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Abstract
Mass spectrometry imaging (MSI) has provided many results with translational character, which still have to be proven
robust in large patient cohorts and across different centers. Although formalin-fixed paraffin-embedded (FFPE) specimens
are most common in clinical practice, no MSI multicenter study has been reported for FFPE samples. Here, we report the
results of the first round robin MSI study on FFPE tissues with the goal to investigate the consequences of inter- and
intracenter technical variation on masking biological effects. A total of four centers were involved with similar MSI
instrumentation and sample preparation equipment. A FFPE multi-organ tissue microarray containing eight different types
of tissue was analyzed on a peptide and metabolite level, which enabled investigating different molecular and biological
differences. Statistical analyses revealed that peptide intercenter variation was significantly lower and metabolite
intercenter variation was significantly higher than the respective intracenter variations. When looking at relative univariate
effects of mass signals with statistical discriminatory power, the metabolite data was more reproducible across centers
compared to the peptide data. With respect to absolute effects (cross-center common intensity scale), multivariate classifiers
were able to reach on average > 90% accuracy for peptides and > 80% for metabolites if trained with sufficient amount of
cross-center data. Overall, our study showed that MSI data from FFPE samples could be reproduced to a high degree across
centers. While metabolite data exhibited more reproducibility with respect to relative effects, peptide data-based classifiers
were more directly transferable between centers and therefore more robust than expected.
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Introduction

Mass spectrometry imaging (MSI) is a technology, which al-
lows the investigation of spatial distributions of ionized mol-
ecules from surfaces [1]. The spatial character of MSI has
especially proven useful in biomedical research to unscramble
the cellular and morphological complexity of biological tissue
specimens [2]. This has led in many studies to the finding of
disease- and cell-type-specific molecular profiles in tissue-
related pathologies [3]. Frequently, these profiles are ascribed
diagnostic or prognostic potential in a prospective clinical
setting [4]. But results with translational ambition have to be
examined sufficiently to prove a robust and reproducible ap-
plication in large patient cohorts and across different centers
before they can become Bbedside^ [5].

Few biomedically oriented multicenter MSI studies
have already been conducted on fresh-frozen tissues [6,
7]. Dekker et al., for instance, reported the reproducibility
of three out of four protein markers for stromal activation
in breast cancer between two centers [7]. With respect to
the clinically more common formalin-fixed paraffin-em-
bedded (FFPE) tissues, only one study has analyzed sam-
ples from various centers albeit in a centralized way [8].
While the analysis of 102 tissues from 11 countries found
MSI to provide a better prediction for clinical outcome
than histopathology [8], the centralized design of the
study overlooked the potential interlaboratory technical
variation for future on-site implementations. It is therefore
important to get an understanding of the degree of
intercenter technical variation and its effect on masking
biological effects.

This is addressed by a round robin design, which is usu-
ally the first step toward clinical multicenter studies [9]. A
round robin aims for standardization and quantification of
interlaboratory variation given similar or identical samples,
experimental protocols, and instrumentation [10, 11]. A
bicenter round robin study on frozen tissue has already
proven the reproducibility (intercenter) and repeatability
(intracenter) of desorption electrospray ionization MSI
[12].

In the presented study, the first round robin MSI study on
FFPE tissues with the goal to investigate the consequences of
inter- and intracenter technical variation on masking biologi-
cal effects was performed. A total of four centers with similar
or equal MS instrumentation (Bruker Ultraflex II, III, or
UltrafleXtreme) and sample preparation equipment
(SunChrom SunCollect sprayer for matrix and trypsin appli-
cation) were involved in this study. FFPE tissue has been
chosen to match clinical practice and the ease of sample dis-
tribution for future multicenter studies. For the purpose of the
study, a multi-organ tissue microarray (TMA) was constructed
containing samples from eight different mouse organs, which
enabled investigating various biological differences. Given

the possibility to extract peptide and metabolite informa-
tion from FFPE tissues, the study was performed for both
molecular classes using slightly adapted versions of recent-
ly published protocols by two of the participating centers
[13, 14].

Given this scenario, this study will investigate for each of
the two molecular classes the degree of reproducibility for
univariate statistical testing and the applicability of univariate
or multivariate classifiers across different centers.

