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Abstract
Single cell high throughput genomic measurements are revo-
lutionizing the fields of biology and medicine, providing a
means to tackle biological problems that have thus far been
inaccessible, such as the systematic discovery of new cell
types, the identification of cellular heterogeneity in health and
disease, or the cell-fate decisions taking place during differ-
entiation and reprogramming. Recently implemented multi–
omics measurements of genomes, transcriptomes, epige-
nomes, proteomes and chromatin organization are opening up
new avenues to begin to disentangle the causal relationship
between -omics layers and how these co-determine higher-
order cellular phenotypes. This technological revolution is not
restricted to basic science but promises major breakthroughs
in medical diagnostics and treatments. In this paper we review
existing computational methods for the analysis and integra-
tion of different -omics layers and discuss what new ap-
proaches are needed to leverage the full potential of single cell
multi-omics data.
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Introduction
Single-cell biology is revolutionizing biomedical re-
search with the promise to profile the basic entities of life

at an unprecedented level of resolution. Single cell ge-
nomics has had a major impact in fields ranging from
developmental biology to immunology and tumor biology
Current Opinion in Systems Biology 2018, 7:54–59
[1]. It is increasingly realized that when dealing with
inherently heterogeneous cellular populations, such as in
stem cell research or in many diseases such as cancer, the
corresponding molecular markers have to be scrutinized
on a single cell level, instead of at the average level in the
cellular population. Promising international collabora-
tions such as the Human Cell Atlas [2] are shaping up to

address these questions on a large-scale level.

Currently cell identity has been mostly considered on
the level of RNA via a host of single cell RNA-
sequencing (scRNA-seq) approaches. Common anal-
ysis approaches typically proceed from initial prepro-
cessing and quality control to dimension reduction for
visualization and clustering to identify cell types,
sometimes followed by lineage inference and/or differ-
ential comparison across conditions [3]. Although many
methods initially proposed for bulk cell populations can

be used for such analyses, it became clear early on that
due to different noise properties and data sparseness,
amongst others, new computational strategies would
have to be taken to fully make use of the richness of the
data [4]. This has been pointed out for scRNA-seq but
increasingly becomes clear also for other single cell
-omics techniques that have subsequently been devel-
oped, and in particular for the integration of the
different -omics datasets.

Since 2009, when the first scRNA-seq was performed

[5], other single cell sequencing techniques have been
developed. In 2011 Navin et al. [6] reported the first
genome sequencing of a single human cell, while in 2012
Falconer et al. [7] demonstrated the first single-cell
single-strand genome sequencing. More recently,
several other single cell measurements have been
introduced, such as single cell DNA methylation [8],
single cell chromatin immunoprecipitation for assessing
histone modification status [9], single cell open chro-
matin (scATAC-seq and scDNase-seq [10e12]), single
cell chromosomal conformation [13] and single cell

chromosomeelamina interactions [14], together with
single cell proteomics [15] and metabolomics [16].
These methods complement single cell transcriptomic
measurements by providing an extra layer of regulatory
information. However, true regulatory inferences can
only be made if the different -omics layers are measured
on the same single cell. Such combined measurements
are now becoming available (Figure 1). In particular, one
can currently combine measurements of transcriptome
and genome [17,18], as well as transcriptome and
methylome [19e22], which in turn provides information

about genomic gains and losses [21]. The combination
www.sciencedirect.com
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Figure 1

Scheme of the different experimentally available single cell multi-omics measurements.
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of transcriptome, nucleosome positioning and DNA
methylation has also been obtained thanks to the single
cell NOME-seq techniques [23e25]. Finally, tran-

scriptome and proteome have also been measured for
the same cell [26,27].

These above-described multi-omics measurements
constitute a major breakthrough in the life sciences.
They enable e for the first time - systematic studies of
the relationship between genome, epigenome, tran-
scriptome and proteome, and thus allow us to investigate
various questions of outstanding biological and medical
relevance that have thus far been inaccessible with other
technologies. Among these questions is how molecular

states lead to different cell fates in development or dis-
ease, what mechanisms govern transient cell responses,
or what role cellular heterogeneity plays in the onset and
progression of diseases such as cancer, diabetes or
Alzheimer’s. These developments are resulting in the
generation of big data in the life sciences, as it is
projected that the data generated from single cell
sequencing experiments will reach 1 zetta-bases = 106

peta-bases/year in 2025, the same range as data acquisi-
tion in astronomy [28]. A key challenge in the analysis of
this data is to device efficient computational tools to

process, integrate and characterize multiple functional
measurements in a biologically meaningful manner, and
overcome the extensive amount of missing data inherent
in single cell sequencing experiments.
www.sciencedirect.com
Current multi-omics integration approaches
in bulk
Analysis approaches to single cell multi-omics data have
the goal to infer regulatory relationships between the
multiple -omics layers, and to describe the unique
cellular states in more detail. From a statistical
perspective, the task of integrating multiple -omics

