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Abstract

Background: Whole-genome bisulfite sequencing (WGBS) has become the standard method for interrogating plant
methylomes at base resolution. However, deep WGBS measurements remain cost prohibitive for large, complex
genomes and for population-level studies. As a result, most published plant methylomes are sequenced far below
saturation, with a large proportion of cytosines having either missing data or insufficient coverage.

Results: Here we present METHimpute, a Hidden Markov Model (HMM) based imputation algorithm for the analysis
of WGBS data. Unlike existing methods, METHimpute enables the construction of complete methylomes by inferring
the methylation status and level of all cytosines in the genome regardless of coverage. Application of METHimpute to
maize, rice and Arabidopsis shows that the algorithm infers cytosine-resolution methylomes with high accuracy from
data as low as 6X, compared to data with 60X, thus making it a cost-effective solution for large-scale studies.

Conclusions: METHimpute provides methylation status calls and levels for all cytosines in the genome regardless of
coverage, thus yielding complete methylomes even with low-coverage WGBS datasets. The method has been
extensively tested in plants, but should also be applicable to other species. An implementation is available on
Bioconductor.
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Background
Cytosine methylation (5mC) is a widely conserved epige-
netic mark [1–4] with important roles in the regulation
of gene expression and the silencing of transposable ele-
ments (TEs) and repeats [5, 6]. Experimentally-induced
changes in 5mC patterns have been shown to affect
plant phenotypes [7–9], rates of meiotic recombina-
tion [10–13], genome stability [14–18] and alter plant-
environment interactions [19–22]. Similar to genetic
mutations, changes in 5mC patterns can also occur
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spontaneously as a result of errors in DNA methylation
maintenance [23–26]. There is substantial evidence in
plants that experimentally-induced as well as sponta-
neously occurring 5mC changes can be stably inher-
ited across multiple generations, independently of genetic
changes [27]. Cytosine methylation has therefore emerged
as a potentially important factor in plant evolution
[28–30] and as a possible molecular target for the
improvement of commercial crops [31, 32].
Plant methylomes are now routinely studied using

whole-genome bisulfite sequencing (WGBS), a next gen-
eration sequencing (NGS) method that can interrogate
the methylation status of individual cytosines at the
genome-wide scale. The application of this technology
has been instrumental in dissecting the molecular path-
ways that establish and maintain 5mC patterns in plant
genomes. Unlike in animals, plants methylate cytosines
in context CG, but also extensively in contexts CHG
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and CHH, where H = A, T, C [5]. Methylation at CG
dinucleotides (mCG) is maintained by methyltransferase
1 (MET1), which is recruited to hemi-methylated CG
sites in order to methylate the complimentary strand
in a template-dependent manner during DNA replica-
tion [33]. By contrast, mCHG is maintained dynami-
cally by the plant specific chromomethylase 3 (CMT3)
[34], and requires continuous interactions with H3K9me2
(dimethylation of lysine 9 on histone 3) [35]. Asymmet-
rical methylation of CHH sites (mCHH) is established
and maintained by another member of the CMT fam-
ily, CMT2 [2, 36]. Similar to CMT3, CMT2 dynami-
cally methylates CHH in H3K9me2-associated regions.
In addition to these context-specific maintenance mecha-
nisms, all three sequence contexts can also be methylated
de novo via RNA-directed DNA methylation (RdDM)
[5], which involves short-interfering 24 nucleotide small
RNAs (siRNA) that guide the de novo methyltrans-
ferase domains rearrangedmethyltransferase 2 (DRM2) to
homologous target sites throughout the genome [37, 38].
Although these methylation pathways appear to be

broadly conserved across plant species, recent data indi-
cates that there is extensive variation in 5mC patterns
both between but also within species [3, 39]. Efforts to
explore the origin of this variation and its implications
for plant evolution, ecology and agriculture will require

large inter- and intraspecific methylome datasets. Such
datasets are currently emerging. To date, the methylomes
of over 50 plant species have been analyzed using WGBS
[3, 4], including representative species of major taxo-
nomic groups such as angiosperms (flowering plants),
gymnosperms, ferns, and non-vascular plants. In addi-
tion, the methylomes of over 1000 natural A. thaliana
accessions are now available [40], as well as those of
several experimentally derived populations [41]. How-
ever, deep inter- and intraspecific WGBS measurements
remain cost-prohibitive, particularly for species with large
genomes. Most published plant methylomes have there-
fore been sequenced far below saturation (i.e. large num-
ber of cytosines in the genome are not covered). Indeed,
even simple genomes, like that of the model plant A.
thaliana (Col-0 accession), are typically only sequenced
to about 10-30X. At this depth, about 5-10% of cytosines
have missing data (i.e. zero read coverage) and about
15-20% have nearly uninformative read coverage (< 3
reads), and this problem is exacerbated in more complex
genomes, like those of rice and maize (see Fig. 1).
Low to moderate sequencing depths in individual

samples have cumulative consequences for analyzing
population-level data. For instance, in the recently
released 1000 A. thaliana methylome data [40] (mea-
sured at 5X coverage per strand on average), 92% of
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Fig. 1 Coverage distributions. a-c Percentage of cytosines with X coverage (strand-specific). d-f Percentage of cytosines with missing data (red) and
“uninformative” coverage (green), defined as less than three reads
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cytosines have missing data in at least one sample when
100 accessions are compared (Additional file 1: Figure S1).
These incomplete measurements will reduce statisti-
cal power in genome-wide methylation QTL (meQTL)
mapping studies, in estimates of epimutation rates, or
in ecological studies that aim to correlate site-specific
methylation levels with environmental/climatic variables.
Moreover, incomplete measurements also complicate and
potentially bias methylome scans for signatures of epige-
netic selection using methylation site frequency spectrum
(mSFS) analytic approaches [28]. One way to circumvent
the missing data problem is to calculate methylation lev-
els over larger regions, ranging anywhere from several
hundred to several thousand basepairs and to use these
methylation levels for downstream population-level anal-
yses. In the above-mentionedA. thaliana population data,
only 36% of 100bp regions in the genome are missing in
at least one sample of the 100 accessions, compared with
92% of individual cytosines, and this percentage further
decreases with larger region sizes. However, while region-
based methylation levels are useful measures for descrip-
tive and correlative analyses, these measures obscure
detailed insights into the base-resolution methylation sta-
tus calls, and thus arguably undermine the key advantages
of WGBS over other lower resolution technologies such
as MeDIP-seq. Base-resolution status calls are needed to
be able to apply existing population (epi)genetic mod-
els to population methylome data, and to be able to test
explicit hypotheses about the evolutionary forces that
shape methylome variation patterns within and among
species [28].
In order to maximize the information contained in