Material and methods

Material and logistics

A multi-organ tissue microarray was constructed by assem-
bling 16 two-millimeter-sized tissue punches from formalin-
fixed paraffin-embedded tissues of eight organs (brain, colon,
heart, kidney, liver, lung, pancreas, and skeletal muscle) from
two wild-type mice (Fig. 1a). After sacrifice, the rodent tissue
samples (4 mm thick) were fixed in 4% (vol/vol) neutral-
buffered formalin (Sigma-Aldrich, Germany) at room temper-
ature, routinely prepared for paraffin embedding with an au-
tomatic processor (Tissue-Tek® VIPTM, Sakura, Europe),
and finally embedded in paraffin wax. Consecutive 6-μm sec-
tions were made on a paraffin microtome (HM325, Microm,
Germany) and placed separately on previously poly-L-lysine-
coated indium-tin-oxide glass slides (Bruker Daltonik,
Bremen, Germany) as described before [14]. Each of the four
participating centers (affiliations 1, 2, 4, and 6, and further
anonymized to centers 1, 2, 3, and 4) received randomized
five virtually consecutive sections with the task to perform
the experiments within 3 weeks after reception. Keeping one
slide as backup, centers 2 and 3 had to perform at least one
metabolite and three peptide experiments and centers 1 and 4,
at least one peptide and three metabolite experiments (Fig. 1b
and Table 1).

Sample preparation

The protocols for metabolite and tryptic peptide experiments
were based on recently published protocols [13, 14], and the
chemicals used are listed per center in Electronic supplemen-
tary material (ESM), Table S1. In both protocols, the tissue
section was at first adhered to the slide by warming on a
heating block at 60 °C for 1 h.

For metabolite experiments, paraffin was removed by two
subsequent 8-min xylene washes followed by drying at room
temperature and the application of fiducial markers. The ma-
trix (10 mg/mL 9-aminoacridine hydrochloride monohydrate
in 70% methanol) was prepared as described previously [14]
and applied onto the sample with the SunCollect spraying
system (SunChrom, Friedrichsdorf, Germany) using the
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following parameters: x = 0.5 mm; y = 2.0 mm; z = 20 mm;
speed(x,y) = med(1) or 900 mm/min; flow rates: layers 1 to 3
at 10, 20, and 30 μL/min, respectively, and layers 4 to 8 at
40 μL/min.

For tryptic peptide experiments, paraffin was removed by
two xylene washes for 5 and 10 min. Then the slides were
washed twice for 2 min in 100% ethanol and twice for 5 min
in ultrapure Milli-Q water. In centers 2, 3, and 4, the antigen

retrieval was performed with 10 mM citric acid monohydrate at
pH 6 as buffer in the Antigen Retriever 2100 (AptumBiologics,
Southampton, UK) according to the manufacturer’s instruc-
tions. Center 1 performed the antigen retrieval in a water bath
at 97 °C in 10mM citric acid buffer (pH 6) for 30min. After the
antigen retrieval, slides were allowed to cool to room tempera-
ture, followed by washing them twice for 1 min in ultrapure
water and drying them for 15 min in a desiccator. The 0.02-μg/
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Fig. 1 This round robin study made use of a tissue microarray (TMA),
which contained 16 needle core biopsies from eight different organs and
two different wild-type mice (a). Twenty consecutive sections of this
TMAwere distributed in a randomized order to each of the four partici-
pating centers (each center receives 5 sections), together with a concen-
tration series of a bovine serum albumin (BSA) digest (b, top). Centers 2

and 3 were required to measure at least one of the samples on a metabolite
level and three on a peptide level, and centers 1 and 4 vice versa (b,
middle). The data was then collected from all centers and analyzed cen-
trally (b, bottom). The preprocessing of the data also included a central-
ized manual annotation of the tissue (c)

Table 1 Technical equipment and provided datasets of consortium members

Center Delivered datasets Instrumentation

Metabolites Peptides Mass spectrometer Spray robot Antigen retrieval system Optical slide scanning system

1 4 1 Ultraflex III, Bruker Daltonics SunCollect, SunChrom Antigen Retrieval in 97 °C
water bath

