympus) equipped 
with the appropriate filter sets. Stainings were further analyzed with a LSM710 
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laser-scanning confocal microscope (Carl Zeiss,). Digital images were captured 
using the ZEN software (Carl Zeiss).

We performed time-lapse microscopy to follow the reprogramming process 
of pericytes into iNs. Pericytes were transduced with Ascl1-Sox2-CAG-GFP 
retrovirus. Twenty-four hours after transduction, medium was replaced by a 
differentiation medium consisting of DMEM high glucose with Glutamax and 
B27 supplement (Gibco). The microwell plate containing these cells was 48 h 
later placed on a heated microscopic stage with 5% CO2 and 37 °C and imaged 
continuously for up to 14 dys. Fluorescent images were taken subsequently once 
every 4 h and brightfield images once every 5 min. After completion of time-lapse 
imaging, cells were fixed with 4% PFA, and after imaging ICC was performed 
to corroborate the results from the imaging. Data analysis was performed using 
Timm's Tracking Tool (TTT) software.

Sholl analysis. Sholl analysis was performed by using the ImageJ plugin Sholl 
Analysis44. Confocal images of iNs with immunocytochemical stainings against 
TUBB3 were used for tracing individual neuronal processes of selected cells in 
ImageJ (Fiji) software45. After assigning the center of each cell soma, a grid with 
concentric circles with increasing diameter (5 µ m) was superimposed. The data 
are expressed as the mean ±  s.e.m. of the values obtained in four independent 
experiments; untreated n =  14, dorsomorphin-treated n =  14. The investigators 
carried out blinded analyses.

Neuromorphometry. Several parameters of cell morphology were examined. 
Neuronal complexity quantification was conducted with the following 
measurements: (i) primary branches, i.e., processes emerging directly from the 
soma per neuron; (ii) dendritic segment, i.e., part of the dendrite between two 
branching points; (iii) branching point, i.e., the point at the dendrite where a 
dendrite ramifies into two or more; (iv) maximum dendritic length or ending 
radius, i.e., the radius of the largest circle of the superimposed Sholl mask; (v) 
soma size (in µ m2), i.e., cross sectional surface area of the cell body; and (vi) sum 
of intersections, i.e., the sum of all intersections between the dendritic arbors 
and the concentric circles radiating from the cell body. The numbers of primary 
branches, as well as the numbers of dendritic segments and branching points, were 
counted manually. ImageJ Fiji software was used to measure soma size. The sum 
of intersections and the ending radius were measured using the Sholl method (see 
“Sholl analysis” section, above).

Statistics. To test for statistical significance, two-tailed unpaired Student's t tests 
were used. Asterisks indicate statistically significant differences across the two 
groups: *P <  0.05, **P <  0.01, ***P <  0.001. The analyses were done using Prism 
(GraphPad) or R. Data distribution was assumed to be normal, but this was not 
formally tested. Throughout the study, boxplots show medians, quartiles (box), and 
ranges (whiskers). No statistical methods were used to predetermine sample sizes, 
but our sample sizes are similar to those reported in previous publications11,16. If 
not indicated otherwise, data collection and analysis were not performed blind to 
the conditions of the experiments. No data points were excluded from the analysis, 
except for cells in the scRNA-seq analyses that did not fulfill the required criteria 
(see below sections on scRNA-seq analyses).