WGBS data and to facilitate cost-effective sequencing
decisions for future studies, we developed METHimpute,
a Hidden Markov Model (HMM) based imputation
algorithm for the construction of base-resolution methy-
lomes from WGBS data. The unique feature of this
algorithm is its ability to impute the methylation status
and level of cytosines with missing or uninformative
coverage, thus yielding complete methylomes even with
low-coverage WGBS datasets. Indeed, using published
WGBS data from Arabidopsis thaliana (thale cress),
Oryza sativa (rice) and Zeamays (maize), we demonstrate
that METHimpute accurately constructs base-resolution
methylomes from data with an average coverage as low as
6X, suggesting that typical sequencing costs could be cut
without a significant loss of information.

Results
Conceptual overview
WGBS is an NGS-based method in which DNA is treated
with sodium bisulfite prior to sequencing in order to con-
vert unmethylated cytosines into uracils and finally into
thymines during PCR amplification. Hence, a cytosine

in a bisulfite treated read that maps to a cytosine in
the reference genome provides evidence for methylation,
while a thymine that maps to a cytosine does not.
Many specialized short read mapping programs make
use of this information and output so-called methylation
levels [42–44]; that is, the proportion of aligned reads
that support that a cytosine is methylated out of all the
reads covering the site. Methylation levels are inherently
noisy due to inefficiencies in the sodium bisulfite conver-
sion step. Moreover, tissue heterogeneity and the highly
dynamic maintenance methylation at CHH and CHG,
which requires feedback loops with histone modifications
and small RNAs [5, 6], lead to intermediate methylation
levels which are very susceptible to experimental varia-
tion. Finally, inWGBS data a large proportion of cytosines
are often either not covered by any sequencing read or
are covered only by a few number of reads (Fig. 1), mean-
ing that methylation levels at these positions cannot be
determined.
To overcome these limitations we developed METHim-

pute, a Hidden Markov Model (HMM) for the
construction of base-resolution methylomes from WGBS
data. METHimpute takes methylated and unmethylated
read counts at every cytosine as input, and outputs
discrete methylation status calls (unmethylated or methy-
lated), together with recalibrated methylation levels
between 0 and 1 for every cytosine in the genome,
regardless of coverage (Fig. 2).
The METHimpute algorithm fits a two-state HMM to

the observed methylation counts. The two hidden states
correspond to the unmethylated (U) and methylated (M)
components, with component-specific binomial emission
densities. The estimates of the binomial parameters (pU
and pM) and the HMM transition matrix (i.e. the collec-
tion of probabilities to transition from one hidden state
to another) are estimated freely during model training for
different sequence contexts, thus requiring no empirical
knowledge of the conversion rate. In the present analysis
we have used contexts CG, CCG, CWG, CAA, CTA and
CCA|CHY (where H = {A,C,T},W = {A,T} and Y =
{C,T}), following evidence of their different methyla-
tion characteristics [45]. If necessary the model could be
extended to account for different emission and transi-
tion parameters for every context and annotation category
(genes, TEs, CpG density, etc.), instead of context alone,
although this would only be possible for well-annotated
genomes.
Based on the model fits, the probability that a given

cytosine belongs to one of the hidden states is given by
the posterior probabilities γU and γM (Fig. 2d and “Meth-
ods” section). A cytosine’s maximum posterior probability
represents its most likely methylation status (Fig. 2d, e),
and the magnitude of this probability can be used as a
measure of confidence in the underlying status call. In
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Fig. 2 Conceptual overview of METHimpute. a Cytosines on the sequenced genome are assumed to be either unmethylated or methylated.
b Bisulphite-sequencing and alignment yields methylation levels for each cytosine, i.e. the number of reads showing methylation divided by the
total number of reads. c Emission densities for each state are obtained with a binomial test with state-specific parameters. Note that "imputed"
cytosines, i.e. cytosines without any reads, are treated identically as all other cytosines. However, since the emission densities for all states are 1 for
imputed cytosines, the methylation status call is purely driven by the neighborhood of cytosines. dModel fitting yields posterior probabilities for
methylation status calls. e Inferred methylation status calls and methylation levels

addition to methylation status calls, METHimpute out-
puts recalibrated methylation levels per cytosine, calcu-
lated as m′ = pU · γU + pM · γM (Fig. 2e). A key feature
of METHimpute is its ability to infer the methylation
level and status for cytosines with missing data (i.e. zero
read coverage) or for those with poor read coverage (i.e.
less than 3 reads). It achieves this inference iteratively
during HMM training by borrowing information from
neighboring sites. The algorithm therefore outputs com-
plete, base-resolution methylomes, that can otherwise
only be obtained through very high-depth sequencing
experiments.

Imputation-guided construction of complete Arabidopsis,
rice andmaize methylomes
To demonstrate the performance of METHimpute we
analyzed representative WGBS datasets from A. thaliana
(Col-0) (replicate 1: 8.6X; rep.2: 15.7X coverage per cyto-
sine per strand) [41], O. sativa (japonica nipponbare)
(rep.1: 7.4X, rep.2.: 6.9X, rep.3: 4.6X) [46], and Z. mays
(B73) (rep.1: 1.6X, rep.2: 3.3X, rep.3: 2.4X) [47]. These
three species cover a wide spectrum of plant genomes
in terms of length and complexity: the A. thaliana,
O. sativa and Z. mays genomes are 120 Mb, 374 Mb
and 2.1 Gb in length, respectively, and have an estimated

repeat content of 10, 28-35 and 85% [48–51]. Themapping
statistics for each dataset are detailed in Additional file 2:
Table S1. Alignment and pre-processing of the data was
carried out using a single pipeline as described in the
“Methods” section. Runtimes and memory requirements
for METHimpute are listed in Additional file 2: Table S4.
Despite average coverage being relatively high, a sub-