Mirax Desk, Zeiss

2 1 3 UltrafleXtreme, Bruker Daltonik SunCollect, SunChrom Antigen Retriever 2100,
Aptum Biologics

Mirax Desk, Zeiss

3 1 3 UltrafleXtreme, Bruker Daltonik SunCollect, SunChrom Antigen Retriever 2100,
Aptum Biologics

IntelliSite Ultra-Fast Scanner,
Philips

4 4 1 Ultraflex II, Bruker Daltonik SunCollect, SunChrom Antigen Retriever 2100,
Aptum Biologics

Mirax Desk, Zeiss
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μL trypsin solution was prepared just before its application and
sprayed with the SunCollect spraying system (SunChrom) with
the following parameters: x = 0.5 mm; y = 1.0 mm; z = 25 mm;
speed(x,y) = med(1) or 900 mm/min; flow rates: layers 1 to 15
at 10μL/min. Incubation of the slide was done for 18 h at 37 °C
in a saturated environment using an airtight box filled with
100 mL of 50% MeOH and 50% Milli-Q water. The next
day, fiducial markers were placed on the slide before the matrix
(7 mg/mL alpha-cyano-4-hydroxycinnamic acid in 50% aceto-
nitrile/0.2% trifluoroacetic acid) was applied with the
SunCollect sprayer (SunChrom) using the following parame-
ters: x = 0.5 mm; y = 2.0 mm; z = 26 mm; speed(x) = low(7) or
490 mm/min; speed(y) = med(3) or 1055 mm/min; flow rates:
layers 1 to 3 at 10, 20, and 30μL/min, respectively, and layers 4
to 7 at 40 μL/min.

Quality controls

Although all centers shared very similar instrumentation (Table
1), eachMSI experiment was preceded by the measurement of
a centrally distributed dilution series of a bovine serum albu-
min digest (Pierce™ BSA Protein Digest, # 88341, Thermo
Fisher) in order to monitor potential intra- and intercenter dif-
ferences in instrument performance. This concentration series
was prepared centrally (ESM, Protocol S1) and shipped to all
remaining partners on dry ice. Finally, each local laboratory
mixed each dilution again 1:1 with their locally prepared ma-
trix (7 mg/mL alpha-cyano-4-hydroxycinnamic acid in 50%
acetonitrile/0.2% trifluoroacetic acid); 2 μL of each dilution
was then pipetted onto an AnchorChip target plate (Bruker
Daltonik) leading to absolute amounts in the spotted volume
in the pico- to femtomole range.

For each droplet, 2500 spectra were acquired in random
walk mode (50 spectra per step) over an area with a 500-μm
diameter with the same settings as for the tryptic peptide MSI
experiments (see below).

Mass spectrometry imaging measurements

Before every measurement, the ion source was cleaned with
isopropanol or ethanol. Metabolite measurements were per-
formed in reflector mode with negative polarity, in the m/z
range 200–1000 with suppression up to m/z 200, and a mini-
mum sampling rate of 2 GS/s. As the spatial resolution was
chosen to be 70 μm, the laser focus was set to medium. At
each spot, 200 spectra were accumulated in random walk
movement with 25 spectra per step. Spectra were smoothed
(Gaussian filter, 2 cycles with a width of m/z 0.005) and base-
line subtracted (tophat filter) on-the-fly via FlexAnalysis
(Bruker Daltonik).

Peptide measurements were performed in positive mode, in
the m/z range 800–4000 with suppression up to m/z 700, a
minimum sampling rate of 2 GS/s, and a spatial resolution

of 70 μm. At each spot, 500 spectra were accumulated in
random walk movement with 50 spectra per step. Spectra
were smoothed (Gaussian filter, 2 cycles with a width of m/z
0.02) and baseline subtracted (tophat filter) on-the-fly via
FlexAnalysis (Bruker Daltonik).

Before the start of any measurement, the mass spectrometer
was calibrated using phosphorus red, which was dissolved in
acetone and spotted (1 μL) on the same glass slide into an area
with matrix. Each center optimized the laser intensity in the
very first experiment according to the subjective opinion of
the local experimenter and left it constant for the rest of the
project.