Electrophysiology. For electrophysiological recordings, coverslips with 
reprogrammed cells were transferred to a recording chamber mounted on the stage 
of an upright microscope (Axioscope FS, Zeiss, Germany). Cells were perfused 
with a bathing solution consisting of (in mM): NaCl 150, KCl 3, CaCl2 3, MgCl2 2, 
HEPES 10, and d-glucose 10. The pH of the solution was adjusted to 7.4 (NaOH); 
the osmolarity ranged from 309 to 313 mOsmol. All recordings were performed at 
room temperature (23–24 °C). Electrodes for whole-cell patch-clamp recordings 
were fabricated from borosilicate glass capillaries (OD: 1.5 mm, ID: 0.86 mm; Hugo 
Sachs Elektronik-Harvard Apparatus) and filled with a solution composed of (in 
mM): potassium-gluconate 135, KCl 4, NaCl 2, EGTA 0.2, HEPES (potassium salt) 
10, adenosine-triphosphate (magnesium salt, ATP[Mg]) 4, sodium guanosine-
triphosphate (NaGTP) 0.5, and phosphocreatine 10 (pH: 7.25–7.30, osmolarity: 
288–291 mOsmol). The electrodes (resistance: 5–7 MΩ ) were connected to the 
headstage of a NPI ELC-03XS amplifier (NPI, Tamm, Germany). To visualize the 
cultured cells, the microscope was equipped with differential interference contrast 
(DIC) optics and with epifluorescence optics for green and red fluorescence 
(filter sets: Zeiss BP450-490, LP520, Zeiss BP546/12, lP590). Images were taken 
and displayed using a software-operated CCD microscope camera (ORCA R, 
Hamamatsu, Germany). Following membrane rupture, the cells were voltage-
clamped to a holding potential of –60 mV and kept under this condition until 
the holding current stabilized (3–5 min). Then the amplifier was switched to 
current-clamp mode. The recorded signals were amplified ( ×  10), filtered at 10 or 
20 kHz (current clamp) and at 5 kHz (voltage clamp), digitized at a sampling rate 
of 10 or 20 kHz and stored on a computer for offline analysis. Data acquisition 
and generation of command pulses was done using a CED 1401 Micro 3 system in 
conjunction with Signal6 data acquisition software (Cambridge electronic design). 
Data analysis was performed using IGOR Pro 6 (WaveMetrics, Lake Oswego, 
USA) together with the NeuroMatic IGOR plugin (www.neuromatic.thinkrandom.
com). Determination of the input resistance, RN, was performed by measuring the 
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amplitude of a voltage deviation induced by a small hyperpolarizing current  
pulse (1 s, 2–10 pA). The total membrane capacity CN was estimated  
using a method described by Zemankovics et al.46. The ability of the cells to 
generate action potentials was tested by injecting depolarizing current pulses 
(50 ms) with increasing current strengths (Δ I: 2–10 pA) or by depolarizing  
current ramps (50 ms) from 0–100 pA. Spike discharge was analyzed by injecting




 a 

series of depolarizing current pulses (duration: 1 s) with a stepwise increment  
(Δ I: 2–10 pA).

Bulk RNA sequencing. Primary pericytes from three different human donors were 
transduced with Ascl1, Sox2, AS, and/or control retroviruses and purified by FACS 
at 2 and 7 dpi. RNA was isolated using the RNeasy Micro Kit (Qiagen). Following 
Ribo-Zero removal, the RNA-seq library was prepared in accordance with 
Illumina's instructions using oligo-dT primers. The RNA-seq output in FASTQ 
format was aligned to the human hg38 genome (sourced from UCSC) using 
TopHat v2.0.847 and only uniquely mapped reads were retained for further analysis. 
SAMTOOLS v.0.1.1948 was used for file format conversions (SAM and BAM). The 
read counts per gene were calculated using HTSeq v0.5.4p149. The DESeq package50 
was used thereafter for differential expression analysis. Padj values were calculated 
with the Benjamini–Hochberg procedure.

GO terms analysis of bulk RNA-seq data. GO enrichment analysis was performed 
using the Bioconductor package TopGO employing the default algorithm weight0151. 
Genes were considered significantly deregulated with Padj <  0.01. GO terms were 
ordered according to their significance as determined by Fisher's exact test.

Capture of single cells and preparation of cDNA. Transduced human brain 
pericytes were sorted using FACS and single cells were captured on a medium-
sized (10- to 17-μ m cell diameter) microfluidic RNA-seq chip using the Fluidigm 
C1 system. Cells were loaded onto the chip at a concentration of 350–500 cells per 
μ L and imaged by phase-contrast to assess number of cells per capture site. Only 
single cells were included in the analysis. cDNAs were prepared on chip using the 
SMARTer v4 Ultra Input Low RNA kit for Illumina (Clontech).