stantial proportion of cytosines had either missing data or
low coverage. For instance, in theA. thaliana (rep.1: 8.6X),
O. sativa (rep.3: 4.6X) and Z. mays (rep.2: 3.3X) datasets,
about 9% (3.71M), 24% (39.54M) and 26% (36.77M) of
all cytosines had missing data (i.e. zero read coverage)
and 24% (10.27M), 49% (79.38M) and 60% (85.5M) were
nearly uninformative (here defined as coverage < 3 reads)
(Fig. 1d-f and Additional file 1: Figure S2 for the other
replicates). Interestingly, the genome-wide proportions of
missing or uninformative sites were highly context depen-
dent, being highest for CCA|CHY, probably as a result
of less unique short read alignments in this context as
it is more abundant in repetitive regions of the genome
(Additional file 1: Figures S3 and S4).
We applied METHimpute to the above-described

datasets and evaluated the quality of the resulting methy-
lation calls. For A. thaliana, O. sativa and Z. mays, the
algorithm imputed the methylation status of all 3.71M,
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39.54M and 36.77M missing data cytosines, respectively,
and inferred the methylation status of all 10.27M, 79.38M
and 85.5M uninformative cytosines.

Inferred methylation calls capture known biology
To evaluate the quality of the inferred methylation status
calls and levels we examined the per-cytosine posterior
probability of being either unmethylated (U) or methy-
lated (M). This probability represents a measure of statis-
tical confidence in the underlying methylation call, with
a value of 1 being the most confident. We found that the
distribution of maximum posterior probability values for
imputed cytosines shows a clear peak around 1 and a tail
of lower confidence values (Fig. 3 and Additional file 1:
Figure S5 for the other replicates), suggesting that the
algorithm produces high-confidence methylation calls for
a large proportion of cytosines with missing data. Indeed,
58% (1.50M), 54% (3.96M) and 83% (6.43M) of imputed
cytosines in A. thaliana,O. sativa and Z. mayswere called
with high confidence (defined as posterior probability ≥
0.9), and these numbers increased to 91% (4.16M), 90%
(6.64M) and 93% (9.56M) for cytosines covered by only
one or two reads.
To assess whether the inferred methylation levels are

consistent with known biology, we constructed meta-
methylation profiles for annotated repeats and genes
using cytosines separated in three different categories:
informative (coverage ≥ 3), uninformative (coverage
= 1 or 2) and imputed cytosines (coverage = 0).
Regardless of coverage category, METHimpute confirms
that A. thaliana TE sequences are heavily methylated
in all sequence contexts, with a marked decrease in
methylation levels at their 5’ and 3’ ends (Fig. 4b
and Additional file 1: Figure S6b for the other repli-
cate). The CCA|CHY context shows the lowest methy-
lation levels and CG shows the highest, consistent with
Gouil and Baulcombe 2016 [45], and the ordering is con-
served for imputed and uninformative cytosines. Similar
profiles were detected for repeat elements inO. sativa and
Z. mays, with high CG, CCG and CWG methylation, and
very low levels of CAA, CTA, and particularly CCA|CHY
methylation, consistent with known results (Fig. 4d, f
and Additional file 1: Figure S6 for the other replicates)
[52].
In line with numerous methylome studies in Arabidop-

sis (e.g. [45, 53, 54]), METHimpute finds that A. thaliana
genes are intermediately methylated in CG context, and
essentially unmethylated at all other contexts. (Fig. 4a and
Additional file 1: Figure S6a for the other replicate). Genic
meta-methylation profiles for O. sativa and Z. mays were
generally similar to those of A. thaliana (Fig. 4c, e and
Additional file 1: Figure S6 for the other replicates), with
the exception that both crop species are known to also
methylate genic CHG context, probably owing to the fact

that genes in these complex genomes often overlap or
contain heavily methylated TE or repeat copies.
Taken together the above analyses illustrate two points:

first, METHimpute infers annotation-specific methyla-
tion profiles that are consistent with published reports;
and second, the methylation profiles inferred from
imputed or uninformative cytosines recapitulate the pat-
terns seen for highly-informative cytosines, indicating
that - regardless of coverage - the inferred methylation
calls are robust and biologically meaningful.

Saturation analysis for the performance assessment of
imputedmethylomes
METHimpute achieves high quality imputations by lever-
aging information from neighboring cytosines via the
estimated distance-dependent transition probabilities (see
“Methods” section). Therefore, confidence in the imputed
calls is higher for cytosines that are closer to informative
sites (Additional file 1: Figure S7). This spatial dependency
remains high over distances of 10-40 bp and then decays
to background levels. We reasoned that our imputation
method may therefore be relatively robust even in shallow
WGBS experiments.
To test this directly, we implemented a saturation analy-

sis similar to Libertini et al. 2016 [55], where we compared
high-coverage datasets with low-coverage subsets of these
datasets. Bam files withmapped reads for the Arabidopsis,
rice and maize replicates were merged to obtain samples
with 23.2X, 18.6X and 7.2X coverage per cytosine per
strand, respectively (Additional file 2: Table S1). These
merged files were downsampled to generate a series of
reduced datasets, ranging from 90 to 10% of the orig-
inal data (Additional file 2: Table S3). Upon downsam-
pling, the proportion of cytosines with zero read coverage
increased from 5% (23.2X) to 31% (13.47M, 2.6X) in
A. thaliana, from 11% (18.6X) to 40% (65.41M, 1.8X) in
O. sativa and from 14% (7.2X) to 37% (52.07M, 2.2X)
in the Z. mays data (Fig. 5d-f). We ran METHimpute on
each reduced dataset and calculated the F1-score in the
status calls relative to those obtained with the full data.
The F1-score is defined as the harmonic mean of preci-
sion and recall, and the status calls of the full dataset were
assumed as ground truth.
Our analysis shows that performance remains remark-