After measurements, the matrix was removed by a wash in
70% EtOH and stained for hematoxylin and eosin using local
protocols. Optical images from the slides were obtained by
local high-resolution slide scanners (Table 1) and coregistered
to the MSI data in the FlexImaging software (Bruker
Daltonik).

Data management and preprocessing

Each participant uploaded all the acquired data to a common
FTP server which enabled the annotation of the MSI data
based on the optical images in FlexImaging (Bruker
Daltonik) by a single center (Fig. 1c).

The bovine serum albumin (BSA) control measurement
data was also preprocessed centrally following the description
that can be found in the ESM, Protocol S2. Ultimately, the
spectra were tested for the presence of nine BSA peptides
peaks within a 300-ppm mass error tolerance and a signal-
to-noise threshold of 3 to define the lower limit of detection
for each peak and dilution.

The MSI data was preprocessed by first recalibrating four
datasets in FlexAnalysis due to the presence of mass shifts
(ESM, Protocol S3). Once recalibrated, all the nonreduced
MSI data was merged in SCiLS Lab (v. 2016b, Bruker
Daltonik) for each molecular class separately. During the im-
port, both peptide and metabolite spectra underwent baseline
removal with the convolution algorithm (width = 20) and au-
tomatic resampling. In SCiLS Lab, all peptide spectra were
normalized on the total ion count (TIC) and metabolite spectra
on the root mean square value (RMS).

After importing, all the annotated tissue regions were
combined and an average tissue spectrum for each molec-
ular class was generated. These overview spectra were then
exported for peak picking to mMass (ESM, Table S2) [15].
The detected peaks were re-imported into SCiLS Lab and
optimal peak intervals were defined for the peptide
(200 ppm) and metabolite datasets (0.15 Da). Finally, the
maximum intensity for each peak and tissue core region
was exported for all three peak lists into a CSV file for
further statistical analysis.
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Data analysis

The CSV files were imported into the R statistical environ-
ment (v. 3.4.2) [16]. If not mentioned otherwise, standard
parameterization was used for all subsequently described
methods. The initial principal component analysis was done
without scaling to reveal influential mass signals in a biplot
(Fig. 2b, c). Afterwards, influential and sample preparation-
related peaks were removed whose Pearson correlation coef-
ficients were greater than 0.75 to signals of the trypsin autol-
ysis peptide (m/z 842.5) or the 9-aminoacridine matrix (m/z
229.1 = [M+Cl]−) for the peptide and metabolite MSI peak
lists, respectively (ESM, Table S2).

A structured overview of all subsequently described data
analysis methods is shown in ESM, Table S3. Coefficients of
variation were calculated based on the estimated variance
components yielded bymixed-effect models using the R pack-
age ‘lme4’ divided by the mean intensity of each respective
peak. In these models, the tissue type was considered a fixed
effect and experiment and center random effects. For compar-
isons within a molecular class, differences in the coefficients
of variation between levels (intra- vs. intercenter) were inves-
tigated using the sign test. Differences in coefficients of vari-
ation between peptides and metabolites were studied using
Mann-WhitneyU test. Univariate statistical testing for finding
discriminating masses within centers and between each pair of
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Fig. 2 To monitor the instruments’ sensitivity, the lowest limit of
detection (=highest dilution factor) was determined for nine bovine
serum album (BSA) peptides (vertical gray lines) before any mass spec-
trometry imaging (MSI) experiment (a). These instrument sensitivity pro-
files were compared to the behavior of the corresponding MSI tissue

profiles in the principal component analysis (PCA) space for the detection
of potential experimental outliers (b, c). The PCA plots also show the
most influential m/z signals for each principal component (red arrows)
such as m/z 842.521, which is an autolysis product of trypsin, or m/z
229.117, which is the matrix 9-aminoacridine
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tissue type was performed using Student’s t test followed by
Benjamini-Hochberg correction for multiple testing. Center-
wide discriminatory power was assessed by meta-analysis via
a random-effects model and the standardized mean difference
as outcome measure (R package ‘metafor’). For all mentioned
tests, p values ≤ 0.05 were considered statistically significant.