RNA-seq library construction and cDNA sequencing. Size distribution and 
concentration of single-cell cDNA was assessed on a capillary electrophoresis-
based fragment analyzer (Advanced Analytical Technologies), and only single 
cells with high quality cDNA were further processed. Sequencing libraries 
were constructed in 96-well plates using the Illumina Nextera XT DNA Sample 
Preparation kit, using primer sets A and B according to the protocol supplied 
by Fluidigm and as described previously11. Libraries were quantified by Agilent 
Bioanalyzer using a High Sensitivity DNA analysis kit, as well as fluorimetrically 
using Qubit dsDNA HS Assay kits and a Qubit 2.0 Fluorimeter (Invitrogen, 
Thermo Fisher Scientific). Up to 192 single-cell libraries were pooled and 100-bp 
paired-end sequenced on one lane of the Illumina HiSeq 2500 to a depth of at 
least 500,000 reads per cell. Base calling, adaptor trimming, and de-multiplexing 
was performed as described52,53. The transcriptomes of a total of 769 cells was 
measured from the following 12 independent experiments: 2-dpi control (76 cells, 
1 experiment), 2-dpi Ascl1-only (82 cells, 1 experiment, 7-dpi Ascl1-only (64 cells, 
1 experiment), 2-dpi AS (86 cells, 1 experiment), 7-dpi AS (48 cells, 1 experiment), 
14-dpi AS (79 cells, 2 experiments), 21/22-dpi AS (130 cells, 2 experiments), 14-
dpi ASD (183 cells, 2 experiments), and 14-dpi ASN (21 cells, 1 experiment). See 
Supplementary Table 5 for the transcriptome data for all 769 cells with annotations 
(quantification in log2(FPKM)).

Processing, analysis, and graphic display of single-cell RNA-seq data. Reads 
were aligned to a Bowtie254-indexed human genome (hg38 sourced from Ensembl) 
supplemented with DNA sequences for Egfp, mCherry, DsRed, mouse Ascl1, and 
mouse Sox2 using TopHat47 with default settings. Transcript levels were quantified 
as fragments per kilobase of mapped reads (FPKM) generated by Cufflinks55 
using GENCODE protein-coding genes (hg38 Havana). We excluded cells that 
had less than 100,000 reads, expressed <  1,000 genes, or did not express either of 
two housekeeping genes ACTB and GAPDH. Transcript levels were converted 
to the log-space by taking the log2(FPKM). R studio (https://www.rstudio.com/) 
was used to run custom R scripts to perform PCA (FactoMineR package) and 
hierarchical clustering (stats package) and to construct heatmaps, correlation plots, 
scatter plots, violin plots, dendrograms, bar graphs, and histograms. Generally, 
ggplot2 and gplots packages were used to generate data graphs. The Seurat package 
implemented in R was used to identify cell clusters and perform differential gene 
expression based on t-SNE56. The Monocle2 package20 was used to analyze cell 
lineage relationships. Covariance network analysis and visualizations were done 
using igraph implemented in R (http://igraph.org/). Signatures were calculated 
by summing the log2(FPKM) expression




 values of each gene in a set of genes 

comprising a signature (Supplementary Table 6).

10 × Genomics scRNA-seq experiment. For the 10 ×  Genomics experiment, cells 
were transfected with AS, treated with dorsomorphin, and analyzed at 14 dpi. 
Cells were sorted based on the expression of GFP and used for one encapsulation. 
10 ×  Genomics sample libraries were sequenced on an Illumina HiSeq 2500 and 
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base calling, adaptor trimming, and de-multiplexing of single cells were performed 
using 10 ×  Genomics Cell Ranger 2.0 software. We performed PCA and t-SNE 
analyses using the Seurat v2.0 package for R on 3,419 single cells with 1,000–
7,000 genes detected (Supplementary Table 7). We used genes correlating and 
anticorrelating with the first eight principal components to cluster the cells, and 
found that clustering patterns were robust across multiple PC inclusions. Neuronal 
cluster-specific markers were found using Seurat's implementation of the ‘bimod’ 
likelihood-ratio test for single-cell gene expression data, and the top genes were 
selected based on the average log fold-change.

