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Inverse Estimation of Soil Hydraulic and 
Transport Parameters of Layered Soils from 
Water Stable Isotope and Lysimeter Data
Jannis Groh,* Christine Stumpp, Andreas Lücke, Thomas 
Pütz, Jan Vanderborght, and Harry Vereecken
Accurate estimates of soil hydraulic parameters and dispersivities are crucial to 
simulate water flow and solute transport in terrestrial systems, particularly in 
the vadose zone. However, parameters obtained from inverse modeling can 
be ambiguous when identifying multiple parameters simultaneously and when 
boundary conditions are not well known. Here, we performed an inverse mod-
eling study in which we estimated soil hydraulic parameters and dispersivities 
of layered soils from soil water content, matric potential, and stable water iso-
tope (d18O) measurements in weighable lysimeter systems. We used different 
optimization strategies to investigate which observation types are necessary 
for simultaneously estimating soil hydraulic and solute transport parameters. 
Combining water content, matric potential, and tracer (e.g., d18O) data in one 
objective function (OF) was found to be the best strategy for estimating param-
eters that can simulate all observed water flow and solute transport variables. 
A sequential optimization, in which first an OF with only water flow variables 
and subsequently an OF with transport variables was optimized, performed 
slightly worse indicating that transport variables contained additional informa-
tion for estimating soil hydraulic parameters. Hydraulic parameters that were 
obtained from optimizing OFs that used either water contents or matric poten-
tial could not predict non-measured water flow variables. When a bromide (Br−) 
tracer experiment was simulated using the optimized parameters, the arrival 
time of the bromide pulse was underestimated. This suggested that Br− sorbed 
onto clay minerals and amorphous oxides under the prevailing geochemical 
conditions with low pH values. When accounting for anion adsorption in the 
simulation, Br− concentrations were well predicted, which validated the disper-
sivity parameterization.

Abbreviations: 2SOS, two-step optimization strategy; AV-NSE, average Nash–Sutcliffe efficiency; BOS 
Bi-objective optimization strategy; BTC,  breakthrough curve; DL, longitudinal dispersivity; ET, actual 
evapotranspiration; LAI, leaf area index; MOS, multi-objective optimization strategy; NSE, Nash–Sutcliffe 
efficiency; OF, objective function; SCEM, Shuffled Complex Evolution Metropolis; d2Η, stable isotope ratio 
of 2H/1H; d18Ο, stable isotope ratio of 18O/16O.

Quantification of water fluxes and fluxes of dissolved substances in the vadose 
zone is important to resolve a number of environmental issues. These issues comprise (i) 
the protection of groundwater resources, which is the main source of drinking water in 
many regions of the world (Aeschbach-Hertig and Gleeson, 2012; Taylor et al., 2013), 
both in terms of groundwater quantity and quality, and (ii) optimizing crop production 
by making efficient use of water, fertilizers, and plant protection products. Simulation 
models are used to link known fluxes at the upper boundary of the vadose zone with fluxes 
at different depths in the vadose zone and related state variables such as water contents, 
matric potentials, and solute concentrations. These simulation models require accurate 
and precise information about the properties of the vadose zone that link fluxes with 
state variables, such as the soil water retention curve, the unsaturated soil hydraulic con-
ductivity, and the solute dispersion coefficient. Typically, these properties are determined 
from laboratory experiments, and the precision of the estimated properties has increased 
considerably during the last decade by improving the experimental and estimation 
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procedures (Peters and Durner, 2006, 2008; Peters et al., 2015). 
However, these laboratory-scale estimated properties may have low 
accuracy describing field-scale processes due to spatial variability 
at the field scale, which is not captured by limited sampling; small 
sampling volumes (e.g., soil cores or columns) subjected to spe-
cific boundary conditions that differ from real world conditions; 
and scale-dependent solute transport parameters (Hopmans et al., 
2013). The inability of laboratory scale determined soil hydraulic 
and solute transport parameters to describe field and larger scale 
water f low and transport processes under natural conditions is 
an issue in many hydrological applications (Mertens et al., 2005; 
Wöhling et al., 2008; Iiyama, 2016).

In situ observations of state variables and fluxes at the scale 
of interest and inverse modeling have been shown to be promis-
ing approaches to estimate soil hydraulic parameters (Peters and 
Durner 2006; Puhlmann and von Wilpert, 2012; Stumpp et al., 
2012; Ries et al., 2015; Sprenger et al., 2015). However, inverse 
modeling requires the specification of boundary (e.g., actual 
evapotranspiration, drainage flux, and capillary rise) and initial 
conditions (e.g., water content, matric potential, and solute con-
centration), which are often not available or associated with large 
uncertainties in outdoor experiments (Vrugt et al., 2008; Li et 
al., 2009; Mannschatz and Dietrich, 2017). For example, various 
studies have shown that standard devices to measure precipita-
tion (tipping bucket) frequently underestimate the amount of 
rain (Gebler et al., 2015; Groh et al., 2015; Hoffmann et al., 2016; 
Herbrich et al., 2017) and affect the estimation of soil hydraulic 
properties (Peters-Lidard et al., 2008). Also, boundary conditions 
at the bottom of the soil profile can have an important impact on 
the water fluxes and state variables within the investigated system 
(Groh et al., 2016) and hence need to be correctly represented. In 
the past, mainly free-drainage (zero-gradient) or a seepage-face 
boundary were used in inverse modeling studies. The latter bound-
ary condition can be applied to lysimeters with a seepage face at 
the bottom across which water and solutes can leave the soil pro-
file when the seepage face is saturated with water. Although this 
boundary condition can be accurately represented in the simula-
tion model, water and solute fluxes observed from lysimeters with 
a seepage face at the bottom are not representative of field-scale 
conditions (Flury et al., 1999; Boesten, 2007; Kasteel et al., 2007). 
Breaking the capillary connection between the soil profile and 
deeper soil layers affects drainage, the movement of solutes, and 
evapotranspiration and prevents capillary rise (Schwaerzel and 
Bohl, 2003; Abdou and Flury, 2004; Stenitzer and Fank, 2007). 
Alternatively, time series of state variables, for example matric 
potential, could be used as a bottom boundary condition. However, 
this leads to a loss of information because the temporal evolution 
of the state variable is not used to derive information about the 
system properties but is prescribed as a boundary condition.

The majority of field-scale inverse modeling studies have used 
solely information about water content (e.g., Qu et al., 2014; Fang 
et al., 2015; Seki et al., 2015; Lai and Ren, 2016; Le Bourgeois et 
al., 2016). However, because water fluxes in the soil are driven by 

gradients in matric potential, in situ observations of water con-
tent do not necessarily provide sufficient information to accurately 
parameterize the field-scale hydraulic properties (Vereecken et al., 
2008; Scharnagl et al., 2011; Wöhling and Vrugt, 2011). When 
aiming at inversely estimating transport parameters, concentra-
tions of artificial or environmental tracers can be used. Particularly 
water stable isotopes have been shown to give information about 
water transit times and dispersivities (Stumpp et al., 2012; Sprenger 
et al., 2015; Stockinger et al., 2015, 2016).

Surprisingly little attention has been given to combining 
different observation types to calibrate water flow and transport 
models. In some studies, soil hydraulic parameters and/or longi-
tudinal dispersivity were estimated from inverse modeling using 
a combination of in situ observation variables, e.g., water content 
and matric potential (Wöhling and Vrugt, 2011; Caldwell et al., 
2013; Groh et al., 2013), water content and evapotranspiration 
data (Foolad et al., 2017), water content and d18O isotope ratio 
profiles (no continuous monitoring; Sprenger et al., 2015, 2016a), 
deuterium-enriched water (Stumpp et al., 2009), or Br− (Abbasi 
et al., 2003). Only a few studies were found that used a combina-
tion of water content, solute concentration, and matric potential 
(Mishra and Parker, 1989; Jacques et al., 2002; Stumpp et al., 
2012). Soil layering, which corresponds to the vertical variation of 
soil properties, is often not considered when estimating hydraulic 
and transport parameters using inverse modeling, and it is assumed 
that the soil profile can be represented by a homogenous profile 
with one set of effective parameters. Such an effective approach 
can be used to describe averaged state variables and fluxes when 
hydraulic properties are described by random space functions. 
However, when soil layers are relatively thick compared with the 
soil profile depth that is considered in simulations and when the 
properties of the layers vary considerably, the vertical variation in 
soil properties cannot be represented by a random space function 
but is rather a deterministic variation. In such a case, homogenous 
effective parameters are of little meaning to describe the vertical 
variation of state variables and fluxes. This implies that the proper-
ties of the different layers need to be determined.