ably high despite drastic decreases in sequencing depth
(Fig. 5a-c, Additional file 1: Figure S8 with precision and
recall, Additional file 1: Figure S9 F1-score per context).
With data as low as 5X coverage per cytosine (strand-
specific), the F1-score was as high as 95% (U: 95%, M:
74%) in Arabidopsis, 97% (U: 97%,M: 88%) in rice and 99%
(U: 99% M: 98%) in maize. In general, annotations with a
large percentage of missing cytosines in the high coverage
datasets were less accurately called upon downsampling
(Additional file 1: Figure S4). These include in particular
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Fig. 3 Maximum posterior distributions for imputed cytosines (coverage = 0), uninformative cytosines (coverage = 1 or 2) and informative
cytosines (coverage ≥3). For Arabidopsis (a), rice (b) and maize (c), for each context. The figure shows the distributions of the maximum posterior
probabilities with density on the y-axis and the maximum posterior probability on x-axis. The maximum posterior probability, i.e. the confidence in
the methylation status calls, is generally lower for sites with less coverage
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Fig. 4 Enrichment profiles for genes (left panels) and transposable elements or repeats (right panels) for Arabidopsis (a, b), rice (c, d) and maize (e,
f), for each context. Sub-panels show the enrichment profiles for imputed (coverage = 0), uninformative (coverage = 1 or 2) and informative
cytosines (coverage ≥ 3). See the “Methods” section for definition of the recalibrated methylation level

transposable elements and repeats. The exception to this
trend were 5’ UTRs, which in all three species showed a
large percentage of cytosines with missing data but a low
amount of miscalled sites upon downsampling.
To put the above accuracy analysis into perspective,

we compared the HMM-based imputation method with
a much simpler method based on the commonly used
binomial test: Methylation states for informative cytosines
(>= 3 reads) were called with a binomial test, and methy-
lation states for missing and uninformative cytosines (< 3
reads) were imputed by assigning the majority methyla-
tion state of covered cytosines of the same context in
the 200bp neighborhood of the missing or uninformative
cytosine. Cytosines without any informative neighbors in
a 200bp neighborhood were not imputed and treated as
“undefined”, and therefore counted as false negatives in
the downsampled data if the full dataset was informative
in these positions. We find that the accuracy obtained
with this approach is less robust to average sequencing
depth.With only 5X data, the F1-score drops down to 93%
(U: 93%, M: 74%) in Arabidopsis, 94% (U: 93%, M: 84%) in
rice and 95% (U: 93%, M: 91%) in maize (Fig. 5a-c).
Finally, we also considered the fidelity of the recal-

ibrated methylation levels upon downsampling. Recal-
ibrated methylation levels can be interpreted as the
probability of observing a methylated read at a given

position, and they are highly correlated with original
methylation levels: For Arabidopsis, rice and maize, the
correlation (linear fit) was 0.91, 0.94 and 0.93, respectively
(p-value ≤ 2e−16). To assess their fidelity upon down-
sampling, we calculated the correlation between recali-
brated methylation levels per cytosine and per 100 bp
window to the full coverage dataset, and compared that
to the results obtained from the original methylation level
(Additional file 1: Figure S10). Per-cytosine recalibrated
methylation levels show slightly higher correlations than
original methylation levels, and with 10% of the origi-
nal data the correlations for Arabidopsis, rice and maize
are 0.89, 0.90 and 0.93, respectively. Window-based recal-
ibrated methylation levels showed the same correlation
performance as the original ones, with remarkably high
correlations even when only 10% of the original data was
retained (0.95, 0.95, 0.83 for Arabidopsis, rice, maize).
These results suggest that recalibrated methylation lev-
els can be used for downstream methylation analysis,
since they are correlated to original methylation levels
and are robust upon downsampling, while providing base-
resolution information even at low sequencing depth.
Overall, both for status calls and for recalibrated

methylation levels, METHimpute produces robust results
even at very low sequencing depth, suggesting that the
algorithm offers a cost-effective solution for methylome
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Fig. 5 Saturation analysis. a-c F1-score for METHimpute and the binomial test, compared to the full sample, respectively. The F1-score is the
harmonic mean of precision and recall. d-f Proportion of imputed cytosines. g-i Proportion of the genome in each state. The x-axis shows the
average strand-specific coverage per cytosine

studies of large genomes and for population-level studies
involving a large number of samples.

Re-calibrated estimates of genome-wide and
context-specific methylation levels
Plant species differ greatly in their genome-wide methy-
lation levels (GMLs, i.e. the proportion of cytosines that
are methylated) [3, 4]. In a recent survey of about 30
angiosperms, GMLs were found to be as low as 5% in

Theobroma cacao to as high as 43% in Beta vulgaris, with a
mean of about 16% [3, 39]. Much of this diversity appears
to be the result of differences in genome size and repeat
content, as well as differences in the efficiency of DNA
methylationmaintenance pathways [28]. Precise estimates
of GMLs are important for studying the evolutionary
forces that shape plant methylomes over short and long
time-scales, and for understanding genome-epigenome
co-evolution. However, obtaining GML estimates based
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on WGBS data is not trivial, as they are highly dependent
on the method used for methylation status calling and on
the depth of the sequencing experiment. In A. thaliana,
for instance, reportedGML estimates vary widely between
studies. This dependency is even larger when consider-
ing context-specific GMLs (i.e. the proportion of methy-
lated cytosines in a given context; CG-GMLs, CHG-
GMLs, CHH-GMLs), with CHH-GMLs being by far
the most variable between studies, with reported val-
ues ranging from as low as 1.51% [1] to as high as
3.91% [3].
In order to bypass many of the statistical issues in call-

ing methylation states, especially in shallow WGBS data,
recent studies have proposed so-called weighted genome-
wide methylation levels (wGMLs) as a proxy for GMLs. A
wGML is a non-statistical measure which is obtained by
counting the number of methylated reads over the total
number of reads at the genome-wide scale. Figure 5g-i
shows clearly that wGMLs are robust upon down-
sampling in any sequence context in the A. thaliana,
O. sativa and Z. mays data, thus justifying its use. By
contrast, GMLs calculated from base-resolution binomial
status calls (i.e. #mC/all Cs) are highly unstable, particu-
larly in non-CG contexts and when sequencing depth is
low (Fig. 5g-i).
In order to assess whether the re-calibrated methyla-

tion levels provided by METHimpute can also be used to
obtain robust estimates of GMLs, we calculated wGMLs
by summing the per-cytosine re-calibrated methylation
level genome-wide, weighted by coverage. Using this mea-
sure we find that METHimpute-derived wGMLs perform
nearly identical to naive wGMLs, both in terms of robust-
ness andmagnitude (Fig. 5g-i, Additional file 1: Figure S11
with replicates). This demonstrates that METHimpute
recalibrated levels are consistent with original methyla-
tion levels and known biology not only at the individual
cytosine level, but also aggregated over 100bp windows
and genome-wide, with the added advantage that they are
available for all positions in the genome.