Univariate classificatory power for each peak to separate
two tissue types was evaluated by determining an optimal
cutoff value (Fig. 3a) using the CART algorithm in the R
package ‘rpart’. To overcome overfitting, the CART model
was pruned to have only one branch at the root by setting
parameters to: minsplit = 1, maxdepth = 1, minbucket = 1,
and cp = 0.001. Supervised multivariate classification was
performed using the random forest algorithm (R package
‘randomForest’), which was fed with the 70 most discriminat-
ing masses sorted by their p values as determined by an up-
front analysis of variance.

Results

For this round robin study, consecutive sections of a formalin-
fixed paraffin-embedded tissue microarray (TMA) containing
16 biopsies from eight different mice organs were distributed
among the four participants (Fig. 1a). The TMAs were mea-
sured in each center on a metabolite and peptide level. The
data from all contributors was gathered, annotated, merged,
and analyzed centrally (Fig. 1b). Peak picking and subsequent
cleanup led to 165 and 189 mass signals in the peptide and
metabolite datasets, respectively (ESM, Table S2). Due to a
significant core loss of liver and kidney tissues in the peptide

experiments, these organs were excluded from further
analysis.

Quality controls and outlier detection

Each MSI experiment was preceded by quality control mea-
surements of a centrally distributed concentration series of
BSA peptides. All centers showed similar BSA sensitivity
profiles, although with some intracenter variation. We next
investigated if these sensitivity profiles can be related to the
corresponding MSI peptide and metabolite tissue profiles in
the principal components analysis (PCA) space (Fig. 2). The
PCA biplot not only shows that peptide measurements 2 and 3
of center 2 are different than the remaining experiments, but
also that their dissimilarity is mostly attributed to the variables
m/z 861.1 (matrix cluster: M4KNa3-H3) andm/z 842.5 (a tryp-
sin autolysis product [17]), and hence not related to the instru-
ment performance but rather to sample preparation. In con-
trast, the deviation of metabolite experiment 1 of center 2 was
not related to any variable in particular sincem/z 229.1, which
is 9-aminoacridine + chloride [18], stands orthogonal to prin-
cipal component 2, which discriminates this experiment from
the rest. The corresponding BSA control measurement pre-
cedingmetabolite experiment 1 of center 2 (Fig. 2a), however,
does not suggest a lower instrument performance. In contrast,
metabolite experiment 1 of center 3 is not shown as it was
excluded from the analysis due to a wrongly selected instru-
mental method during acquisition.

The variance-driven PCA analysis also gives an impression
of the intra- and intercenter relations and distances of the
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Fig. 3 One of the goals of this round robin study is to investigate the
effect of technical variance on masking the biological effect between the
different organs on the TMA. a The difference in detected intensities due
to the biological effect (purple lines) and the scattering of the intensities
due to intra- (orange polygon) and intercenter (red polygon) technical

variance is illustrated. The latter both have been quantified as coefficients
of variation for each mass signal and molecular class by a linear mixed-
effects model (b). These variations might hamper absolute comparisons
of intensities, such as the transfer of single-center optimized absolute
cutoffs to discriminate tissue types in other centers (green dashed line, a)
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single experiments and therefore of the variances caused by
the intra- and intercenter effects, which can be quantified.

Quantification of intra- and intercenter variation

One of the goals of this round robin study was to investigate
the effect of technical variation on masking the biological
effect between the different organs on the TMA. Figure 3a
illustrates the difference in detected intensities due to biolog-
ical effects and the scattering of the intensities due to intra- and
intercenter technical variation. Both have been quantified as
coefficients of variation for each mass signal and molecular
class by a linear mixed-effects model. The results are present-
ed in Fig. 3b which show that for the peptide dataset, the
intracenter experimental variation (median = 0.30) of peptides
was significantly higher than the intercenter variation of pep-
tides (median = 0.12; p < 0.001) and also significantly higher
than the intracenter experimental variation of metabolites (me-
dian = 0.22; p < 0.001). However, the latter was observed to
be 2.5 times lower than the intercenter variation of metabolites
(median = 0.55; p < 0.001). This observation might hamper

absolute intercenter comparisons of intensities on a metabolite
level.