Antibodies. The following antibodies were used: mouse (IgG2b) anti-TUBB3 
(Sigma; cat. no. T8660; 1:300), rat IgG2a anti-CD49f-PE (Miltenyi Biotec; cat. no. 
130-100-096; 1:11), recombinant human anti-CD4 (Miltenyi; cat. no. 130-109-
537; 1:11), rabbit anti-GABA (Abcam; cat. no. ab17413; 1:1,000), chick anti-GFP 
(Aves; cat. no. GFP-1020; 1:500), mouse (IgG1) anti-Pvalb (Swant; cat. no. PV-235; 
1:1,000), rabbit anti-Pdgfrb (Cell Signaling; 




cat. no. 3169S; 1:300), rat anti-RFP 

(Chromotek; cat. no. 5F8; 1:500), mouse (IgG2b) anti-SMA (Sigma; cat. no. A5228; 
1:500), and rabbit anti-VGLUT1 (Synaptic Systems, cat. no. 135302; 1:500). For 
FACS we additionally used mouse (IgG2b) anti-LEPR Al647 (BD Pharmingen; 
cat. no. 564376; 1:20) and corresponding isotype control (BD Pharmingen; cat. 
no. 557903; 1:20). Antibodies were selected according to the antibody validation 
reported by the distributing companies.

Accession codes. GEO: scRNA-seq data, GSE113036.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Data availability and accession codes. The scRNA-seq data used in this study 
have been deposited in the Gene Expression Omnibus (GEO) under accession 
number GSE113036. The data that support the findings of this study are available 
from the corresponding author upon reasonable request.
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Reporting Summary
Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency 
in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters
When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main 
text, or Methods section).

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement

An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly

The statistical test(s) used AND whether they are one- or two-sided 
Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND 
variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Clearly defined error bars 
State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code
Policy information about availability of computer code

Data collection For Sholl analyses images were analyzed using the ImageJ(v1.51a-1.51h) Plugin Sholl Analysis v3.6.4; tracing individual neuronal 
processes was performed using ImageJ software.  

Data analysis Details about data analysis and visualization are provided in the Online Methods section of the paper. The following versions were used: 
Bioconductor package TopGO v2.3.1 employing the default algorithm weight01, GraphPad Prism v6.01, Igor Pro6 6.0.3.0; Custom R 
packages were used:TopHat v2.0.8, SAMTOOLS v.0.1.19, HTSeq v0.5.4p1. DESeq2 v1.3.0, FactoMineR v1.34, Seurat v1.4, Monocle2 
v2.6.4, igraph v1.2.1, Seurat v2.1-2.2

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers 
upon request. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.
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Data
Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable: 
- Accession codes, unique identifiers, or web links for publicly available datasets 
- A list of figures that have associated raw data 
- A description of any restrictions on data availability

The scRNA-seq data used in this study have been in the Gene Expression Omnibus (GEO) under accession number GSE113036. The data that support the findings of 
this study are available from the corresponding author upon reasonable request. Correspondence and requests for materials and data should be addressed to M.K. 
(marisa.karow@med.uni-muenchen.de), and B.T. (barbara_treutlein@eva.mpg.de), and B.B. (berningb@uni-mainz.de). 

Field-specific reporting
Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary-flat.pdf

Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size No statistical methods were used to pre-determine sample sizes but our sample sizes are similar to those reported in previous publications 
(Karow et al., Cell Stem Cell 2012; Treutlein et al., Nature 2016)

Data exclusions No data points were excluded for the analysis, except for cells in the scRNA-seq analyses not fulfilling the required criteria. For the fluidigm C1 
scRNA-seq data: We excluded cells that had less than 100,000 reads, did not express > 1000 genes, or did not express either of two 
housekeeping genes ACTB and GAPDH. For the 10x Genomics scRNA-seq data: only single cells with 1,000-7,000 genes were included; cells 
with lower or higher number of detected genes were excluded.

Replication For all experiments all replicates are indicated in the figure legends or the methods sections. We have provided all informations to reproduce 
the experiments.  
All replications were successful.

Randomization Samples (pericyte donors, coverslips in 24-well plates, T25 or T75 cell culture flasks) were randomly assigned for transduction with different 
viruses.