METHimpute facilitates insights into bisulfite conversion
rates
One source of measurement noise in WGBS data is
the bisulfite conversion procedure prior to sequenc-
ing. Bisulfite treatment of DNA is typically performed
long enough so that all unmethylated cytosines are con-
verted to uracils. The conversion success (or rate) is
typically high. Most studies report conversion rates of
about 0.99, implying that only about 1% of all unmethy-
lated cytosines failed to convert. Knowledge of this rate
is important not only to verify that bisulfite reaction
was efficient but also to be able to separate biologi-
cal signal from noise in downstream analyses of the
data. Empirical estimates of the conversion rate are often

obtained by including unmethylated chloroplast and virus
genomes as controls in the WGBS workflow, and count-
ing the number of non-converted cytosines from the
mapped reads.
A helpful byproduct of the METHimpute fitting pro-

cedure is that the conversion rate can be directly esti-
mated from the sequenced material without requiring
auxiliary information from chloroplast or virus genomes.
METHimpute achieves this in the HMM framework by
estimating the probability, pU , of finding a methylated
read given that the underlying cytosine is unmethylated
(see “Methods” section), which can be used to derive the
conversion rate. To obtain these rates we focus on esti-
mates of pU in context CG to exclude potential biases
arising from the “fuzzy” maintenance of methylation at
CHG and CHH sites. ForA. thaliana andZ. mays our esti-
mated conversion rates were 0.989 and 0.961, respectively,
which is remarkably close to chloroplast-based estimates
of 0.993 and 0.970.
Although bisulfite conversion kits and protocols have

been optimized to achieve the highest conversion rate
possible the specificity of the reaction is not perfect. A
well-known trade-off is that some methylated cytosines
can be accidentally converted to uracils, and are later
falsely detected as unmethylated. Some controls (com-
mercial or artificially methylated DNA fragments) are
available to estimate this inappropriate conversion rate,
but, to our knowledge, they are not systematically used
in WGBS experiments. Some studies using such con-
trols have shown that the inappropriate conversion rate
(% of methylated cytosines converted to uracils) ranges
from 0.09 to 6.1% depending on the kit and protocol
used [56–58].
METHimpute approximates this value by estimating

the parameter pM for the M component (see Methods),
which can be used to calculate the probability of find-
ing an unmethylated cytosine given that the underlying
cytosine is truly methylated. Again, focusing on CG sites,
we estimate the methylated cytosines conversion rate at
6.3, 11.5 and 16% in O. sativa, Z. mays and A. thaliana,
respectively. Although these estimates are close to the
empirical rates reported in the literature, they are biased
upward most likely owing to the fact that the parame-
ter pM is partly confounded with methylation variation
arising from cellular heterogenity in the sampled tis-
sues. We therefore suspect that our estimates become
more accurate in situations where tissue heterogeneity is
minimized.
Nonetheless, the ability of METHimpute to provide an

accurate estimate of the conversion rate for unmethy-
lated cytosines and an upper-bound estimate for methy-
lated cytosines could be utilized to calibrate WGBS
experiments in the laboratory when no controls are
available.
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Discussion
A key advantage of WGBS over alternative measurement
technologies is its ability to provide base-resolution mea-
surements from bulk and - more recently - also from
single cell data. Since its first application in the model
plant A. thaliana in 2008 [53, 54], WGBS has become an
integral tool for studying the methylomes of increasingly
large plant genomes and for surveying patterns of natu-
ral methylome variation within and among plant species.
However, the relatively high costs associated with this
technology pose limits on the sequencing depths that can
be achieved within most experimental budgets. A typical
solution is to sequence methylomes far below satura-
tion, which results in substantial measurement noise and
missing data at the level of individual cytosines.
Here we presented METHimpute, a Hidden Markov

Model for the construction and imputation of complete
methylomes from shallow or deep WGBS data. We show
that our approach imputes high-confidence methylation
calls for uncovered cytosines that are sufficiently close to
informative cytosines (< 40 bp). For cytosines in widely
uncovered regions, our approach imputes low-confidence
calls which might be filtered out in downstream anal-
yses, since they do not contain more information than
background frequencies of methylation. A threshold for
filtering can be determined from the asymptotic behav-
ior of the maximum posterior probability as in Additional
file 1: Figure S7. In the presented analysis we have used
six different sequence contexts, but our implementation is
general enough to allow also other context specifications.
For example, the model could be extended to account
for different emission and transition parameters for every
context and annotation category (genes, TEs, CpG den-
sity, etc.), instead of context alone, although this would
only be possible for well-annotated genomes.
We recommend the use of METHimpute instead of

the binomial test for the analysis of WGBS data when-
ever methylation status calls are required. Furthermore,
METHimpute solves the problem of missing data in pop-
ulation epigenetic studies, which will facilitate the esti-
mation of epigenetic mutation rates and methylation site
frequency spectrum analyses.

Conclusions
Here we introduced METHimpute, an imputation-based
HMM for the construction of complete methylomes from
shallow or deep WGBS data. Our analyses show that the
algorithm can impute the methylation status of cytosines
with missing (i.e. zero read coverage) or uninformative
coverage (i.e. coverage of less than 3 reads), as well as
their recalibratedmethylation levels.We demonstrate that
these imputations are not only statistically robust, but also
biologically meaningful. Our estimates suggest that rou-
tine use of this algorithm could reduce sequencing costs

of typically sized methylome experiments without a sub-
stantial loss of biological information. The method works
with small, streamlined genomes like that of Arabidopsis
but also with large, repeat-rich genomes like those of most
commercial crops, thus making it a flexible software tool
for the analysis of DNA methylomes of a wide spectrum
of species. METHimpute is implemented as an R-package
and seamlessly integrates with the extensive bioinformatic
tool sets available through Bioconductor. The algorithm
has been extensively tested in plants, but it should also be
applicable in non-plant species.