levels is also known as multi-view learning [29], and
includes methods ranging from kernel learning and
Bayesian modeling to matrix factorization and multi-
modal deep learning [30]. Integration of multiple
-omics levels has been discussed in detail on bulk-
averaged cell populations, resulting in analyses inte-
grating genotypes, DNA methylation, histone modifi-
cations, RNA expression and splicing, as well as protein
expression [31,32]. Methodologically, we can roughly
outline three strategies: (i) statistical integration: statisti-
cal approaches that explore common variation across

species, essentially using multi-view machine learning,
resulting in regulatory networks with multiple node
types of graphical models; (ii) QTL-based analysis: inte-
gration of ‘downstream’ -omics levels by anchoring them
by genetic variation, thereby defining e.g. expression
QTLs, methylation QTLs as well as histone modifica-
tion QTLs and overlaps thereof; (iii) mechanism-based
integration: mechanism-based integration strategies that
link -omics levels on individual units using approxima-
tions to assumed regulation levels, e.g. mRNA and
Current Opinion in Systems Biology 2018, 7:54–59
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protein using models for transcriptional and/or post-
transcriptional regulation. Examples of these strategies
outlined above are the construction of a correlation
network of both transcripts and metabolites in blood to
study transcriptional regulation of metabolism and its
link to clinical markers [33] (for statistical integration);
the analysis of the genetic drivers of both epigenetic and
transcriptional variation in human immune cells, from

the International Human Epigenome Consortium [34]
(for QTL-based methods); and the linking of multiple
-omics levels (such as mRNA and protein or mRNA and
microRNA) using a model-based mechanistic Bayesian
approach, with subsequent joint enrichment for ontol-
ogies [35] (for mechanism-based integration).
Current multi-omics integration approaches
in single cells
For the analysis and integration of single cell -omics layers
measured in single cells, existing approaches have so far
considered either computing correlations between
-omics layers, or obtaining separate single cell maps for
every measured -omics followed by integration (as
outlined in Ref. [36]).

At the genomic level, correlations between copy number
variation and transcription levels have been studied to
delineate the effect of genomic duplications and de-
letions on gene expression, and to study the effect of
ploidy on the cell-to-cell transcriptional variability
[17,18,37]. From a regulatory point of view, correlations
between DNA methylation and transcription levels
(both at the promoter and at the gene body) have been
computed to investigate the direct role of DNA
methylation on transcription and to study the effect of
heterogeneous DNA methylation in the cell population
on gene expression [19,21,22]. Since single cell

(reduced representation) bisulfite sequencing for
measuring DNA methylation gives access to genomic
information as well, it has also been possible to correlate
both DNA methylation and gene expression to genomic
gains and losses at the same time [21].

Similar strategies have been implemented for other
chromatin signatures, such as nucleosome positioning in
combination with DNA methylation and gene expres-
sion, to determine the role of chromatin architecture on
expression and to study the DNA methylation levels of

loci displaying highly heterogeneous chromatin signa-
tures [23e25]. Finally, for the combined measurement
of transcriptome and proteome, correlations have been
calculated between gene expression and protein abun-
dance for a few genes [26], a first result towards the
study of post-transcriptional regulation.

The second most common analysis approach has been to
construct a separate single cell map for every -omics
layer, followed by dimension reduction and clustering.
Current Opinion in Systems Biology 2018, 7:54–59
The independent clustering outcomes for the different
-omics layers are subsequently combined or compared
[19e21,23,24,26,27]. Such an approach provides infor-
mation on what -omic layer is most efficient at clus-
tering cell types, and infers how much information is
shared between layers by comparing clustering outputs.
In the analysis of single cell transcriptomics and prote-
omics instead a common approach has been to cluster

cells based on their genome-wide transcriptional profile
and to then explore protein levels in the different
clusters [26,27].

Finally, other analysis strategies have been devised for
the integration of multiple -omics layers measured in
different cells, and not the same single cell, sampled
from the same cell population. A method called
MATCHER [38] has been developed to perform
manifold alignment of transcriptomic and epigenomic
measurements from different cells. The method uses

first a Gaussian process latent variable model to obtain
pseudotime values for every cell in every -omic layer,
and then aligns the quantiles of the pseudotime distri-
bution to match the quantiles of a uniform distribution,
making them directly comparable. Another approach is
the one from Butler and Satija [39], who have devised a
strategy for performing integrated or comparative anal-
ysis of scRNA-seq datasets produced across different
platforms, conditions or species. The method uses di-
agonal canonical correlation analysis (CCA) to learn a
shared gene correlation structure which is conserved