Schelle et al. (2012) showed, using synthetic data, that soil-
layer-specific observations of state variables, e.g., matric potentials, 
were prerequisite to inversely determine soil hydraulic parameters 
of different layers in a layered soil profile. Stumpp et al. (2012) 
and Jacques et al. (2002) used a stepwise and sequential approach 
to derive parameters layer by layer to avoid non-uniqueness of 
parameter estimates when a larger number of parameters had to 
be estimated. However, this approach ignored possible parameter 
interaction between corresponding soil layers (Wöhling and Vrugt, 
2011). Hence, simultaneous estimation of the full parameter set 
for a layered soil using various observation types including water 
content, matric potential, and water isotope data is therefore prom-
ising. Because tracer concentrations depend also on water flow and 
root water uptake, these measurements constrain parameters not 
only for solute transport but also for water flow and root water 
uptake (Sprenger et al., 2015). Mishra and Parker (1989) used a 
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synthetic data set of a simple infiltration–evaporation scenario to 
demonstrate that the information on water content, matric poten-
tial, and solute concentration at the corresponding soil layer was 
beneficial to identify simultaneous layer-specific soil hydraulic and 
solute transport properties. However, no systematic verification 
was conducted within their numerical study, and thus it is still 
unclear which variables are necessary to adequately describe soil 
hydraulic properties as well as the transport behavior of layered 
soils in outdoor experiments under variable boundary conditions.

Using state-of-the-art weighable lysimeter systems can help 
overcome the above-mentioned limitations at the field scale 
because all relevant surface and bottom boundary water f luxes 
can be determined with a high temporal resolution and high pre-
cision (von Unold and Fank, 2008). Hence, lysimeters equipped 
with matric potential and soil water content sensors and devices for 
soil water sampling are ideal experimental systems to obtain high-
resolution observation data for the inverse estimation of water flow 
and solute transport parameters under realistic transient boundary 
conditions (Schelle et al., 2013). However, observations of state 
variables within the lysimeters at a specific depth are still local 
measurements (Garré et al., 2011; Cai et al., 2016), raising the 
question to what extent such local observations are representa-
tive for a given depth within the lysimeter. Our hypothesis is that 
the average value of several local measurements from one depth 
in several lysimeters can be used to derive a layer-specific effective 
parameterization and help to identify soil hydraulic properties and 
dispersivities that describe water and matter fluxes at the field scale.

In this framework, our study compared different inverse 
modeling strategies (stepwise and simultaneous) including the 
use of water stable isotope data to identify soil hydraulic and 
solute transport properties of a layered soil profile. The software 
HYDRUS-1D (Šimůnek et al., 2016) was used to simulate water 
and solute fluxes, and a global optimization algorithm was used 
to calibrate the vadose zone model.

Different inverse modeling strategies were used: (i) to inves-
tigate which state variables are necessary to estimate soil hydraulic 
properties as well as the solute transport parameter (dispersivity) of 
a layered soil; (ii) to identify effective hydraulic properties and lon-
gitudinal dispersivities of a layered soil using horizontally averaged 

state variables from four large-scale lysimeters; and (iii) to use Br−

concentrations from an artificial tracer experiment to validate the 
calibrated dispersivity parameters of the vadose zone model.

Materials and Methods
Study Site Wüstebach

The experimental site Wüstebach (50°30¢10² N, 6°19¢41² E, 
630 m asl) is located within the Eifel National Park and is part 
of the Lower Rhine Valley–Eifel observatory of TERENO and 
the Germany-wide lysimeter network SOILCan (Bogena et al., 
2015; Pütz et al., 2016). The vegetation cover and plant growth 
on the lysimeter and the surrounding area correspond to a forest 
meadow with no agricultural activities (Knauer et al., 2017). The 
area belongs to the humid temperate climate zone, with a mean 
annual precipitation of 1200 mm and a mean annual temperature 
of 7.5°C (Pütz et al., 2016). Since December 2010, six weighable 
lysimeters (Wu4– Wu9, METER Group), each with a surface of 1 
m2 and a depth of 1.5 m, were installed at the research test site. The 
Wüstebach catchment is covered with a 1- to 3-m-thick periglacial 
solifluction layer, and the bedrock is fractured Devonian shale and 
sandstone (Rosenbaum et al., 2012). The cylindrical lysimeters 
contain undisturbed soil monoliths of a Stagnic Cambisol, which 
is the dominant soil type in the western part of the Wüstebach 
catchment. The soil was described and soil samples were taken 
from two soil profiles during the lysimeter excavation process (see 
Table 1). The profiles were taken beside (southeast and northwest) 
the lysimeter excavation location and showed a similar layering. 
Only the soil texture of the fourth layer differed significantly 
(southeast: sand > 75%; northwest: loam > 69%).

The lysimeters are located annularly around a central service 
pit, which houses the measurement equipment and data record-
ing devices. The lysimeters have a tension-controlled bottom 
boundary system that adjusts the matric potential at the 1.4-m 
depth in the lysimeter to measured matric potentials (TS1 ten-
siometer, METER Group) at the same depth in the field. Hence, 
we can assume that water and solute fluxes in the lysimeter are 
directly transferable to the surrounding field. Each lysimeter was 
equipped with tensiometers (TS1, METER Group), time domain 

Table 1. Soil analysis from two profiles in Wüstebach (southeast and northwest), which were taken beside the lysimeter excavation location. Stone con-
tent was estimated according to Ad Hoc Arbeitsgruppe Boden (2005). The depths of the northwest profile were used to define the model layers. Layers 
II Bv 1 and II Bv 2 were grouped into one model layer.

Soil horizon Layer depth Texture (sand/silt/clay) Stone content

Southeast Northwest Southeast Northwest Southeast Northwest Southeast Northwest

———————— m ———————— ——————————————————— % ———————————————————

Of, Oh Of, Oh +0.02–0 +0.02–0 – – – –

Ah–Sew Ah 0–0.21 0–0.15 40/28/32 35/24/41 0 20

II Bv 1 Sew–Ssw 0.22–0.43 0.16–0.31 61/18/21 47/19/34 30 20

II Bv 2 II Bv 1 0.44–0.68 0.32–0.59 81/13/6 22/70/8 40 20

II Bv 3 II Bv 2 0.69–1.00 0.59–1.10 75/17/8 23/69/8 50 50

III Cv III Cv 1.01–1.50 1.11–1.50 64/17/19 65/17/18 70 80
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reflectometry probes (CS610, Campbell Scientific), and suction 
cups (SIC20, METER Group) at the 0.10-, 0.30-, 0.50-, 1.40- or 
1.45-m soil depth. The weighing precision is 10 g (@0.01 mm) 
for the lysimeter and 1 g (@0.001 mm) for the water reservoir 
tank in which the effluent from a lysimeter is collected and from 
which water is pumped back into the lysimeter during periods of 
upward flow at the bottom of the lysimeter. Weight measurements 
are logged every minute. Further information about the general 
design and setup of the SOILCan lysimeter network were provided 
by Pütz et al. (2016).

Lysimeter weight changes are not related only to water stor-
age changes because these are also affected by external factors like 
management operations, animals, or wind. The separation of pre-
cipitation and evapotranspiration from lysimeter weight changes 
thus requires an appropriate data processing scheme to reduce the 
impact of external errors and noise on the calculation of water fluxes 
(Schrader et al., 2013; Hannes et al., 2015). The raw data of lysimeter 
measurements were subjected to extensive manual (visually, software 
DIAdem, National Instruments) and automated plausibility checks 
to ensure the quality of the observation dataset (for more details, see 
Pütz et al., 2016; Küpper et al., 2017). Subsequently, the Adaptive 
Window and Adaptive Threshold filter (Peters et al., 2017) was 
used to further smooth the noise-prone lysimeter weight changes. 
Daily precipitation and evapotranspiration amounts were calculated 
from the smoothed lysimeter signal. We assumed that any increase 
or decrease in mass during a 1-min time period can be related to pre-
cipitation or actual evapotranspiration, respectively. Meteorological 
parameters were used to calculate the hourly potential evapotrans-
piration of a hypothetical grass surface with the Penman–Monteith 
equation (Allen et al., 1998). To capture the seasonal vegetation 
development, measurements of grass length and leaf area index 
(LAI) were conducted with a measuring stick and an LAI-2200 
plant canopy analyzer (LI-COR).