Methods
HiddenMarkov Model for methylation calling
Outline
We define anN = 2 state HiddenMarkov Model (HMM),
where the states i represent unmethylated (U) and methy-
lated (M) cytosines. The emission densities for each state
are binomial distributions, which can be interpreted as
a binomial test on the number of methylated counts m
over total counts r. The probability parameter pi of the
binomial test can be interpreted as the probability of find-
ing m methylated counts out of r total counts, given the
state i. Note that in this definition 1−pU is the conversion
rate, i.e. the probability of a read showing non-methylation
when the cytosine is indeed non-methylated. Cytosines
are not equally spaced in the genome, and we therefore
chose a distance dependent transition matrix A, where
the distance dependent change in transition probabili-
ties is modeled by an exponential function. Furthermore,
to account for different sequence contexts, we imple-
mented context-specificity for both the binomial test and
the transition probabilities.

Mathematical description
The probability P of observing methylated mt and total rt
read count at a particular cytosine t in context ct can be
written as

Pt
(
mt , rt ,pct

) =
∑

i∈{U ,M}
γitBict

(
mt , rt , pict

)
, (1)

where γi are the posteriors (mixing weights) and Bi are
binomial distributions with context-specific parameter
pic. The binomial distribution is defined as

B(m, r, p) =
(
r
m

)
pm(1 − p)r−m. (2)

All probability parameters of the binomial tests (i.e.
the probabilities of a success) are estimated freely during
model training (next section). For C = 6 contexts and
N = 2 states,N ·C = 12 independent parameters pic need
to be fitted.
The distance dependent transition probabilities from

cytosine t in state i to cytosine t + 1 in state j, separated
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by distance dt,t+1 and in transition context ct,t+1, can be
described as

Aij,ct,t+1

(
Ao
ij,ct,t+1 , dt,t+1,Dct,t+1 ,N

)
= Ao

ij,ct,t+1 e
−dt,t+1/Dct,t+1

+ 1
N

(
1 − e−dt,t+1/Dct,t+1

)
.
(3)

Here, Ao
ij,ct,t+1

are the transition probabilities with-
out distance dependency (or for adjacent cytosines with
dt,t+1 = 0). Dct,t+1 is a constant that reflects how
fast neighboring cytosines lose correlation. The distance
dependency is constructed in such a way that all tran-
sitions Aij,ct,t+1 are equally likely for an infinite distance
dt,t+1 = ∞. For C = 6 contexts the model has C · C = 36
transition contexts and thus 36 different transition matri-
ces with dimensions N × N .
The constants Dc are determined by a non-linear

least-squares (nls) fit to the correlation decay between
cytosines in transition context ct,t+1 (see Additional file 1:
Figure S12 for all used transition contexts). The formula
for the fit is yc(d) = a0 ∗ e−d/Dc , where yc is the cor-
relation between neighboring cytosines at distance d in
transition context c. The parameters a0 and Dc are fitted
by the nls-fit.
The correlation is calculated between adjacent

cytosines, with no other cytosines in between. This
reflects the definition of the transition probabilities in
the Hidden Markov Model, where transitions are defined
from one cytosine to the next in the sequence.

Model fitting
Model parameters are fitted with the Baum-Welch
algorithm [59]. The distance-dependent transition proba-
bilities require modified updating formulas compared to a
standard Baum-Welch algorithm without distance depen-
dency. The derivation of the modified updating formulas
is detailed below, and uses notation introduced in [60].
The conditional expectation Q that needs to be maxi-

mized can be written as

Q =
N∑

i
γi,t=0 log (πi) +

N ,N ,T−1∑

i,j,t
ξijt log

(
Aij,ct,t+1

)

+
N ,T∑

i,t
γit log

(
fi
)
.

(4)

The updated transition probabilities A′o
ijc can be

obtained by solving ∂Q
∂Ao

ijc
= 0 using the method

of Lagrange multipliers to deal with the constraint

∑N
j Ao

ijc = 1.

A′o
ijc =

(T−1∑

t
δc,ct,t+1 ξijt

Ao
ijc

Aij,ct,t+1

∂Aij,ct,t+1

∂Ao
ij,ct,t+1

)

/⎛

⎝
T−1,N∑

t,j
δc,ct,t+1 ξijt

Ao
ijc

Aij,ct,t+1

∂Aij,ct,t+1

∂Ao
ij,ct,t+1

⎞

⎠ .

(5)

Here, δc,ct,t+1 is the Kronecker delta function, which
ensures that only terms in the correct transition context c
are included into the sum.
Similarly, the updated parameters for the binomial test

can be obtained by solving ∂Q
∂pic = 0. For independent

binomial tests, this yields

p′
ic =

( T∑

t
δc,ct γit mt

) /( T∑

t
δc,ct γit rt

)

. (6)

The methylation status it is determined by maximizing
over the posterior probabilities it = argmaxi (γit).
Finally, we can use the posterior probabilities γU|M,t and

estimated parameters pic to define a recalibrated methy-
lation level m′

t that is defined on every cytosine t in the
genome and can serve as input for other applications:

m′
t = pU ,ct · γU ,t + pM,ct · γM,t (7)

Plants DNAmethylation data
We used published data (fastq files containing bisulfite
sequencing reads) from three model plant species: Ara-
bidopsis thaliana, rice (Oryza sativa Japonica cv. Nippon-
bare) and maize (Zea mays B73). We used three replicates
for rice and maize, and two replicates for Arabidopsis.
Each sample was mapped to the latest available version of
the reference genome for this species. Details and refer-
ences on these datasets, reference genomes and annota-
tions files, as well as additional alignment metrics can be
accessed in Additional file 2: Table S2.

Mapping of bisulphite sequenced (BS-seq) reads and
construction of DNAmethylomes
Read sequences (Additional file 2: Table S2) were qual-
ity trimmed and adapter sequences were removed with
Cutadapt (version 1.9; python version 2.7.9; [61]). Trim-
ming was performed on both ends using the single-end
mode and the quality threshold was set to a phred score
of 20 (q = 20). We applied the default error rate of 10%
for the removal of the adapter sequences. Afterwards, we
discarded reads shorter than 40 base pairs. Reads were
subsequently mapped to an indexed genome. The maxi-
mum allowed proportion of mismatches was set to 0.05
(m = 0.05, 5 mismatches per 100 bp) and the maximum
insert size was set to 1000 bp (X = 1000). BS-Seeker2
(v2.0.10; [44]) using Bowtie2 (version 2.2.2; [62]) was cho-
sen for the alignment of the reads. Samtools (version 1.3.1;
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using htslib 1.2.1; [63]) was used to remove duplicates
(samtools rmdup -s) and to sort bam files (samtools sort).
Methylomes were subsequently constructed through the
bs_seeker2-call_methylation.py module from BS-Seeker2
(v2.0.10; [44]). CGmap files containing methylome infor-
mation were used as an input for METHimpute.