Reproducibility of univariate tissue comparisons

The reproducibility of univariate signals was assessed in two
forms: first, by looking at intensity patterns for each mass
signal across all tissues within one experiment and compare
those visualization patterns within and between centers using
the Pearson correlation coefficient r (Fig. 4a), and second, by
using statistical testing to discriminate pairs of tissue and com-
pare these results within and between centers (Fig. 5). For both
approaches, only centers with at least three experiments for
each molecular class were considered.

The intensity pattern approach shows that there is a slight
advantage of metabolites (median = 0.69) over peptides (me-
dian = 0.61) to reproducing intensity patterns between centers
(p = 0.05), but there is, in both sides, strong center-dependent
variation (Fig. 4a). Examples are shown in Fig. 4b.

In the second approach, the reproducibility of statistical
testing between each pair of tissue type was investigated by
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Fig. 4 The reproducibility of univariate visualization patterns between
tissues and multivariate profiles within a tissue type was investigated
using the Pearson correlation coefficient r which can quantify the
degree of similarity. First, all intracenter and intercenter experiments
have been compared pairwise, and the correlation coefficient was

calculated for each mass signal, where higher values of r indicate a
higher reproducibility (a). Examples for mass signals with high (right
hand side) and low (left hand side) reproducibility are shown (b). The
reproducibility of multivariate tissue-specific profiles was also investigat-
ed within experiments, between experiments and centers (c)
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comparing the significant masses found per individual center.
Figure 5a shows the percentage of significant variables found
for each center and tissue pair comparison separately and the
overlap between the two centers. While the discriminatory po-
tential depends on the pair of tissue type (e.g., colon vs. muscle
or colon vs. brain), the metabolite data exhibits overall a higher
overlap (40. vs. 21.0% overlapping and significantm/z species)
and, therefore, a higher reproducibility of the results across the
centers (Fig. 5b).

Meta-analyses, a common statistical approach in
intercenter studies, were performed to investigate the increase
in statistical power by combining the number of samples and
effects from different centers (Fig. 5c). Especially the peptide
data benefited from the meta-analysis for detecting biological
differences in masses that were otherwise not found in a
single-center analysis (13.7 vs. 21.7%; Fig. 5b). An example
is shown in Fig. 5d.

Reproducibility of multivariate tissue profiles

After the univariate analysis of intensity visualizations be-
tween tissues, we also investigated the multivariate reproduc-
ibility of molecular patterns of each individual tissue type.
This was done by calculating the Pearson correlation coeffi-
cient for each tissue type separately between the spectra from
within one experiment, between experiments, and between
centers. The results are shown in Fig. 4c. It can be seen that
there are differences with respect to the tissue type but also
with respect to the molecular class. For instance, peptides and
metabolites agree on that muscle tissue shows lower reproduc-
ibility than the brain whereas heart tissue ranks average for
reproducibility in peptides but high in metabolites. Please note
that the correlation coefficient is insensitive to additive or
multiplicative effects between spectra, and evaluates the rela-
tive relationship between data points as compared to the
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that peptide and metabolite data were overall equally discriminative, but
the metabolite data was more reproducible. The meta-analysis results per
tissue type comparison are shown in c. Especially the peptide data
benefitted from the combination of cross-center effects, since it could
assemble the samples from four centers (b, d)
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coefficients of variation in Fig. 3b, which capture more abso-
lute effects.

Univariate vs. multivariate supervised classification

Next, it was examined if the molecular discriminatory infor-
mation for distinguishing two tissue types can be directly
transferred between centers; a schematic is shown in Fig. 3a.
This was done by optimizing a threshold for each m/z species
in the training set using a CART model followed by its appli-
cation to a test set. It was then determined how the cross-
center performance of the classifier changes with the amount
of training data by continuously moving centers from the
training to the validation set. The intracenter accuracies were
therefore calculated as reference and their means were for both
peptides and metabolites 76% (Fig. 6a, b). When applying
these threshold-based classifiers to the data from other centers,
significant drops in accuracies were observed: − 15 and − 18
percentage points (ppts) for peptides and metabolites, respec-
tively, when looking at two center training.

