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State-of-the-art optoacoustic tomographic imaging systems have been shown to attain three-dimensional (3D) frame
rates of the order of 100 Hz. While such a high volumetric imaging speed is beyond reach for other bio-imaging
modalities, it may still be insufficient to accurately monitor some faster events occurring on a millisecond scale.
Increasing the 3D imaging rate is usually hampered by the limited throughput capacity of the data acquisition elec-
tronics and memory used to capture vast amounts of the generated optoacoustic (OA) data in real time. Herein, we
developed a sparse signal acquisition scheme and a total-variation-based reconstruction approach in a combined
space–time domain in order to achieve 3D OA imaging at kilohertz rates. By continuous monitoring of freely swim-
ming zebrafish larvae in a 3D region, we demonstrate that the new approach enables significantly increasing the
volumetric imaging rate by using a fraction of the tomographic projections without compromising the reconstructed
image quality. The suggested method may benefit studies looking at ultrafast biological phenomena in 3D, such as
large-scale neuronal activity, cardiac motion, or freely behaving organisms. © 2018 Optical Society of America under the

terms of the OSA Open Access Publishing Agreement
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1. INTRODUCTION

Imaging dynamics is essential for understanding the complex
biology of living organisms. Optoacoustic tomography (OAT)
holds significant advantages for monitoring of fast biological
events, since the entire imaged volume can be excited with a single
pulse of light, thus potentially enabling very high imaging rates
ultimately limited by the time-of-flight of the generated ultra-
sound waves [1]. However, in contrast to previously demonstrated
high frame rate two-dimensional (cross-sectional) imaging imple-
mentations [1], high-resolution three-dimensional (3D) opto-
acoustic (OA) imaging implies the acquisition of signals from
a much larger number of positions around the imaged object
[2–6], thus imposing a practical limitation for the temporal res-
olution or imaging rate that can be achieved. Indeed, even if suf-
ficient numbers of OA signals are simultaneously collected with a
suitable ultrasound array, data transmission, storage, and process-
ing may turn very challenging as the frame rates increase.
Recently, volumetric data acquisition (DAQ) and real-time 3D
image rendering at 100 Hz frame rates have been demonstrated
with high-end OAT systems employing matrix detection arrays
and GPU-based processing of the generated data flows in the
gigabits per second range [7–9]. With this volumetric imaging
speed it became possible to efficiently monitor fast biological

phenomena, such as calcium transients in the brain [10] or cardio-
vascular dynamics [9,11], whereas spiral volumetric optoacoustic
tomography (SVOT) further enabled scaling of temporal resolu-
tion with the field of view to attain multi-scale dynamic imaging
capabilities [12]. However, some biological events may still occur
on a faster time scale. For instance, voltage transients (action
potentials) in neurons have durations of the order of milliseconds
and the recently developed voltage indicators have enabled both
fluorescence- and absorption-based readings of those transients in
one or two dimensions [13,14]. In addition, investigation of brain
activity patterns is often done in freely behaving animals whose
rapid movements may necessitate much faster volumetric imaging
rates in order to avoid motion-related artifacts [15].

One possible way to boost the temporal resolution without
increasing the average data flow consists of using partial DAQ
and reconstruction procedures based on compressed sensing (CS)
approaches. CS has attracted vast attention in the past decade,
suggesting that it is possible to fully recover a signal from a lower
number of samples than required according to the Shannon–
Nyquist sampling criterion [16,17]. To this end, tomographic im-
aging modalities have greatly benefited from CS-based methods by
reducing the amount of data needed for accurate reconstructions
[18]. In OAT, recent works have showcased reconstructions from
partial data using CS [19,20]. In this work, we take this approach
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one step further by incorporating a total variation (TV) regularization
term in the combined spatio-temporal domain in order to achieve
significant acceleration of 3D imaging frame rates with negligible
effects on the resulting image quality.