Additional files

Additional file 1: Figures S1-S12. (PDF 1832 kb)

Additional file 2: Tables S1-S5. (XLSX 23 kb)

Abbreviations
5mC: 5-methyl cytosine; CpG: Cytosine followed by a guanine; GML: Genome
wide methylation level; HMM: Hidden Markov Model; M: Methylated state of
the HMM; mCG: Methylated CG; meQTL: Methylation quantitative trait locus;
mSFS: Methylation site frequency spectrum; NGS: Next generation
sequencing; TE: Transposable element; U: Unmethylated state of the HMM;
WGBS: Whole-genome bisulfite sequencing; wGML: Weighted genome wide
methylation level

Acknowledgements
We thank R. Schmitz and C. Niederhuth with their help in accessing the maize
and rice annotation files and providing data, and N. Springer and R. Schmitz
for their quick feedback on this project.

Funding
FJ and DR acknowledge support from the Technical University of
Munich-Institute for Advanced Study funded by the German Excellence
Initiative and the European Union Seventh Framework Programme under
grant agreement #291763. MCT acknowledges support from the Helmholtz
Association’s Initiative and Networking Fund and from the University of
Groningen (Rosalind Franklin Fellowship).

Availability of data andmaterials
METHimpute can be downloaded from http://bioconductor.org/packages/
methimpute. The data sources used in this publication are listed in Additional
file 2: Table S1.

Authors’ contributions
AT, MC-T and FJ conceived this project; AT implemented the model with input
from MC-T, FJ and DR; AT, DR, RW and AV analyzed the data; AT, MC-T and FJ
wrote the paper. All authors have read and approved the manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details
1European Research Institute for the Biology of Ageing, University of
Groningen, University Medical Centre Groningen, A. Deusinglaan 1, NL-9713
AV Groningen, The Netherlands . 2Department of Plant Sciences, Hans
Eisenmann-Zentrum for Agricultural Sciences, Technical University Munich,
Liesel-Beckmann-Str. 2, 85354 Freising, Germany . 3Institute of Computational
Biology, Helmholtz Zentrum München, Ingolstädter Landstr. 1, 85764
Neuherberg, Germany . 4TUM School of Life Sciences Weihenstephan,
Technical University of Munich, Emil-Erlenmeyer-Forum 2, 85354 Freising,
Germany.

Received: 15 January 2018 Accepted: 3 April 2018

References
1. Feng S, Cokus SJ, Zhang X, Chen P-Y, Bostick M, Goll MG, Hetzel J, Jain J,

Strauss SH, Halpern ME, Ukomadu C, Sadler KC, Pradhan S, Pellegrini M,
Jacobsen SE. Conservation and divergence of methylation patterning in
plants and animals. Proc Natl Acad Sci. 2010;107(19):8689–94. https://doi.
org/10.1073/pnas.1002720107.

2. Zemach A, McDaniel IE, Silva P, Zilberman D. Genome-Wide
Evolutionary Analysis of Eukaryotic DNA Methylation. Science.
2010;328(5980):916–9. https://doi.org/10.1126/science.1186366.

3. Niederhuth CE, Bewick AJ, Ji L, Alabady M, Kim KD, Page JT, Li Q, Rohr NA,
Rambani A, Burke JM, Udall JA, Egesi C, Schmutz J, Grimwood J,
Jackson SA, Springer NM, Schmitz RJ. Widespread natural variation of
DNA methylation within angiosperms. Genome Biol. 2016;17(194).
https://doi.org/10.1186/s13059-016-1059-0.

4. Takuno S, Ran J-H, Gaut BS. Evolutionary patterns of genic DNA
methylation vary across land plants. Nat Plants. 2016;2(January):15222.
https://doi.org/10.1038/nplants.2015.222.

5. Law JA, Jacobsen SE. Establising, maintaining and modifying DNA
methylation patterns in plants and animals. Nat Rev Genet. 2010;11(3):
204–20. https://doi.org/10.1038/nrg2719.Establishing.

6. Matzke Ma, Kanno T, Matzke AJM. RNA-Directed DNA Methylation: The
Evolution of a Complex Epigenetic Pathway in Flowering Plants.
Annu Rev Plant Biol. 2014;(December 2014):1–25. https://doi.org/10.
1146/annurev-arplant-043014-114633.

7. Cortijo S, Wardenaar R, Colome-Tatche M, Gilly A, Etcheverry M,
Labadie K, Caillieux E, Hospital F, Aury J-M, Wincker P, Roudier F,
Jansen RC, Colot V, Johannes F. Mapping the Epigenetic Basis of
Complex Traits. Science. 2014;343(6175):1145–8. https://doi.org/10.1126/
science.1248127.

8. Johannes F, Porcher E, Teixeira FK, Saliba-Colombani V, Simon M, Agier N,
Bulski A, Albuisson J, Heredia F, Audigier P, Bouchez D, Dillmann C,
Guerche P, Hospital F, Colot V. Assessing the impact of transgenerational
epigenetic variation on complex traits. PLoS Genet. 2009;5(6). https://doi.
org/10.1371/journal.pgen.1000530.

9. Reinders J, Wulff BBH, Mirouze M, Marí-Ordóñez A, Dapp M, Rozhon W,
Bucher E, Theiler G, Paszkowski J. Compromised stability of DNA
methylation and transposon immobilization in mosaic Arabidopsis
epigenomes. Genes and Development. 2009;23(8):939–50. https://doi.
org/10.1101/gad.524609.

10. Mirouze M, Lieberman-Lazarovich M, Aversano R, Bucher E, Nicolet J,
Reinders J, Paszkowski J. Proc Natl Acad Sci USA. 2012;109(15):5880–5.
https://doi.org/10.1073/pnas.1120841109.

11. Yelina NE, Lambing C, Hardcastle TJ, Zhao X, Santos B, Henderson IR.
DNA methylation epigenetically silences crossover hot spots and controls
chromosomal domains of meiotic recombination in Arabidopsis. Genes
Dev. 2015;29(20):2183–202. https://doi.org/10.1101/gad.270876.115.