The salt tracer experiment started on 4 Dec. 2013. On each 
of five lysimeters (Lys-Wu4 and Lys-Wu6–Lys-Wu9) ?1 L of KBr 
solution (?25 g Br−) was sprayed followed by 0.5 L of pure water 
for flushing the application device. Lysimeter Lys-Wu5 received 
no Br− and was used as a reference. We used a frame to avoid Br− 
loss during the application because of wind drift. The inner side 
of the frame was covered (per lysimeter) with aluminum foil to 
collect splashing tracer water. The loss of Br− due to splashing 
was determined in the laboratory. After tracer application on the 
corresponding lysimeter and flushing, the application device was 
washed; water was collect and analyzed in the laboratory. The 
setup guarantees recalculation of the exact amount of Br− applied 
to each lysimeter. The amount of applied Br− was 25.08 g for Lys-
Wu4, 24.83 g for Lys-Wu6, and 25.30 g for Lys-Wu8. We did not 
measure d18O ratios in Lys-Wu7 and Lys-Wu9; hence measure-
ments of Br− concentrations and water fluxes from Lys-Wu7 and 
Lys-Wu9 were not part of this study. Because a tracer solution 
enriched in d2H was applied to Lys-Wu8, we used the d18O ratio 
as a tracer in our investigation since more comparable time series 
were available for this isotope.

Soil water samples from suction cups at the 0.1-, 0.3-, and 
0.5-m depth and from the seepage water (1.45 m) were collected 
every 2 wk. At the beginning of the tracer experiment and after 
heavy rainfall events (> ?30 mm d−1), water samples were col-
lected weekly or twice a week. Since December 2013, soil water 
samples were analyzed for d18O, d2H, and Br− for Lys-Wu4, Lys-
Wu5, Lys-Wu6, and Lys-Wu8. Precipitation samples were collected 
during the observation period from January 2012 to April 2016 
with a wet deposition collector (cooled) and sampled weekly. The 
isotopic analysis was performed with a laser-based cavity ring-down 
spectrometer (L2130-i analyzer, Picarro). Isotope values are given 
in d notation relative to the Vienna Standard Mean Ocean Water 
(V-SMOW). The measurement accuracy was £0.1‰ for d18O and 
£1.0‰ for d2H. The Br− concentrations of the soil water samples 
were determined with an ion chromatography system (ICS-3000, 
Dionex, Thermo Fisher Scientific), which had a relative measure-
ment error of 3.2% for concentrations ³0.5 mg mL−1.

Model Setup
Water Flow

The one-dimensional water f low model HYDRUS-1D 
(Šimůnek et al., 2016), which numerically solves the Richards 
equation, was used to simulate transient water flow in the lysim-
eters. The Mualem–van Genuchten model (van Genuchten, 1980) 
was selected to describe the water retention characteristic q(h) and 
the unsaturated hydraulic conductivity function K(h):
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where q, qs, and qr are the actual, saturated, and residual volumet-
ric water contents [L3 L−3], respectively; a [L−1] is related to the 
reciprocal of the air-entry value, n (dimensionless) to the width 
of the pore size distribution, m = 1 − 1/n, t (dimensionless) is 
the pore connectivity parameter, and Ks is the saturated hydraulic 
conductivity [L T−1].

The upper boundary condition was defined as a time-depen-
dent atmospheric boundary with surface runoff. The actual 
evapotranspiration, measured from the corresponding lysimeter, 
was used as a boundary condition instead of the potential evapo-
transpiration to further constrain the parameter estimates. We set 
the parameter of hCritA, which describes the minimum allowed 
matric potential at the soil surface, to a value of −108 cm. This 
value guarantees that the actual evaporation rate was decreased 
from the potential value only during extreme dry conditions 
(matric potential < −108 cm). No reduction of actual transpi-
ration due to plant water stress was observed in the grassland 
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lysimeter under the relatively wet climate conditions. The actual 
evaporation and transpiration were calculated from actual evapo-
transpiration according to Beer’s law using LAI and the canopy 
radiation extinction constant (0.463) for the partitioning. The 
seasonal development of the forest meadow LAI per lysimeter 
was approximated by a linear interpolation of the LAI measure-
ments. The root water uptake was simulated using the model of 
Feddes et al. (1978) with the vegetation-specific stress response 
function for grass, which is available in the HYDRUS-1D soft-
ware (Šimůnek et al., 2013). The root water uptake was restricted 
until the maximum rooting depth of 0.6 m, which was determined 
during the soil profile sampling. Root water uptake decreased lin-
early between 0.05 m and the maximum rooting depth, were it 
reached zero. To account for a delay in infiltration during times 
with snow in the catchment area, a simple approach according to 
Jarvis (1994) was used. The snowmelt and sublimation constant 
were set to 0.43 cm d−1 °C−1 and 0.06, respectively.

Isotope Transport
The solute transport of d18O was calculated with the advection–

dispersion equation, which is the most widely used model to predict 
solute transport under transient natural boundary conditions 
(Vanderborght and Vereecken, 2007). The dispersion coefficient 
in the advection–dispersion equation represents hydromechanical 
dispersion, which corresponds with the product of the longitudinal 
dispersivity DL [L] and the pore water velocity [L T−1], and the effec-
tive molecular diffusion, which depends on the molecular diffusion 
in water [L T−1], and a dimensionless tortuosity factor that is <1 and 
decreases with decreasing water content.

A modified version of HYDRUS-1D (Stumpp et al., 2012; 
Šimůnek et al., 2016) was used to simulate the transport of stable iso-
topes. The module neglects fractionation processes due to evaporation 
and was successfully applied in various studies (Huang et al., 2015; 
Sprenger et al., 2015, 2016a, 2016b). The modified code prevents an 
accumulation of isotopes (equivalent to an increase in isotope ratios) at 
the soil surface when evaporation occurs and assumes passive uptake 
by roots, so that water and tracer (d18O) can leave the system via 

evaporation and transpiration. The solute transport boundary condi-
tions at the top boundary were described as a time-variable solute flux 
boundary (Cauchy boundary) when water flow was directed into the 
system (precipitation) and by a zero concentration gradient (Neumann 
boundary) when water flux was out of the system (evaporation). At the 
bottom boundary, a zero concentration gradient (Neumann bound-
ary) was used when the water flux left and entered the system.

Data Used for Boundary and Initial Conditions
The simulated time period was from 1 Jan. 2012 to 30 Apr. 

2016. For this period, isotope ratios in the precipitation were 
available and daily precipitation, evapotranspiration, discharge, 
and upward directed water flow were derived from lysimeter and 
eff luent reservoir weights. Measurements of internal states of 
the lysimeters (water contents, water potentials, and d18O ratios) 
were available for a shorter period from 4 Dec. 2013 to 30 Apr. 
2016. Therefore, initial conditions for the water flow and isotope 
transport simulations had to be estimated, and a spin-up phase of 
703 d was considered to minimize the effect of the chosen initial 
conditions on the calibration of the model parameters against mea-
surements of the internal states of the lysimeters. A linear decrease 
of pressure head between the top (−70 cm) and the bottom bound-
ary nodes (−50 cm) was chosen as an initial condition for water 
flow. The initial d18O ratios in the soil profile were estimated by 
averaging the measured d18O ratios derived from the soil water 
samples at the 0.1- and 1.45-m depths throughout the entire obser-
vation period. We assumed a linear decrease of the d18O ratios 
between the top and bottom of the soil profile; please note that all 
isotope values were transferred into positive numbers by adding an 
arbitrary value for the simulation only because it is not possible to 
use negative numbers in the modeling procedure.