2. METHODS

A. Experimental Setup

The DAQ protocol is schematically depicted in Fig. 1. The OAT
system used for real-time acquisition of volumetric data employed
a custom-made 30 mm radius spherical matrix transducer array
(Imasonic SaS, Voray, France) spanning an angle of 140° (1.3π
solid angle) and consisting of 512 piezocomposite elements hav-
ing a size of ∼2.5 mm. The 10 MHz central frequency and
>80% detection bandwidth of the individual detection elements
provided an isotropic 75 μm spatial resolution near the center of
the spherical acquisition geometry and approximately 6 mm ×
6 mm × 6 mm effective field of view [21]. Light excitation with
∼10 ns duration pulses at 532 nm wavelength was provided with
a diode-end-pumped Nd:YAG Q-switched laser (Model IS8II-E;
EdgeWave GmbH, Würselen, Germany) whose pulse repetition
frequency can be set up to 10 kHz. The light beam was guided
through a custom-made fiber bundle (Ceramoptec GmbH,
Bonn, Germany) providing approximately 1 mJ∕cm2 fluence
in the imaged area. A dedicated multi-channel DAQ electronics
was designed to simultaneously digitize the detected OA signals at
a sampling rate of 40 megasamples per second. The DAQ allows
for the acquisition of 494 samples per channel per laser pulse. The
digitization was delayed by 13.3 μs with respect to the laser ex-
citation pulse in order to efficiently capture signals originating
from the imaged area located around the effective field of view
of the spherical array, i.e., 30 mm away from its active surface.
The average data throughput of the DAQ is limited by its
1 Gbps Ethernet interface. Thus, only a 100 Hz frame rate
can be achieved when acquiring data from all 512 channels simul-
taneously for each laser pulse, corresponding to an average data
flow of ∼400 Mbps including the transmission protocol over-
head. As a result, the imaging frame rate can be increased only
by reducing the number of channels recorded for each laser pulse,
i.e., spatial subsampling of the tomographic data.

The sparse acquisition scheme was facilitated by splitting
the detection elements into m randomly distributed groups of
n elements, as labeled with different colors in Fig. 1(a), with
m · n � 512 being the total number of the array sensors. The de-
signed DAQ system is capable of sequential acquisition of signals

from each group, triggered with the excitation laser pulses
[Fig. 1(b)]. After signals from all 512 channels have been ac-
quired, the same acquisition sequence was repeated. In this man-
ner, the amount of data that needs to be transmitted per each laser
pulse is reduced, thus allowing increasing the imaging frame rate
by a factor of m without altering the average data transfer rate.

B. Image Reconstruction

The TV-based image reconstruction procedure was derived from
the recently introduced model-based OA reconstruction approach
[22]. The pressure waveforms pi detected by the transducer ele-
ments at the ith acquisition were modeled in a vector form via

pi � C iAhi, (1)

where hi is the distribution of the absorbed energy density in a
grid of voxels enclosing the sample for the ith acquisition, A is the
model matrix derived from the discretization of the OA forward
model considering all transducer elements [23], and C i is a se-
lection matrix that picks up only signals of the corresponding
group. A uniform Grüneisen parameter was assumed for simplic-
ity [22]. For l consecutive acquisitions, the full theoretical model
is expressed as

p � CAtoth, (2)

where p � �p1, p2,…, pl �T , C � diag�C 1,C 2,…,C l ),
Atot � I l ⊗ A, h � �h1, h2,…, hl �T , and I l is the l by l identity
matrix. According to Nyquist sampling theory, accurate
reconstruction of the full sequence of images h would in principle
necessitate significantly more information than is actually avail-
able through our sparse sampling approach. However, it has been
previously shown that sparsity of the solution can be exploited to
recover information from fewer samples using CS principles [19].
For this, the signal being recovered must exhibit sparsity in some
domain and the sampling matrix must have restricted isometry
property (RIP). The latter property is generally hard to prove,
but the probability of a randomized matrix to fulfill the RIP con-
dition is known to be relatively high [19]. Since our acquisition
electronics does not permit randomizing the temporal sampling
space, we attempt to achieve RIP for matrix CAtot by random-
izing the spatial subsampling imposed by the C matrix. Although
here the RIP property was not rigorously demonstrated, such ran-
domization is known to facilitate attaining RIP conditions [24].
Consequently, the CS-based reconstruction problem is defined as

hsol � argminh
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with pm being the measured pressure signals and λ a regularization
parameter. khkTV is the spatio-temporal TV of the image
sequence defined as
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where x, y, and z are spatial dimensions and t is the temporal
dimension.