12. Colome-Tatche M, Cortijo S, Wardenaar R, Morgado L, Lahouze B,
Sarazin A, Etcheverry M, Martin A, Feng S, Duvernois-Berthet E, Labadie K,
Wincker P, Jacobsen SE, Jansen RC, Colot V, Johannes F. Features of the
Arabidopsis recombination landscape resulting from the combined loss
of sequence variation and DNA methylation. Proc Natl Acad Sci.
2012;109(40):16240–5. https://doi.org/10.1073/pnas.1212955109.

13. Melamed-Bessudo C, Levy aa. PNAS Plus: Deficiency in DNA methylation
increases meiotic crossover rates in euchromatic but not in heterochromatic
regions in Arabidopsis. Proc Natl Acad Sci. 2012;109(16):981–8. https://
doi.org/10.1073/pnas.1120742109.

14. Tsukahara S, Kobayashi A, Kawabe A, Mathieu O, Miura A, Kakutani T.
Bursts of retrotransposition reproduced in Arabidopsis. Nature.
2009;461(7262):423–6. https://doi.org/10.1038/nature08351.

15. Mirouze M, Reinders J, Bucher E, Nishimura T, Schneeberger K,
Ossowski S, Cao J, Weigel D, Paszkowski J, Mathieu O. Selective
epigenetic control of retrotransposition in Arabidopsis. Nature.
2009;461(September):1–5. https://doi.org/10.1038/nature08328.

16. Miura A, Yonebayashi S, Watanabe K, Toyama T, Shimada H, Kakutani T.
Mobilization of transposons by amutation abolishing full DNA methylation
in Arabidopsis. Nature. 2001;411(May):212–4. https://doi.org/10.1038/
35075612.

https://doi.org/10.1186/s12864-018-4641-x
https://doi.org/10.1186/s12864-018-4641-x
http://bioconductor.org/packages/methimpute
http://bioconductor.org/packages/methimpute
https://doi.org/10.1073/pnas.1002720107
https://doi.org/10.1073/pnas.1002720107
https://doi.org/10.1126/science.1186366
https://doi.org/10.1186/s13059-016-1059-0
https://doi.org/10.1038/nplants.2015.222
https://doi.org/10.1038/nrg2719.Establishing
https://doi.org/10.1146/annurev-arplant-043014-114633
https://doi.org/10.1146/annurev-arplant-043014-114633
https://doi.org/10.1126/science.1248127
https://doi.org/10.1126/science.1248127
https://doi.org/10.1371/journal.pgen.1000530
https://doi.org/10.1371/journal.pgen.1000530
https://doi.org/10.1101/gad.524609
https://doi.org/10.1101/gad.524609
https://doi.org/10.1073/pnas.1120841109
https://doi.org/10.1101/gad.270876.115
https://doi.org/10.1073/pnas.1212955109
https://doi.org/10.1073/pnas.1120742109
https://doi.org/10.1073/pnas.1120742109
https://doi.org/10.1038/nature08351
https://doi.org/10.1038/nature08328
https://doi.org/10.1038/35075612
https://doi.org/10.1038/35075612


Taudt et al. BMC Genomics  (2018) 19:444 Page 13 of 14

17. Singer T, Yordan C, Martienssen RA. Robertson’s Mutator transposons in A.
thaliana are regulated by the chromatin-remodeling gene Decrease in
DNA Methylation (DDM1). Genes Dev. 2001;15(5):591–602. https://doi.
org/10.1101/gad.193701.

18. Cheng C, Tarutani Y, Miyao A, Ito T, Yamazaki M, Sakai H, Fukai E,
Hirochika H. Loss of function mutations in the rice chromomethylase
OsCMT3a cause a burst of transposition. Plant J. 2015;83(6):1069–81.
https://doi.org/10.1111/tpj.12952.

19. Secco D, Wang C, Shou H, Schultz MD, Chiarenza S, Nussaume L, Ecker JR,
Whelan J, Lister R. Stress induced gene expression drives transient DNA
methylation changes at adjacent repetitive elements. eLife. 2015;4(July):
09343. https://doi.org/10.7554/eLife.09343.

20. Zhang X. Dynamic differential methylation facilitates pathogen stress
response in Arabidopsis. Proc Natl Acad Sci. 2012;109(32):12842–3.
https://doi.org/10.1073/pnas.1210292109.

21. Yu A, Lepère G, Jay F, Wang J, Bapaume L, Wang Y, Abraham A-L,
Penterman J, Fischer RL, Voinnet O, Navarro L. Proc Natl Acad Sci USA.
2013;110(6):2389–94. https://doi.org/10.1073/pnas.1211757110.

22. López Sánchez A, Stassen JHM, Furci L, Smith LM, Ton J. The role of DNA
(de)methylation in immune responsiveness of Arabidopsis. Plant J.
2016;88(3):361–74. https://doi.org/10.1111/tpj.13252.

23. Schmitz RJ, Schultz MD, Lewsey MG, O’Malley RC, Urich MA, Libiger O,
Schork NJ, Ecker JR. Transgenerational Epigenetic Instability Is a Source of
Novel Methylation Variants. Science. 2011;334(6054):369–73. https://doi.
org/10.1126/science.1212959.

24. Becker C, Hagmann J, Müller J, Koenig D, Stegle O, Borgwardt K,
Weigel D. Spontaneous epigenetic variation in the Arabidopsis thaliana
methylome. Nature. 2011;480(7376):245–9. https://doi.org/10.1038/
nature10555.

25. Jiang C, Mithani A, Belfield EJ, Mott R, Hurst LD, Harberd NP.
Environmentally responsive genome-wide accumulation of de novo
Arabidopsis thaliana mutations and epimutations. Genome Res.
2014;24(11):1821–9. https://doi.org/10.1101/gr.177659.114.

26. van der Graaf A, Wardenaar R, Neumann DA, Taudt A, Shaw RG, Jansen RC,
Schmitz RJ, Colomé-Tatché M, Johannes F. Rate, spectrum, and evolutionary
dynamics of spontaneous epimutations. Proc Natl Acad Sci USA.
2015;112(21):6676–81. https://doi.org/10.1073/pnas.1424254112.

27. Quadrana L, Colot V. Plant Transgenerational Epigenetics. Annu Rev
Genet. 2016;50(1):467–91. https://doi.org/10.1146/annurev-genet-
120215-035254.
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