Defi nition of Soil Layers in the Simulation Model
Figure 1 shows both soil profiles, the position of the measure-

ment devices, and the conceptual representation of the layering in 
HYDRUS-1D for all four lysimeters. The layering of both pro-
files was rather similar; hence the conceptual representation of the 

Fig. 1. The two soil profiles from the Wüste-
bach catchment (southeast [left] and 
northwest [right]), the conceptual represen-
tation of the layering in the HYDRUS-1D 
simulation (which was based on the northwest 
profile), and the positions of the measurement 
devices and observation points in the simula-
tion. The locations of the measurement devices 
are: time domain reflectometry probes (tri-
angles), tensiometers (rectangles), and suction 
cups (circles).
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layering in the simulation was based on the northwest profile. In 
total, seven parameters had to be estimated or optimized for four 
soil horizons to simulate the water (qr, q s, a , n, KS, and t) and 
solute transport (DL). The lysimeters at Wüstebach were covered 
with a few-centimeters-thick moss layer. Previous studies showed 
that internal water fluxes in mosses affect the drainage behavior 
across the moss layer and change the rate of evaporation (Price 
and Whittington, 2010), as the physiology of moss differs from 
that of other plants (Suzuki et al., 2007) or bare soil conditions 
(Blok et al., 2011). To represent moss in our hydrological model, 
the hydraulic and transport properties of the moss layer were set 
to qr = 0.01 cm3 cm−3, q s = 0.92 cm3 cm−3, a = 0.4373 cm−1, 
n = 1.405, Ks = 175 cm d−1, t = −2.31, and DL = 5 cm accord-
ing to McCarter and Price (2014) and Stofberg et al. (2016). The 
thickness of the moss layer was 0.05 m.

Parameter Optimization and Model Effi  ciency
To reduce the amount of data, daily averages of matric poten-

tials and water contents were calculated from the measurements. 
These were compared with daily values of water contents and 
matric potentials that were simulated by HYDRUS-1D. The d18O 
ratios in the collected effluent from the lysimeter were compared 
with a flux-weighted average of d18O ratios that were simulated 
in the pore water at the bottom of the lysimeter during the time 
period that the effluent was collected. The same procedure was 
used to compare the d18O ratios in the pore water with simulated 
ratios at the depth of the soil water samplers.

Parameter values for qs in Layers 2 to 4 were estimated from 
the measured soil water retention characteristic using RETC 
(van Genuchten et al., 1991) to reduce the number of optimiza-
tion parameters. The parameter search space of the water f low 
and solute transport parameters during the optimization is sum-
marized in Table 2. The lower boundary for the parameter t was 
defined according to Peters et al. (2011).

We used the Shuffled Complex Evolution Metropolis algo-
rithm (SCEM; Vrugt et al., 2003) to determine, for each lysimeter 

and soil layer, the soil hydraulic parameters and the longitudinal 
dispersivity. The SCEM is a global optimization algorithm that 
has been applied to a wide range of hydrological problems at dif-
ferent scales (Heimovaara et al., 2004; Raat et al., 2004; Ries et 
al., 2015). The algorithmic variables that need to be specified are 
the number of complexes q (e.g., 25 = number of parameters) and 
the population size s (e.g., q ´ 10). We considered four different 
optimization strategies that included different sets of observations:
1. Bi-objective optimization strategy (BOS1): water content and 

d18O data at all available soil depths (0.1, 0.3, 0.5, and 1.45 m) 
are used to calibrate the soil hydraulic parameters and DL of 
the HYDRUS-1D model.

2. Bi-objective optimization strategy (BOS2): matric potential 
used instead of water content data compared with BOS1.

3. Two-step optimization strategy (2SOS): soil hydraulic param-
eters were estimated from layer-specific measurements of water 
content and matric potential in a first optimization run with 
SCEM. In a next step, the transport parameters DL were 
estimated for each soil layer from the d18O data using the opti-
mized hydraulic parameters obtained in the first run.

4. Multi-objective optimization strategy (MOS): uses water 
content, matric potential, and d18O ratios simultaneously 
to calibrate 25 parameters of the advection–dispersion and 
Richards equations.

Strategies with only one measured state variable (e.g., d18O 
ratios) or pedotransfer functions were not considered because 
earlier investigations by Sprenger et al. (2015) showed that such 
a strategy failed to match observations of state variables that 
were not included in the objective function (water content) 
during the inverse model calibration. The objective function 
that was minimized using the SCEM algorithm was based on 
Nash–Sutcliffe efficiency (NSE). The NSE coefficients were cal-
culated per depth and observation variable to evaluate model 
behavior and performance:
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where N is the total number of time steps, t is the time step, 
xv,s,t and xv,o,t are the simulated and observed values of the 
variable v, and mv,o is the mean observed value. The NSE values 
range between 1 (perfect fit) and −¥. Values below zero imply 
that the mean of the observations is a better predictor than 
model simulations. Because the SCEM algorithm minimizes 
an OF, the average NSE coefficient was defined as NSE − 1. To 
evaluate and compare among all four strategies, we calculated, 
based on the optimal parameter set, an average NSE coefficient 
(AV-NSE) that lumps NSE coefficients for all the observation 
depths and variables.

No water content measurements were available for Lys-Wu4 
in Layer 4 (0.5 m) and for all lysimeters at the 1.4-m depth. At 
depths where no water content was available, matric potential 
measurements were used instead of water content in the OF.

Table 2. Lower and upper boundaries of soil hydraulic properties and 
dispersivity parameter for the inverse parameter optimization strate-
gies. Measured minimum and maximum leaf area index (LAI).

Parameter† Lower bound Upper bound

LAI, cm2 cm−2 0.2 3.7

qr, cm3 cm−3 0 0.36

qs, cm3 cm−3 0.25 0.55

a , cm−1 0.001 0.3

n 1.001 3

Ks, cm d−1 1 1500

t t > −2/(1 − 1/n) 6

DL, cm 0.1 30

† LAI, leaf area index; qr and qs, residual and saturated water content, respec-
tively; a and n, shape parameters; Ks, saturated hydraulic conductivity; t, pore 
connectivity; DL, longitudinal dispersivity.
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Eff ective Parameters and Boundary Conditions
Eff ective Parameters

We used averaged water fluxes at the boundaries of the lysim-
eters, combined with averaged values of water contents, matric 
potentials, and d18O ratios from the four lysimeters to estimate the 
effective soil hydraulic parameters and DL. These parameters were 
compared with the results for each single lysimeter considering 
uncertainty caused by parameter equifinality (Beven, 2006). The 
range of parameter uncertainty was defined as the set of param-
eter values for which AV-NSE was less than 0.01 smaller than the 
optimized AV-NSE.

Impact of Precipitation Accuracy on
the Simulation of Water and Solute Transport

To quantify as an example the impact of a less accurately 
defined upper boundary condition on simulated state variables 
(that is water content, matric potential, and d18O ratios), we 
compared simulations that used daily amounts of precipitation 
measured with a rain gauge (tipping bucket method) with simula-
tions in which precipitation was derived from the lysimeter weights. 
When using rain gauge data, the boundary condition for water 
fluxes at the bottom had to be changed to free drainage (zero gra-
dients) since the measured effluent fluxes in combination with 
measured evapotranspiration rates and the rain gauge precipitation 
values led to a long-term decline of stored water in the soil profile. 
Simulation results for the two cases were compared with measured 
average water contents, matric potentials, and d18O ratios in the 
four lysimeters.

Validation of Dispersivity Parameters
To validate our soil depth and lysimeter specific dispersiv-

ity parameters, we used the optimal parameter set from the best 
inverse parameter optimization strategy to simulate the Br− break-
through curve (BTC) of the conducted tracer experiment in a 
forward simulation run with HYDRUS-1D. Uptake of Br− by 
plants has been reported in various studies (Kung, 1990; Schnabel 
et al., 1995; Magarian et al., 1998; Xu et al., 2004). We assumed 
a passive uptake of Br− by plants during the forward simulations.