The TV norm represents a sparsity-enforcing regularization
term that can be efficiently exploited with CS-based methods
[17]. Equation (4) further leverages the temporal sparsity of
the captured images. Here we created a custom solver for
Eq. (3) based on the sub-gradient descent algorithm [25]. The
latter was selected owing to its straightforward implementation.
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Fig. 1. Schematic description of the DAQ protocol. (a) Division of sen-
sors into acquisition groups. (b) Temporal division of the acquisition groups.
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Yet other approaches based on, e.g., accelerated primal dual meth-
ods may provide better convergence [26], while more advanced
algorithms for reconstructing spatio-temporal data are also avail-
able [27,28].

The gradient required for the sub-gradient descent method
was expressed analytically as the divergence of the normalized gra-
dient of the image:
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where div is the divergence operator [29] and a is a smoothing
term that was added to the denominator to avoid indefinition
when the gradient equals 0. This approximation of the gradient
∇a results in a smooth function getting closer to the original gra-
dient as the value of a approaches 0. The resulting iteration
scheme is expressed as

hk�1 � hk − γk∇f �hk�, (6)

where

∇f �h� � AT
totCT � pm − CAtoth� � λ∇akhkTV , (7)

and the step size for the descent algorithm was determined accord-
ing to the Barzilai–Borwein method. The algorithm is iterated
until a satisfactory image quality is achieved. Application of
TV regularization in the temporal domain has recently been
implemented in the field of MRI [28]. In our case, weighing
of temporal domain gradients against their spatial counterparts
was performed via
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Assuming small frame-to-frame variations in the imaged
object, it was heuristically determined that satisfactory image
quality is achieved when ws � wt , an assumption that signifi-
cantly decreases the algorithm’s complexity.

Note that due to the high data volumes resulting from the
volumetric image acquisition, the suggested approach is not
capable of reconstructing long image sequences in a single
step—a 16000 frame sequence of 3D images containing 128 ×
128 × 64 single precision voxels would require 312.5 gigabytes
of memory. To overcome this memory-related limitation, we
retained only the central image as an output from the L images
reconstructed with the spatio-temporal TV-regularized inversion
using L consecutive frames. In the subsequent sections, this
method will be referred to as TV × L, with L representing the
size of the temporal window.

The reconstructions were implemented using OpenCL
framework and executed in Matlab (MathWorks, Natick,
Massachusetts) as a mex function on Nvidia 900 Series Titan
X GPU. A single 3D image on a 128 × 128 × 64 grid was ren-
dered in 50 ms by using the accelerated 3D back-projection
(BP) algorithm [30]. The TV-based reconstructions were done
using 10 iterations with a custom sub-gradient descent solver
using the same image grid. The most computationally extensive
matrix–vector multiplications required by the solver were the
multiplication with the model matrix (A) and its transpose.

The latter were calculated on the fly using the recently reported
GPU implementation [31]. The remaining calculations were
done on the Intel i7 3820 CPU. The reconstruction times were
6, 9, 15, 24, and 55 s per individual 3D frame when considering
1, 2, 4, 8, and 16 consecutive acquisitions with 512, 256, 128,
64, and 32 random channels per acquisition, respectively. Note
that the total reconstruction time is chiefly conditioned by the
number of computationally expensive matrix–vector multiplica-
tions, which is in turn proportional to the number of consecutive
frames considered in the TV procedure.