Next, it was explored if classifiers based on a multivariate
signature would be more robust to classify data across differ-
ent centers. Therefore, a random forest classifier was used, as
it automatically performs a feature weighing, and intracenter
accuracies were calculated as reference. The mean accuracy
for the peptide data ranged from 92% (three center training,
two tissue types) to 84% (one center training, two tissue types)
and from 74 to 69% (for all six tissue types; Fig. 6c). These
results show a beneficial effect of having more training data in
order to cope with center-related noise in the data and an
increase in difficulty when dealing with a rising number of
classes. The mean metabolite accuracies ranged from 84%
(two center training, two tissue types) to 76% (one center
training, two tissue types) (Fig. 6d) and were hence 6–8 ppts
lower than the peptide data for classifying two tissue types and
up to − 20 ppts less accurate when classifying six tissue types.
The performance also depends on the detectable degree of
chemical difference between each pair of tissues, which are
shown for intra- and intercenter comparisons and for peptides
and metabolites separately in Fig. 6e, f. It can be recognized
that certain tissues can bemore accurately separated by certain
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Fig. 6 The performance of uni- and multivariate classifiers between cen-
ters was investigated by moving centers continuously from the training to
the test set. Univariate classifiers were built for each pair of tissue andm/z
species by determining an optimal intensity threshold in the training set
(Fig. 3a) and were evaluated on the test set. The observed accuracies are
reported in a and b, where the intracenter accuracies served as reference.

The approach was extended to all tissue types and the usage of multivar-
iate patterns employing the random forest algorithm. c, d The mean ac-
curacy [%] and standard deviation as a function of number of tissue types
involved and the number of centers in the training set. e, f The accuracies
[%] for each pair of tissues for intra- and intercenter classifications
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molecular classes, such as the pancreas/lung by peptides and
heart/lung by metabolites.

Comparison of normalization methods

Normalization of the spectral data is a crucial step for com-
parisons between MSI datasets. While the TIC is the gold
standard for peptide, protein, and lipid MSI datasets measured
with time-of-flight-based mass analyzers (as used here), for
metabolite MSI datasets, there is no gold standard yet. In this
work, RMSwas used but the TIC has also been used by others
[19]. It was therefore investigated which of the normalization
strategies enable a better comparability between the different
metabolite datasets. The consequences on spectral level are
depicted in Fig. 7a where the baselines of both centers clearly
move toward each other with the RMS normalization. The
effect of the spectral displacement was evaluated on a univar-
iate and multivariate level. With respect to the first, the overall

observation was that the TIC normalization leads to an im-
provement of relative intercenter comparisons of intensity pat-
terns (Fig. 7b). The multivariate classification, as absolute
intensity-based approach, showed that the RMS normalization
showed a better multivariate performance across centers,
whereas TIC was favorable for intracenter comparisons (Fig.
7c).

Discussion

Multicenter or round robin studies are important for develop-
ing optimal standards and protocols that ensure sufficient high
sensitivity, specificity, and reproducibility of experiments be-
tween centers. Ultimately, a high degree of comparability is a
necessity for multicenter clinical studies. This has already
been recognized by several multicenter initiatives in the field
of mass spectrometry, such as the Clinical Proteomic
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Technology Assessment for Cancer (CPTAC) network [20],
the Spanish network of proteomics laboratories (ProteoRed-
ISCIII) [11, 21], or several MALDI-Biotyper ring trials (ESM,
Table S4).

In line with these efforts in mass spectrometry, we present
here the results of the first round robin study in MSI on
formalin-fixed paraffin-embedded tissues. Aminimum of four
samples distributed over two molecular classes have been an-
alyzed by four centers, which is comparable to other non-LC/
MS ring trials in terms of number of centers and number of
replicates (ESM, Table S4), with the aim to assess relative and
absolute reproducibility between centers for peptides and me-
tabolites on a uni- and multivariate level. An overview of all
data analysis methods used in this study is given in ESM,
Table S3. The term relative describes comparisons of biolog-
ical effects that are detected on each center’s own intensity
scale (Fig. 3a). In mass spectrometry imaging, all reported
results so far from multicenter studies were based on the re-
producibility of relative effects [6, 7], except the study by
Abbassi-Ghadi et al. who looked at the variation of lipid signal
intensities in desorption electrospray ionization MSI experi-
ments between two laboratories [12].