Results and Discussion
Lysimeter Observation Data

Table 3 summarizes the precipitation measured by a rain 
gauge, potential evapotranspiration, and precipitation (P), actual 
evapotranspiration (ET), discharge, and capillary upflow during 
the entire observation period (4 Dec. 2013–30 Apr. 2016) derived 
from lysimeter measurements. Daily surface fluxes (P and ET) 
derived from lysimeter measurements correlated well with rain 
gauge measurements and calculated reference ET, respectively (P: 
R2 = 0.7; ET: R2 = 0.83). However, precipitation sums derived 
from the lysimeter weights were on average 23% (670 mm) larger 
than the rain gauge measurements. Because water f low in the 
soil is driven by precipitation, it is evident that these differences 

in precipitation estimates will lead to important differences in 
simulated water fluxes in the soil, which may have an important 
impact on the calibration of the soil hydraulic and solute transport 
properties. Similar deviations between standard meteorological 
precipitation measurement devices (tipping bucket rain gauge) and 
lysimeters have been reported in the literature (e.g., Groh et al., 
2015; Hoffmann et al., 2016; Herbrich et al., 2017). These differ-
ences in precipitation between the two methods may be caused by 
the fact that lysimeters account for the presence of dew, fog, and 
rime (Gebler et al., 2015). According to Xiao et al. (2009) and Fank 
and von Unold (2007), dew can be derived from lysimeter mass 
increase measurements between sunset and sunrise, when rain 
gauges do not detect precipitation. A threshold of the maximum 
possible rate of dew formation on clear nights was used (Monteith 
and Unsworth, 1990) and dew formation rates >0.07 mm h−1 were 
excluded from the analysis. From our measurements, we found 
that dew formation accounted for ?4.7% of the total lysimeter-
derived precipitation, which is in line with previous studies (Xiao 
et al., 2009; Heusinger and Weber, 2015; Guo et al., 2016) but 
still explains only a small fraction of the difference in precipita-
tion amounts measured by lysimeters and rain gauges. Weather 
station exposure or wind effects are another important cause of 
the underestimation of precipitation by rain gauges (Richter, 1995; 
Hagenau et al., 2015). The measured cumulative ET was 72% of 
the calculated reference potential evapotranspiration. This indi-
cates that the stomatal conductance and aerodynamic conductance 
of the boundary layer above the canopy were smaller than those 
of the reference crop and/or that evaporation was reduced due to 
the high insulating capacity of mosses. The variability of daily 
P, ET, and capillary upflow among the different lysimeters was 
relatively small and increased with larger daily water fluxes (see 
Supplemental Fig. S1). However, for drainage, in comparison to the 
other daily water fluxes, we observed a larger spatial variability (up 
to ±6 mm d−1), which might be related to the spatial variability of 
the soil hydraulic properties.

Figure 2 shows the isotopic composition (d2H and d18O) of 
precipitation and of soil water sampled at different depths from 

Table 3. Cumulative water balance components derived from the 
weather and lysimeter station at the Wüstebach SOILCan test site from 
4 Dec. 2013 to 30 Apr. 2016. The reference precipitation and evapo-
transpiration (ET) corresponds to precipitation derived from a tipping 
bucket rain gauge and the potential evapotranspiration, respectively.

Lysimeter Precipitation ET Discharge
Capillary 
rise

Storage 
change

—————————————— mm ——————————————

Reference 2337 −1144 – – –

Lys-Wu4 2982 −907 −2131 38 −18

Lys-Wu5 3033 −882 −2217 31 −35

Lys-Wu6 3015 −923 −2142 32 −18

Lys-Wu8 2997 −869 −2186 39 −19

Avg. 3007 −895 −2169 34 −23
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Lys-Wu4, Lys-Wu5, and Lys-Wu6. Stable isotope values in soil 
water samples from all depths (e.g., the water line [WL] in 0.1 m 
in Fig. 2) plot close to the local meteoric water line (LMWL), dem-
onstrating no significant impact of fractionation processes due to 
evaporation or condensation. This implies that the assumption of 
no fractionation due to evaporation at the soil surface, which we 
made to define the boundary condition of the isotope transport 
model, will cause no significant bias between the simulated and 
measured isotope ratios in the soil. The lack of observable fraction-
ation indicates low evaporation losses from the moss-covered soil 
surfaces in the wet climate. The high insulating capacity of mosses 
(low thermal conductivity) can reduce the transfer of energy into 
the soil (Blok et al., 2011), dew formation decreases water demand 
from the soil, and consequently, the moss layer restricts evapora-
tion from the ground surface (Suzuki et al., 2007).

Parameter Optimization Strategies
We used the four inverse optimization strategies BOS1, BOS2, 

2SOS, and MOS for each lysimeter. The model performance per 
observation variable (NSE-q, NSE-y, NSE-18O) and AV-NSE 

efficiency criteria are summarized in Table 4. Additionally, 
information on the model performance for single-obser-
vation variables (NSEq ,i, NSEy ,i, NSE18O,i) and depths 
(i) are provided in Supplemental Table S1. The observed 
water retention data and the simulated hydraulic conduc-
tivity curves, which varied greatly between lysimeters, are 
shown in Fig. 3 and 4. Further details on the simulated 
and observed water content, matric potential, and isotope 
ratios of d18O are provided in Supplemental Fig. S2, S3, 
and S4.

Model Performance Using BOS1
The NSE values that were obtained with the BOS1 

method for each lysimeter using water content and d18O 
ratios ranged between 0.52 and 0.65, −2.06 and 0.31, and 

−0.15 and 0.37 for water content, matric potential and 
d18O data, respectively (Table 4). The smaller NSE-y
values and the larger deviation between simulated and 
measured matric potentials (Supplemental Fig. S3) 
compared with other state variables is obviously the con-
sequence of not including the NSE-y values in the OF, 

as was found in previous studies by Wöhling and Vrugt (2011) 
and Groh et al. (2013). Hence, water retention functions obtained 
from BOS1 deviate from field observations (Fig. 3). The simulated 
hydraulic conductivity varied between the lysimeters and the soil 
layer (Fig. 4), and the strategy BOS1 achieved an average NSE value 
of −0.18, which describes the average NSE criterion among all 
lysimeters (see Lys-average, Table 4).

Model Performance Using BOS2
For BOS2, which used matric potential and d18O ratios in 

the OF, measured and simulated matric potential and d18O ratios 
agreed well. The NSE-y and NSE-18O values varied between 
0.12 and 0.56 and between −0.29 and 0.46, respectively. Not 
including water content measurements in the OF led to large 
deviations between simulated and observed water contents at 
several depths (see Supplemental Fig. S2) and consequently to 
small (very negative) NSE-q values (−10.69 < NSE-q < −0.68; 
Table 4). This might be related to the disequilibrium between 
measured in situ water contents and matric potentials due to dif-
ferent reaction times of the measuring instrument. According to 

Fig. 2. Isotopic composition of precipitation, soil water from three lysimeters at 
different soil depths, the local meteoric water line (LMWL), and the water line in 
the 0.1-m soil depth (WL).

Table 4. Simulation results of four different inverse modeling strategies (bi-objective optimization BOS1 and BOS2, two-step optimization 2SOS, 
and multi-objective optimization MOS). Model performance values are reported aggregated for each observation type: water content (NSE-q), matric 
potential (NSE-y), and d18O ratios (NSE-18O); AV-NSE represents model performance for the entire vadose zone and was calculated per lysimeter 
from single Nash–Sutcliffe efficiency (NSE) values per soil depth and observation type (equally weighted). Additionally NSE per observation type and 
entire vadose zone that were averaged across the four lysimeters (Lys-average) are reported.

NSE 
observation

Lys-Wu4 Lys-Wu5 Lys-Wu6 Lys-Wu8 Lys-average

BOS1 BOS2 2SOS MOS BOS1 BOS2 2SOS MOS BOS1 BOS2 2SOS MOS BOS1 BOS2 2SOS MOS BOS1 BOS2 2SOS MOS

NSE-q 0.52 −0.68 0.54 0.52 0.65 −10.69 0.49 0.18 0.65 −2.11 0.53 0.40 0.52 −6.53 0.45 0.42 0.59 −5.00 0.50 0.38

NSE-y 0.31 0.37 0.46 0.42 −2.06 0.12 0.09 −0.06 −0.66 0.43 0.24 0.26 −1.24 0.56 0.54 0.49 −0.91 0.37 0.33 0.28

NSE-18O −0.11 −0.29 −0.97 −0.14 0.20 0.17 0.00 0.09 −0.15 0.17 −0.09 0.01 0.37 0.46 0.39 0.51 0.08 0.13 −0.17 0.12

AV-NSE 0.18 −0.11 −0.10 0.22 −0.50 −2.81 0.16 0.06 −0.11 −0.36 0.20 0.21 −0.30 −1.83 0.48 0.47 −0.18 −1.28 0.19 0.24
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the average NSE values, not including soil water content data in 
the OF led to a worse misfit of observations than not including 
matric potential measurements (average NSE Lys-average BOS2: 

−1.28). The optimal parameter sets of BOS2 for each lysimeter 
are listed in Supplemental Table S2 and were for most depths 
clearly different from values determined by the BOS1 runs. The 
respective water retention functions yielded less reasonable fits 
to the observed field water retention data than the results from 
the BOS1 runs (see, e.g., Lys-Wu5 in 0.5 m in Fig. 3). Also, the 

parameters of the unsaturated hydraulic conductivity function 
differed considerably between the two strategies.