C. Numerical Simulations

Performance and validity of the algorithms were first verified in
numerical simulations. For the purpose of assessing the temporal
and spatial resolution performance, a 75 μm diameter sphere
(approximately the size of the spatial resolution of the system)
was simulated moving at various velocities. Simulations were based
on analytical calculation of OA signals generated by a sphere having
a 3D parabolic absorption profile, for which the generated time-
resolved pressure signal can be calculated analytically [32], thus pro-
viding a reliable metric for analyzing the system’s performance. It
was assumed that the sphere was illuminated uniformly in the entire
reconstructed 3D volume by a laser pulse whose temporal profile
was approximated by a Dirac delta function. The matrix array trans-
ducer geometry was approximated by 512 point detectors evenly
distributed over the 140° spherical aperture. The individual signals
received by each transducer were calculated using a Poisson-type
solution to the OA wave generation equation [33]. The detectors
were assumed to have 10 MHz central frequency and >80% band-
width. The 512 detected signals were then combined to create a
sinogram. An additive Gaussian white noise was added to the sino-
gram, resulting in SNR of 20 dB. For sparse acquisition, only the
active channels were simulated. For each subsampling scheme, a
new simulation was created, resulting in a slightly different set of
signals due to the added noise. Each 3D image frame was recon-
structed on a 128 × 128 × 64 grid enclosing a 1 mm × 1 mm ×
0.5 mm volume. For TV-based reconstructions, the λ value in
Eq. (3) was selected manually to render the best perceived image.

D. In vivo Imaging of Zebrafish Larvae

Experiments were performed with five days post-fertilization
(dpf ) wild-type zebrafish larvae. The reason for selecting zebrafish
larvae for experimental demonstration was twofold. First, their
swimming speed in water is high enough to account for signifi-
cant displacements (on a spatial resolution scale) within a few
milliseconds. For instance, when the zebrafish tail moves with
100 mm/s velocity, the inter-frame motion may reach 1 mm
for a 100 Hz frame rate [34], thus exceeding by more than 1 order
of magnitude the point spread function of our imaging system
(75 μm). Imaging at kilohertz rates becomes then essential to
smoothly track the larval motion. Second, their size is small
compared to the effective field of view of the imaging system,
which allowed efficiently exploiting image sparsity during the
reconstruction procedure, as detailed in the next section.
During the experiments, the spherical transducer array was point-
ing upward and the volume between the array and the imaged
specimen was filled with agar gel to guarantee good acoustic cou-
pling. A 1 cm diameter cavity was carved into the agar at approx-
imately the center of the spherical geometry, where the larva was
allowed to swim.
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3. RESULTS

A. Numerical Simulations

Performance of the sparse acquisition TV-based reconstruction
algorithm was first validated by numerically simulating volumet-
ric imaging of the moving absorbing sphere. Since the algorithm
exploits signal sparsity by finding piecewise constant solutions to
the reconstruction problem, fast motion would unavoidably result
in reduced frame-to-frame sparsity of the data. Furthermore, for
rapidly moving absorbers, the given temporal sampling frequency
may become insufficient to capture a complete tomographic in-
formation. Figure 2 shows dependence of the reconstructed size of
the moving sphere (FWHM) versus its normalized (dimension-
less) velocity calculated via ῡ � v∕�f s · D�, where v �m∕s� is the
actual velocity, f s �Hz� is the imaging frame rate, and D [m] is the
size of the sphere. Normalization with D was necessary to create
an independent variable for the motion speed that neutralizes
the effect of the physical object size on the spatial resolution per-
formance of the system.

Clearly, for very slow relative velocity values, the TV algorithm
is able to recover the correct size of the absorber using a very low
number of random channels per acquisition with both TV × 4
(128 random channels per frame) and TV × 16 (32 random chan-
nels per frame) algorithms performing equally well. As the nor-
malized velocity approaches 1, the reconstructed sphere gets
smeared along the dimension of motion with its reconstructed
size appearing ∼4 times longer that its actual diameter when using
TV × 4 and ∼9 times longer when using the TV × 16 algorithm.
These blurring artifacts are absent in reconstructions where no
temporal sparsity is enforced (TV × 1; dashed lines in Fig. 2).
This is expected since single frame OA reconstruction is not

affected by motion. However, while the TV × 1 method introdu-
ces less spatial blurring for fast motion speeds as compared with
the spatio-temporal TV × 16 and TV × 4 methods, it becomes
inferior to the latter methods when the motion is relatively slow.
This effect is expected to be even more pronounced when
the images exhibit less sparsity in the spatial domain. Clearly,
spatial blurring can be completely avoided by employing simul-
taneous sampling with all 512 channels, which, however, results
in temporal blurring, as the imaging frame rate is limited
to 100 Hz.