between the different RNA-seq datasets, and aligns the
datasets into a conserved low-dimensional space. CCA
and other matrix factorization techniques have been
used in bulk data analysis for the integration of multiple
-omics layers [40e42], and therefore their single cell
extensions could be used to incorporate other sources of
variation such as DNA methylation or proteomic mea-
surements (Figure 2d), where the resulting loadings
would indicate cell and view specific contributions to
the overall data variation.
Outlook
Instead of the above-described methods, which treat
the -omics layers separately, we argue that an ideal
approach would be to construct single cell maps based
on a joint kernel that incorporates all measured -omic
layers (Figure 2a), similar to the above described sta-

tistical approaches in bulk. The goal would be to
construct a multi-space similarity measure, i.e. a real-
valued function that takes as inputs the n -omics mea-
surements for every pair of cells and outputs a single
similarity value between them, based on a combination
of the n -omics layers (Figure 2a). Learning joint kernel
or similarity matrices across the -omics levels allows
standard analyses on the integrated cellecell distances,
such as t-SNE based visualization [43], pseudotime
estimation [44], or clustering [45,46]. The underlying
www.sciencedirect.com
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Figure 2

General strategies for statistical integration of mutli-omics single cell measurements beyond only result integration [36]. (a) Multi-view kernel learning to
allow standard downstream analyses. (b) Multi-view classification via neural networks, with multi-instance learning. (c) Network estimation. (d) Multi-view
matrix factorization.
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multi-omics single cell maps will increase the power for
detecting differences between single cells and, espe-
cially in the cases where the independent single -omic

analysis generate different results, will help identify
intermediate populations and will help determine the
contribution of the different regulatory layers to the
cellular identity.

Instead of distance learning, one could reformulate
questions to multi-omics observations as classification
tasks. Due to the added single cell resolution, we may
have labels on cellular level but often only per sample or
condition (such as control vs knockout). In machine
learning this question is called multi-instance learning

[47], and may be combined with multi-view learning.
For simplicity, we would suggest to approach this by
training view-specific classifiers such as neural networks
on each view level first, and then integrating them via a
joint network. This may be combined with a feature
selection stage, determining which -omics level con-
tributes most and least to the classification performance,
and potentially include interaction terms as well. Simi-
larly, it would be interesting to ask how much expression
values in each -omics level help classification versus
using quantifiers of heterogeneity e.g. within a cell-type

or cluster. Depending on the classification task, one may
follow this up with a cell specific phenotype or refor-
mulate the problem as a multi-view learning task
(Figure 2b). The latter would help to extend the above
question of how much heterogeneity within a cell (‘bag’
www.sciencedirect.com
in multi-instance learning) contributes to the classifi-
cation, and how much so for each -omics level.

Besides prediction, correlation based ideas can be
extended to multiple views by determining how specific
measurements jointly change across the cells. This
corresponds to the mechanism-based integration
approach in the bulk situation. One would simply ask if a
particular value within an -omics level is correlated to
another value either within the same layer or within an
adjacent/known to be influenced one; an example would
be to determine if the expression of a transcription
factor is correlated to the expression of its targets,
similarly for a microRNA and its targets, or a methylated

region in a particular gene’s promotor with the expres-
sion of that gene. Beyond correlation, other dependency
measures such as mutual information may be used for
the same questions, or if sample size and noise permits,
even causal dependency indices (e.g. within a pseudo-
time). These dependencies can be visualized as in bulk
using networks (Figure 2c), allowing for analysis of
jointly regulated hubs or dense network regions.

Finally, QTL based analysis and mechanism-based
integration can also be adapted to single cell multi-

omics data integration. For QTL based analysis, ge-
netic variation can be linked to population single cell
metrics such as transcription heterogeneity, as has been
done for scRNAseq only in a pilot study in human
PBMCs using multiplexing by genetic barcodes [48].
Current Opinion in Systems Biology 2018, 7:54–59

www.sciencedirect.com/science/journal/24523100


58 Future of systems biology
For the mechanism-based integration, mechanistic
models can be explored, linking the -omics levels in the
population of individual single cells like has been
reviewed above (section Current multi-omics integra-
tion approaches in single cells), where the links between
-omics layers are not obscured by the population average
measurements like in bulk.

Single cell RNA-seq approaches are rapidly scaling up to
truly large sample numbers [49], going into the millions
[50] and promising even billions of transcriptomes in
the near future [51]. With other single cell -omics
catching up, the field has started to develop more so-
phisticated multi-omics statistical models for data
integration, while addressing related computational
issues using efficient implementations, distributed
computing and even distributed data storage [52]. Many
of the outlined integration algorithms are significantly
more complex than the univariate analyses and are

hence more difficult to upscale, but promise to exploit
the full potential of single cell multi-omics sequencing
techniques.
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