The d18O ratios were expected to contain some information 
about the prevailing water contents in the lysimeters because the 
advective tracer movement is determined by the water flux, which 
was given as a boundary condition, and the water content in the 
soil profile. Interestingly, the d18O ratios could still be described 
adequately even when the water contents were off. Because water 
fluxes that drive the transport of the tracer are only significant 

Fig. 4. Simulated hydraulic conductivity curves at 0.1-, 0.3-, 0.5-, and 1.4-m soil depths for lysimeters Lys-Wu4, Lys-Wu5, Lys-Wu6, and Lys-Wu8 from 
four different optimization strategies: bi-objective optimization BOS1 and BOS2, two-step optimization 2SOS, and multi-objective optimization 
MOS. Effective simulated hydraulic conductivity curves obtain by the MOS strategy are shown in Lys-average (Lys-ave.).

Fig. 3. Observed field water retention 
data from four different lysimeters 
(Lys-Wu4, Lys-Wu5, Lys-Wu6, and Lys-
Wu8) in three consecutive soil depths 
and the corresponding water retention 
curves from four different optimization 
strategies: bi-objective optimization 
BOS1 (dotted line) and BOS2 (dashed 
line), two-step optimization 2SOS 
(dash-dotted line), and multi-objective 
optimization MOS (solid line). Addi-
tional average field water retention data 
(Lys-average) and the corresponding 
effective water retention curve obtained 
from the MOS strategy are shown.
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when the soil is wet, the simulated tracer d18O ratios are apparently 
not influenced by the simulated water conditions under drier soil 
conditions. However, it must be noted that the small dependence 
of the tracer transport on the water contents during drier periods 
is also due to the high precipitation amounts so that the soil is 
quickly rewetted and transport reactivated after a dry spell, and 
the timing of the transport is not affected strongly by the anteced-
ent water content. Therefore, time series of d18O ratios may be 
more sensitive to simulated water contents during time periods 
when water fluxes are insignificant for tracer transport.

Model Performance Using 2SOS
The simulation results from the stepwise strategy 2SOS, 

which used separate optimization runs to identify soil hydrau-
lic properties based on time series of water content and matric 
potential and to identify the dispersivity from d18O ratios, are 
summarized in Table 4. The NSE-q and NSE-y values were rela-
tive similar to the results for water content from BOS1 and for 
matric potential from BOS2, respectively. Thus water retention 
functions derived by strategy 2SOS agreed well with the observed 
water retention data (see Fig. 3). These findings are in line with 
previous studies, which showed that a combined use of informa-
tion during the calibration procedure of water content and matric 
potential (Abbaspour et al., 2000; Zhang et al., 2003; Wöhling 
and Vrugt, 2011; Caldwell et al., 2013; Groh et al., 2013) was 
beneficial for the estimation of soil hydraulic parameters. The 
estimated parameters of the hydraulic conductivity function with 
strategy 2SOS differed considerably from BOS1 and BOS2.

Observed topsoil water retention data suggest, at least for Lys-
Wu5, Lys-Wu6, and Lys-Wu8, a bimodal pore size distribution. 
The use of a unimodal water retention function for the simula-
tion led to an underestimation of soil water content in the topsoil 
for matric potentials below approximately −110 cm. However, the 
Lys-average NSE-18O value was below zero (−0.17) and thus was 
clearly lower than that obtained by strategy BOS1 (0.08) or BOS2 
(0.13). Simulation results from 2SOS showed a considerable trade-
off in fitting both water flow and solute transport parameters with 
a stepwise strategy. Hence, this suggests that time series of d18O 
ratios contain information content for optimizing not only solute 
transport but also water flow parameters.

Model Performance Using MOS
The temporal evolution of stable isotopes and scatterplots 

between simulated and observed time series of water content 
and matric potential by strategy MOS, which included the three 
observation types in the OF, are depicted in Supplemental Fig. S2, 
S3, and S4. The MOS achieved lower NSE-q but clearly higher 
NSE-y than BOS1 (Table 4). On the other hand, MOS simula-
tions reached notably higher NSE-q values than BOS2 but lower 
NSE-y values. The NSE-18O values obtained by MOS were nearly 
identical to the values obtained by BOS1 and BOS2. Comparing 
simulation results from MOS with 2SOS showed that both strat-
egies achieved rather similar values for NSE-y but lower NSE-q. 

Water retention functions derived with MOS also matched reason-
ably well to the observed water retention data. However, MOS 
obtained higher NSE-18O values than 2SOS (AV-NSE Lys-average 
MOS: 0.12; 2SOS: −0.17). This suggests that the improved fit of 
d18O ratios when d18O ratios, water content, and matric potential 
measurements were used simultaneously in the optimization strat-
egy resulted in only a small trade-off in the description of the water 
contents and matric potentials. Identified parameter sets between 
MOS and 2SOS differed mainly in parameters of the unsaturated 
hydraulic function and dispersivities (see Supplemental Table S2; 
Fig. 4). This suggests that d18O ratios contain additional informa-
tion content for optimizing water flow parameters Ks, n, and t. 
Hence, the balanced solution MOS achieved, in comparison with 
all other strategies, the highest average NSE value (Lys-average: 
0.24; see Table 4).

A recent simulation study by Sprenger et al. (2015) dem-
onstrated the usefulness of combining soil water content 
measurements with d18O ratio profiles (destructive) to identify 
layer-wise water flow and solute transport parameters by inverse 
modeling. Our study supports these findings and demonstrates 
that a simultaneous instead of a stepwise use of hydrological and 
hydrochemical data during the parameter optimization procedure 
increased the model realism and the parameter identifiability. In 
addition, we showed that expanding the dataset and including 
matric potentials adds important information that is required 
to estimate soil hydraulic parameters. Our investigation results 
imply, for the setup of field hydrological tracer experiments, that 
water content, matric potential, and water stable isotopes should be 
measured over time and in several depths to identify more precise 
estimates of soil hydraulic properties and dispersivities. However, 
field experiments are often limited by, e.g., budget or time. In this 
case, it might be important to know which state variable should 
be monitored. Previous investigations showed that measuring only 
one state variable (e.g., d18O ratios) does not result in sufficient 
information to parameterize the vadose zone model. Thus, in the 
case of such limiting conditions in the field, we recommend mea-
suring at least water content and tracer data because the soil water 
retention characteristic was much better defined by this strategy 
(BOS1) than by using BOS2.

Effective Parameters and Boundary Conditions
Effective Parameters

The soil hydraulic parameters and the longitudinal dispersiv-
ity obtained from MOS varied, some considerably, among the four 
lysimeters and reflect the spatial heterogeneity of the soil proper-
ties at the test site. This heterogeneity was also apparent from the 
in situ soil texture analysis (Table 1) of two soil profiles located 
nearby and the spatial variability of the locally observed state vari-
ables water content, matric potential, and d18O ratio within the 
lysimeters. The optimal parameters according to the average NSE 
criterion for the MOS optimization and the range of parameter 
values that resulted in similar average NSE criteria (average NSE 
< optimal average NSE + 0.01), which is a relative measure for the 
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parameter uncertainty (statistical inference about the parameter 
uncertainty was not performed and would require, for instance, a 
Bayesian framework), are depicted in Fig. 5. The range of derived 
Ks values was in line with previous studies at the catchment 
(Borchardt, 2012; Fang et al., 2016; Wiekenkamp et al., 2016). 
Relatively high qr (up to 0.29) and low KS values (3.6–15 cm d−1, 
except for Lys-Wu4) were obtained for the topsoil layers, which 
had the highest clay content of the soil profile (32–42%). The high 
qr values are in line with the results of Puhlmann and von Wilpert 
(2012) for forest soils with similar texture. Also, concretions of Fe 
were visible in the topsoil layers, indicating a high saturation degree 
and low hydraulic conductivity in the upper soil layer. The param-
eter uncertainty ranges were, for most soil hydraulic parameters 
and depths, relatively small and smaller than the range of optimal 
parameter values in the different lysimeters. This low range indi-
cates that most parameters were sensitive and identifiable. Only for 
Lys-Wu8 were larger uncertainty ranges obtained for qr, Ks, and 
t. The pore connectivity parameter t varied strongly among the 
lysimeters and differed considerably from the often-used standard 
value t = 0.5 (Mualem, 1976). Although negative t values are phys-
ically not feasible because it implies a decrease of tortuosity when 

the soil dries out, nevertheless various studies have showed negative 
t for soils (e.g., Schaap and Leij, 2000; Werisch et al., 2014; Cai et 
al., 2018) so that t should be used rather as a shape factor without 
any physical meaning (Peters et al., 2011). No consistent increase 
of solute dispersivity with depth was observed, and dispersivity 
lengths ranging between 3 and 30 cm were in the upper range of 
the dispersivity lengths that were observed in soil column and field 
experiments under unsaturated flow conditions (Vanderborght 
and Vereecken, 2007). The parameter uncertainty range for DL
was especially larger for Lys-Wu6 and Lys-Wu8.