In Fig. 3, reconstructions of the absorbing sphere made with
the TV algorithm are further compared to the conventional BP
algorithm, both for full channel sampling and sparse sampling. In
this case, the sphere was moving at a normalized velocity of
ῡ � 0.1 for all consecutive image frames. While the TV-based
reconstruction is able to render a sphere of correct size and shape
for both sparse and full sampling, the BP algorithm results in a
noisy reconstruction containing artifacts resulting from sub-
sampled data when using only 32 random tomographic projec-
tions [Fig. 3(a)]. Figure 3(b) further illustrates the dependency
of contrast-to-noise-ratio (CNR) on the number of consecutive
frames considered during the TV-based reconstruction. For the
single frame reconstruction, the TV-based approach attains a bet-
ter CNR as compared to BP for the same number of channels. As
expected, the CNR increases as the number of consecutive image
frames in the TV inversion increases. Note that combining multi-
ple frames of a moving object into a single BP reconstruction
would readily result in spatial blurring, thus only single frame
BP reconstructions were considered in the CNR plot.

Fig. 2. Numerical simulations of the TV-based reconstructions of a
moving absorbing sphere showcasing spatial resolution degradation as
a function of the relative motion speed. The data is presented for the
TV algorithm using 16 consecutive frames with 32 random channels
per frame (TV × 16), four consecutive frames with 128 random channels
per frame (TV × 4), and one frame (TV × 1) with 128 or 32 random
channels. The reconstructed relative sphere size, i.e., the reconstructed
full width at half-maximum (d) for the longest dimension divided by
the actual sphere diameter, is plotted against its relative speed of motion
measured as the ratio between the inter-frame displacement of the sphere
and its diameter.
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Fig. 3. Comparison between the TV and BP reconstructions for
sparsely sampled data. The ground truth image represents an absorbing
sphere with 3D parabolic absorption distribution. (a) 3D reconstructions
of an absorbing sphere with normalized velocity ῡ � 0.1 made with the
full 512 channel data (BP 512ch and TV × 1 512ch) versus 32 random
channels (BP 32ch and TV × 16 32ch). (b) The corresponding CNR of
the images reconstructed with the different algorithms plotted against the
number of consecutive frames.
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B. Imaging of Freely Swimming Zebrafish Larvae

The reconstructed 3D images of the swimming zebrafish larva as a
function of the number of random tomographic projections (de-
tection channels) per frame are displayed in Fig. 4. The leftmost
column showcases the images reconstructed with the BP algo-
rithm, whose image quality significantly deteriorates for partial
DAQ, with the larva barely visible when acquiring with groups
of 32 channels per laser pulse (fifth row). The maximum frame
rate that can be achieved for the given average data transmission
limit of the system is inversely proportional to the number of
channels acquired per frame (laser pulse), as indicated on the
vertical axes in Fig. 4. The images obtained with the newly de-
veloped CS-based method are showcased in the other columns of
Fig. 4 as a function of the number of acquisitions employed for
the reconstruction. The reconstructions in each column were
performed by considering L consecutive frames (denoted as
TV × L). The image artifacts are readily mitigated even when
using the single-frame TV algorithm for the partial data recon-
structions (TV × 1 in Fig. 4), which corresponds to TV regulari-
zation only in the spatial domain. Indeed, high contrast and good
spatial resolution images are achieved when at least 64 random
channels are used with TV × 1. Image quality further improves
once spatio-temporal TV regularization is used. For example,
the shape of the larva can be accurately reconstructed when con-
sidering two consecutive acquisitions with 32 random channels
each (TV × 2). Image contrast and overall quality for a given
number of channels per group increase with the number of frames
used in the CS-based reconstruction, indicating the importance of
TV regularization in the spatio-temporal domain.

A 3D movie of the swimming larva generated with the TV × 16
algorithm is available as Visualization 1. Note that the video is dis-
played at 30 frames per second for a better visualization of the mo-
tion, while the actual 3D acquisition frame rate is 1.6 KHz. It can
be clearly seen that the suggested CS approach is able to fully
recover temporal information without introducing spatial blurring,
as long as the images are sparse in the spatio-temporal domain.
Each video frame was generated by simultaneously reconstructing
a stack of L frames and then selecting the middle frame for display.
Note that isotropic TV regularization was used, which resulted in a
smooth video without jumps or frozen segments.