Here, when investigating relative univariate effects, it
turned out that the metabolite data exhibited an overall higher
overlap of the results across the centers, compared to the pep-
tide data (Figs. 4c and 5). An explanation could be that the
intracenter variation of center 2 for the peptide data is already
high compared to center 3, as can be deduced from the PCA
plot (Fig. 2b), which is confirmed by the analysis of variance
which shows that the intracenter variation of peptide data is
significantly higher than in the metabolite data (Fig. 3b). But
statistical significance of a biological phenomenon not only
depends on the interplay of detectable biological effects and
technical variance but also on the number of samples involved.
The latter might benefit from the higher number of samples
offered by merging intercenter data through a meta-analysis.
Especially the peptide dataset benefited from the meta-analy-
sis, as it could assemble the samples from four centers com-
pared to the metabolite data with only three centers, which led
to a 1.5 times increase in the detection of biological differences
(Fig. 5b). This suggests that meta-analysis may be a powerful
solution to increase sensitivity for the discovery of relative, but
still generally valid biomarkers.

While a meta-analysis combines relative effects between
centers, absolute effects are effects that can be directly trans-
ferred between centers such as intensity cutoffs for classifica-
tion (Fig. 3a). As absolute effects share the same intensity
scale, it is important to quantify the additional variation caused
by intercenter comparisons. In this study, we observed the
metabolite data to suffer from a significantly higher intercenter
experimental variation compared to its intracenter variation,
whereas this observation was vice versa in the peptide data
(Fig. 3b). However, the combined intra- and intercenter

technical variances had similar unfavorable consequences on
the performance of univariate classifiers between centers for
both molecular classes (Fig. 6a, b).

In contrast, the multivariate approach outperformed the
univariate approach on average by more than 25 ppts (Fig.
6c, d). It can also be seen that the more centers were involved
in the training of the classifier, the better the prediction. This
shows that a multivariate classifier can learn to extract the
relevant information from intercenter noise. It was found that
the optimum molecular class for differentiating tissue types
was tissue type dependent (Fig. 6e, f) and that multivariate
classifiers based on peptides were in general observed to be
more accurate for intercenter comparisons (Fig. 6). This is
unforeseen, since the sample preparation for the detection of
peptides contains two additional and relatively intensive steps
(antigen retrieval and on-tissue digestion), both of which were
expected to increase the technical variance between centers.
This observation requires further investigation.

On the other hand, the lower performance of the metabolite
data in the multivariate classification can be ascribed to the
higher intercenter variation which might be also related to the
nonoptimal equalization of the baselines in time-of-flight in-
struments (Fig. 7a). Laser intensity is a crucial parameter to
influence the baseline, which was left undefined and therefore
to be optimized freely according to the local experimenter’s
subjective opinion on the quality of the spectra. To objectivize,
a laser power meter might be recommendable to match laser
intensities between centers [22]. At this stage, software normal-
ization is the only way to compensate these differences.

So far, our observations indicate that RMS normalization is
more beneficial for absolute intercenter comparisons and TIC
normalization for relative inter- or intracenter comparisons.
Alternative normalization methods are hence needed, as they
have already been proposed for protein MSI datasets [23].

Also, further investigations have to be performed on mul-
ticenter studies with more and other tissues since the biolog-
ical differences studied here are not representative for most of
the biomedical research questions such as tumor biomarkers.
The aim of this study was to make the first step toward mul-
ticenter studies involving FFPE tissues. We strongly recom-
mend future studies to further develop methods to monitor
instrument performance, as done here, but also to monitor
the sample preparation, since some of the intracenter
variance-inducing effects could be ascribed to sample prepa-
ration, such as matrix- and digestion-related effects as de-
duced from the PCA biplot (Fig. 2b). For on-tissue digestion,
such quality controls have already been proposed [24] but are
still missing for the matrix application.

Altogether, in the light of the results of this study combined
with new quality controls for sample preparation and novel
normalization methods, we foresee a high potential for run-
ning successfully multicenter mass spectrometry imaging
studies on FFPE samples.
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