The parameter uncertainty and the variability of parameters 
obtained in the different lysimeters give rise to two questions. 
The first is whether our simulation results can predict the spatial 
variability in state variables that were observed among the dif-
ferent lysimeters. A positive answer to this question implies that 
the observed spatial variability can be represented by the vari-
ability of the optimized soil properties and the variability of the 
boundary fluxes. A negative answer indicates that other processes 
or variations in fluxes at a smaller spatial resolution than what 
is represented by the model and its boundary conditions play an 
important role for the generation of the observed variability.

Fig. 5. Best values of the residual and saturated water content (qr and qs, respectively), shape parameters a and n, saturated hydraulic conductivity (Ks), 
pore connectivity (t), and longitudinal dispersivity (DL) per depth and for each single lysimeter (Lys-Wu4, Lys-Wu5, Lys-Wu6, and Lys-Wu8) and aver-
age lysimeter (Eff. parameters) obtained from the multi-objective optimization strategy. Vertical lines represent the parameter uncertainty associated 
with the parameter equifinality.



VZJ | Advancing Critical Zone Science p. 12 of 19

Figure 6 plots the coefficient of variation (CV) vs. the spatial 
mean of the variables at a given soil depth for both the measured 
and simulated variables. The CVs of the water contents increase 
with decreasing water content, which is in line with a previous 
study at the catchment scale at Wüstebach (Korres et al., 2015). 
Water content at lower depths showed only a slight increase of 
spatial variability with lower water content, but the CV of 10% 
is still high. For matric potential, we observed a parabolic shape, 
with increasing spatial variability during both wetter and drier soil 
conditions. The lowest spatial variability was around −100 cm in 
the topsoil and ranged between −40 and −70 and between −24 
and −80 cm in the 0.3- and 0.5-m soil depths, respectively. The 
spatial variability of the simulated matric potentials at 1.4 m 
increased in the range from −10 to −1 cm (close to saturation) 
to ?700%, which was not observed for the measured values. 
However, the spatial variability in both water content and matric 
potential was generally well reproduced by the model simulations, 
indicating that the spatial variability of these state variables could 

be reproduced using the variability of the estimated soil proper-
ties and the boundary conditions. The spatial variability of the 
optimized parameters might be the reason for the larger observed 
variability of daily bottom boundary water fluxes among the lysim-
eters (see Supplemental Fig. S1).

In contrast to the water content and matric potential, the spa-
tial variability of the d18O ratios was largely underestimated by the 
simulations at the 0.1-, 0.3-, and 0.5-m depths. This suggests that 
model simulations did not account for fast transport paths of tracer 
within macropores or local variations in water fluxes within the 
lysimeter. Several investigations showed that not only the model 
calibration but also the selection of the model itself and the model 
structure is of high importance because it significantly affects the 
quality of the simulations (Butts et al., 2004; Crosbie et al., 2011; 
Gosling et al., 2011; Moeck et al., 2016). Therefore the use of a dif-
ferent model structure that accounts for such fast transport paths 
(e.g., dual permeability; Gerke and van Genuchten, 1993) and a 
bimodal soil water retention characteristic (Romano and Nasta, 

Fig. 6. Coefficient of variation vs. mean water content, matric potential, and d18O ratios from field observations (light gray) and model simulations 
(multi-objective optimization strategy, dark gray) at different depths obtained from four lysimeters.
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2016) for the topsoil might have further improved the simulations. 
However, a more complex model structure like the bimodal water 
retention function would further increase the number of model 
parameters in the calibration process. A higher temporal tracer 
sampling frequency would be needed to detect fast transport paths 
of water and tracer within macropores and more sampling loca-
tions per depth to observe the spatial variability of tracer transport 
within the lysimeter and to obtain a representative average of the 
concentrations at a certain depth in the lysimeters (Koestel et al., 
2009a, 2009b; Garré et al., 2010).

A second question is whether the effective properties that were 
used to predict the average water contents, matric potentials, and 
d18O ratios at a given depth at the site differ systematically from 
the parameters that were obtained for the individual lysimeters. 
Hence, an additional model calibration run was conducted that 
optimized the soil hydraulic properties and longitudinal dispersiv-
ity using averaged state variables of water content, matric potential, 
and d18O ratio and average boundary fluxes derived from the four 
lysimeters. The model calibration reached, with respect to NSE-q, 
NSE-y, and NSE-18O, values of 0.46, 0.33, and 0.02 (Table 5) 
and thus achieved comparable results to the average model perfor-
mance in each individual lysimeter (Table 4). Effective parameters 
are summarized in Supplemental Table S2 and shown in Fig. 3, 4, 
and 5. We did not observe a systematic difference between the 
effective parameters and the set of parameters that were obtained 
for the individual lysimeters. A cross-validation of the calibrated 
vadose zone model with single lysimeter observations showed that 
the effective parameter set was able to predict the state variables 
obtained from the corresponding lysimeter with only a minor 
reduction of model performance in terms of matric potential and 
d18O ratios, but for water content, NSE values were all below zero. 
Using a fixed qs in the cross-validation from average water reten-
tion data caused a partially large offset between simulated and 
locally observed water content. Still, correlation analysis showed 
that the dynamic of simulated and observed water content agreed 
reasonably well (R2 range >0.45 and <0.70).

Lower Precipitation Accuracy
A less accurately defined atmospheric boundary condition (i.e., 

precipitation) and bottom boundary (free drainage) and effective 
parameters obtained by MOS (see Lys-average in Fig. 3 and 4) were 
used to simulate water content, matric potential, and d18O ratio 
at different measurement locations. The NSE values for the simu-
lation (Rain-gauge) can be taken from Table 5. The NSE values 
for water content decreased only a little from 0.46 to 0.39, but 
for matric potential, NSE-y showed a strong decrease from 0.33 
to −45.57. The low NSE-y was mainly related to matric poten-
tial simulation in the 1.4-m soil depth. High n and a negative t
value in Layer 5 (Fig. 4) led, in combination with the free-drainage 
lower boundary, to low simulated matric potentials at the lysimeter 
bottom. This illustrates clearly that a zero-gradient bottom bound-
ary condition cannot be used to simulate observed water fluxes in 
the 1.45-m soil depth. For d18O, an improvement of NSE-18O from 

0.02 to 0.31 was achieved. However, results from the simulation 
run “Lysimeter” captured the time series of simulated d18O ratios 
better than simulations from “Rain-gauge” (see Fig. 7). Particularly, 
d18O ratios in spring and summer did not agree well with obser-
vations when using less accurate boundary conditions. Thus, the 
less pronounced shape of d18O ratios in the spring and summer 
led to a reduced sum of absolute squared differences between the 
predicted and observed isotopic signal and consequently to larger 
NSE-18O values. Moreover, using a free-drainage boundary, the 
cumulative drainage was reduced significantly by 761 mm during 
the calibration time. This result clearly demonstrates that using 
less accurately defined boundary conditions at the top (for example, 
precipitation) and bottom (free drainage) clearly decreased the abil-
ity of the calibrated vadose zone model to simulate water content, 
matric potential, and drainage.