To further showcase the spatio-temporal resolution perfor-
mance of the method, Fig. 5 displays two consecutive images
of the swimming larva (in red and green) during an abrupt turn.
The image sequence was reconstructed using TV regularization
with different acquisition frame rates ranging from 100 Hz to
1.6 kHz, while the corresponding optimal number of channels
per acquisition group ranged from 512 to 32. While a significant
shift of the larva’s head and tail is clearly visible for images
acquired at 100 Hz acquisition rate, the two consecutive images
progressively overlap as the frame rate increases. Indeed, while the
inter-frame eye motion accounts for 512 μm at 100 Hz,
it diminishes to 50 μm at 1.6 kHz, i.e., below the effective spatial
resolution of the system. Thus, kilohertz frame rates are essential
to accurately track the fish motion.

4. DISCUSSION AND CONCLUSIONS

The presented results demonstrate basic feasibility of OA
imaging at an unprecedented 1.6 kHz volumetric frame rate.

TVx1 TVx2 TVx4 TVx8 TVx16

512

256

128

64

32

Number of
Channels

Reconstruction Type

Frame
Rate

100 Hz

200 Hz

400 Hz

800 Hz

1600 Hz

BP

2 mm

Fig. 4. Comparison between 3D BP and the proposed TV-based CS reconstruction. Maximal intensity projection (MIP) images are shown. The
vertical axis represents the acquisition frame rate, which is inversely proportional to the number of random detector positions used per frame (single
laser pulse). Different reconstruction methods are shown on the horizontal axis. TV × L corresponds to the TV-based reconstruction employing L
consecutive frames.
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The proposed fast sparse acquisition imaging method was shown
to capture accurate images without loss of spatial resolution when
the inter-frame speed of object motion remained significantly be-
low the available (diffraction-limited) spatial resolution of the sys-
tem. For instance, when sparsely sampling 32 channels per frame
and using the TV × 16 algorithm for image reconstruction, the
normalized object velocity ῡ should remain below 0.1 (Fig. 2).
In other words, for the 75 μm resolution system running at a
volumetric frame rate of 1.6 kHz, the object motion between
the consecutive image frames should remain below 0.1 · 75 μm ·
1.6 kHz � 12 mm∕s in order to avoid degradation of the
spatial resolution. For a denser sampling with 128 channels
and reconstruction with TV × 4, the ῡ value can be increased
to 0.2, leading to a maximal permissible object velocity of
24 mm/s provided the spatial and temporal resolution parameters
remain unchanged.

The ultrafast volumetric imaging capability introduced in this
work can greatly benefit applications involving tracking of func-
tional activity in freely behaving organisms [35]. Furthermore, in
cardiac imaging the heart rate may reach 600 beats per minute in
small animals, thus accounting for significant motion within
several milliseconds. Thus, 3D imaging at kilohertz rates can
facilitate accurate characterization of the cardiac cycle and valve
motion [11], detection of functional alterations due to arrhyth-
mias, and other cardiac diseases [36]. Since blood flow may reach
significant velocities in major vessels, fast imaging frame rates can
be used to facilitate more accurate spectral unmixing of oxygena-
tion status and perfusion [37]. The methodology introduced in
this work may further serve applications involving imaging and
tracking of circulating cells or other extrinsically administered
agents, and facilitate enhancement of the spatial resolution
beyond the diffraction limit [38].

The ultrafast 3D imaging capacity is not only limited to in-
vestigations involving physical motion but may equally find use in
other applications where visualization of (sub-) millisecond bio-
logical dynamics is of importance. One particular example is the
field of functional neuroimaging with large-scale brain activity

typically occurring on multiple temporal and spatial scales.
While imaging the relatively slow hemodynamic processes re-
mains an important application of OA imaging in neuroscience
[8], functional OA neuro-tomography has been recently shown
capable of detecting rapid millisecond-scale dynamics using cal-
cium and voltage-sensitive indicators [14,21].

In conclusion, the newly introduced 3D OA imaging capacity
at unprecedented kilohertz rates holds promise to provide new
insights into biological function not attainable with the existing
bio-imaging techniques.

Funding. H2020 European Research Council (ERC) (ERC-
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