Blinding scRNA-sequencing analyses were performed unbiasedly and therefore blinding is not 
applicable. Regarding all other data, if not indicated otherwise (e.g. Sholl analysis), data collection and analysis were not performed blind to 
the conditions of the experiments. These experiments were performed by a single experimentator (MK)

Reporting for specific materials, systems and methods

Materials & experimental systems
n/a Involved in the study

Unique biological materials

Antibodies

Eukaryotic cell lines

Palaeontology

Animals and other organisms

Human research participants

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Unique biological materials
Policy information about availability of materials

Obtaining unique materials All unique material (Ascl1/Sox2 encoding viruses) are available from the authors upon 
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Obtaining unique materials reasonable request. Any other material is published elsewhere or commercially available.

Antibodies
Antibodies used Mouse (IgG2b) anti-TUBB3 (Sigma; cat.no. T8660; 1:300), rat IgG2a anti-CD49f-PE (Miltenyi Biotec; cat.no. 130-100-096; 1:11), 

recombinant human anti-CD4 (Miltenyi; cat.no. 130-109-537; 1:11), rabbit anti-GABA (Abcam; cat.no. ab17413; 1:1000), chick 
anti-GFP (Aves; cat.no. GFP-1020; 1:500), mouse (IgG1) anti-Pvalb (Swant; cat.no. PV-235; 1:1000), rabbit anti-Pdgfrb (Cell 
Signaling; cat.no. 3169S; 1:300), rat anti-RFP (Chromotek; cat.no. 5F8; 1:500), mouse (IgG2b) anti-SMA (Sigma; cat.no. A5228; 
1:500), rabbit anti-VGLUT1 (Synaptic Systems, cat.no. 135302; 1:500). For FACS: mouse (IgG2b) anti-LEPR Al647 (BD Pharmingen; 
cat.no. 564376; 1:20), corresponding isotype control (BD Pharmingen; cat.no. 557903; 1:20). 

Validation Antibodies were selected according to the antibody validation reported by the distributing companies. 

Eukaryotic cell lines
Policy information about cell lines

Cell line source(s) no eukaryotic cell lines used

Authentication no eukaryotic cell lines used

Mycoplasma contamination no eukaryotic cell lines used

Commonly misidentified lines
(See ICLAC register)

no eukaryotic cell lines used

Palaeontology
Specimen provenance no specimen used

Specimen deposition no specimen used

Dating methods no specimen used

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals no animals or other organisms used

Wild animals no animals or other organisms used

Field-collected samples no animals or other organisms used

Human research participants
Policy information about studies involving human research participants

Population characteristics no human research participants

Recruitment no human research participants

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

no ChiP-seq data included in this study

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.
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Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation For sorting of transduced cells for further i) culturing, ii) bulk RNA-sequencing, iii) scRNA-sequencing, primary pericytes were 
detached from the culture dish using TrypLE for 4-6 minutes and subsequently resuspended in 500-1000 μl pericyte growth 
medium. For the separation of LEPR-positive and  -negative pericyte populations, pericyte cultures were detached from the 
culture dish using TrypLE for 4-6 minutes and subsequently 1-5 x 105 cells were resuspended in 100 μl staining solution (PBS plus 
0.5% BSA).

Instrument FACS Aria (BD)

Software FACS Diva Software

Cell population abundance The purity of the fluorescent reporter-positive populations that were used 
for (bulk- and) scRNA-sequencing was confirmed via quantification of the 
reporter gene expression and resulted in a purity of more than 92%. 
Due to limitations of using the directly PE conjugated anti-LepR antibody, 
the purity of the post-sort fraction of the LepR-positive cell population 
could not be confirmed by additional post-FACS immunohistochemistry.

Gating strategy For sort of transduced cells: Gating was achieved via subtracting the autofluorescence of non transduced cells and control 
(DsRed or GFP only) transduced cells were used as respective controls.  
For the LEPR-based sort: An Alexa647-conjugated isotype control antibody (1:100, BD Pharmingen) was used to gate the proper 
populations. 

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type no MRI imaging used in this study

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).
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Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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