Validation of Dispersivities
The best parameter set obtained for individual lysimeters 

from the MOS strategy was used to simulate the parallel conducted 
Br− tracer experiment in a forward run with HYDRUS-1D for 
three lysimeters (Lys-Wu4, Lys-Wu6, and Lys-Wu8). Figure 8 
plots the Br− BTCs in four different depths for three lysimeters. 
Model simulation runs with the lysimeter-specific best parameter 
set from MOS showed a much faster simulated Br− breakthrough 
than the observed breakthrough, particularly at larger depths (see 
gray dotted lines in Fig. 8). Hence, the simulation results achieved 
low NSE values, with the exception of Layer 2 (0.1 m).

Bromide has often been used to study the movement of water 
through the vadose zone due to its presumed conservative proper-
ties in most soils (Kasteel et al., 2007; Stumpp et al., 2009; Skaggs 
et al., 2012). However, a non-conservative behavior (retardation 
factor R ¹ 1) of Br− has been reported in a few studies, where the 
faster (R < 1) or slower (R > 1) movement of Br− than water were 
attributed to anion exclusion (Gerritse and Adeney, 1992; Russow 
et al., 1996) or anion adsorption (Boggs and Adams, 1992; Seaman 

Table 5. Model performance values from the effective parameterization 
(Lysimeter), the cross-validation to predict with the effective parame-
ter-set observations from the corresponding single lysimeters (Lys-Wu4, 
Lys-Wu5, Lys-Wu6, and Lys-Wu8), and the results from simulations 
using a less accurate measured precipitation (Rain gauge) at the top and 
free drainage at the bottom. Observation types: water content (NSE-q), 
matric potential (NSE-y), and d18O ratios (NSE-18O); AV-NSE repre-
sents model performance for the entire vadose zone and was calculated 
per lysimeter from single Nash–Sutcliffe efficiency (NSE) values per 
soil depth and observation type (equally weighted).

Lysimeter NSE-q NSE-y NSE-18O AV-NSE

Lys-Wu4 −6.30 0.14 0.17 −1.14

Lys-Wu5 −4.65 0.13 0.17 −1.16

Lys-Wu6 −13.84 0.44 −0.14 −3.67

Lys-Wu8 −10.71 0.39 0.50 −3.29

Lysimeter 0.46 0.33 0.02 0.30

Rain gauge 0.37 −45.96 0.29 −16.5
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et al., 1995), respectively. The latter attributed retardation of Br−

in acid soils to adsorption on variably charged minerals (Al and 
Fe oxides or kaolinite).

The low soil pH values (range 4.2–4.8) and a high avail-
ability of oxides (Fe oxides: 2204–16,320 mg kg−1; Mn oxides: 
245–6675 mg kg−1; Al oxides: 1412–6980 mg kg−1) suggest that 
anion adsorption caused the delay of Br−. We also observed a time 
lag between the simulated and observed d18O time series (for exam-
ple Lys-Wu4 in 0.5 m, Supplemental Fig. S4). However, these time 
lags are much smaller and cannot explain the time lag between the 
observed and simulated Br− BTCs. When considering adsorption, 
the simulated Br− BTC agreed (with the exception of Lys-Wu4 in 
0.1 m) much better with observations, particularly at the lysimeter 
bottom (retardation factors are shown in Fig. 8). Our results of an 
overall slower movement of Br− than water in acid soils (pH < 4.8; 
0.1 M CaCl) agreed well with previous results from laboratory 
experiments (Goldberg and Kabengi, 2010). Hence, the use of 
soil water d18O data in our experiment allowed us to identify 
the non-conservative behavior of Br− in Wüstebach soils. The 
mere use of Br− as a “conservative” tracer under such geochemical 
conditions would have resulted in clearly different dispersivities 
and unsaturated hydraulic conductivities than obtained by water 
stable isotope data (d18O). Apart from the conservative proper-
ties of d18O, no extra application of tracer is required because it 
is an environmental tracer, and root water uptake occurs without 
fractionation (passive). Consequently, water stable isotopes allow 
monitoring transport behavior in the unsaturated zone for a much 

longer time period than tracer pulses frequently used in hydrol-
ogy. Additionally, we demonstrated that an experimental setup 
with two tracers enables validation of the identified dispersivity 
parameters based on an independent tracer time series.

Summary and Conclusion
Joint observations of water contents and solute concentra-

tions (Br−) or isotopic ratios (d18O, d2H) have been used in inverse 
modeling strategies to estimate the soil hydraulic parameters and 
dispersivities. Our inverse modeling study investigated the possi-
bility of estimating soil hydraulic and dispersivity parameters from 
observations of water contents and d18O ratios that were extended 
with matric potential measurements in four undisturbed mono-
lithic lysimeters. We evaluated different optimization strategies 
that considered different combinations of observed variables and 
sequential vs. simultaneous optimizations. If either water content 
or matric potential were not included in the optimization, the 
variable that was not considered could not be reproduced well by 
the calibration model. This implies that the simulated relation 
between matric potential and water content, i.e., the water reten-
tion curve, did not reproduce the measured relation between the 
two variables, and the obtained parameters of the retention func-
tion were not representative for the soil. When both water content 
and matric potential were used in the optimization, the simulated 
and measured water retention curves matched well. A sequential 
approach in which the transport parameter was fitted using d18O 

Fig. 7. Observed and simulated d18O ratios at four soil depths from simulation runs with upper and lower boundary conditions (i.e., Lysimeter and 
Rain-gauge, respectively). Nash–Sutcliffe efficiency (NSE) values are also shown.
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observations and using soil hydraulic parameters that were fitted 
based on water content and matric potential observations led to 
a less good simulation of d18O ratios than in the case in which 
soil hydraulic and the transport parameters were fitted simultane-
ously. Including d18O in the simultaneous optimization led only 
to a slightly worse simulation of the water content and matric 
potential than the sequential optimization. This small trade-off 
indicated that d18O observations contained, next to information 
about transport properties, also information about soil hydraulic 
properties. Hence, field experiments designed to inverse estimate 
water flow and solute transport parameters should consider the 
following points:

 ʶ combine water content and matric potential measurements to 
correctly identify the parameters of the soil water retention curve;

 ʶ use water content, matric potential, and tracer data (e.g., d18O 
ratios) simultaneously in the OF during the inverse model cali-
bration to identify soil hydraulic properties and dispersivities 
of a layered soil.

The water f luxes that were derived at the upper and lower 
boundary did not vary a lot among the different lysimeters, which 
suggests that a lysimeter may be considered to be representative of a 
larger area. However, due to soil heterogeneity, local measurements 
of state variables vary in space. Considerable variation (particu-
larly in local water content) was observed among the different 
lysimeters. When local measurements in individual lysimeters are 
used to parameterize soil properties with the MOS strategy, the 
obtained water flow and solute transport parameters for a certain 
layer vary from lysimeter to lysimeter. Still, averaged state variables 
could be well described using effective parameters, and simula-
tions with these effective parameters reproduced observations of 
certain state variables in the individual lysimeters fairly well and 
thus confirmed our assumption that lysimeters are representative 
of a larger area. The upper and lower boundary conditions derived 
from lysimeter observations deviated considerably from boundary 
conditions obtained from other measurement types. Thus, using 
lysimeter observations to define accurately the boundary condi-
tions of the model domain were highly beneficial and present an 
important asset of lysimeters. Methods that improve the accuracy 
of f lux measurements in the field, especially precipitation, are 
therefore central for improving inverse modeling studies. Given 
the cost of flux measurements in comparison with measurements 
of water content and matric potential, which can be performed 
with relatively cheap sensors, saving on these local sensors does 
not seem economical.

To further confirm our soil profile parameterization, forward 
simulation runs with the best parameter set using all three state 
variables (MOS) were evaluated for a parallel Br− tracer experi-
ment. Field observation of Br− breakthrough curves showed a 
clear delay of tracer compared with model simulations. When 
accounting for anion adsorption on amorphous oxides (Al and 
Fe) and clay minerals in the acid forest soil (pH < 4.8), the trans-
port of Br− could be described successfully and hence validated 

the identified dispersivity parameters independently. Thus, the 
use of the environmental tracer d18O data was beneficial to track 
water movement through the soil continuously during a relative 
long time period (2.5 yr) and to confirm the non-conservative 
behavior of Br−.
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