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Abstract: 
Single cell high throughput genomic measurements are revolutionizing the fields of biology and             
medicine, providing a means to tackle biological problems that have thus far been inaccessible, such               
as the systematic discovery of new cell types, the identification of cellular heterogeneity in health               
and disease, or the cell-fate decisions taking place during differentiation and reprogramming.            
Recently implemented multi–omics measurements of genomes, transcriptomes, epigenomes,        
proteomes and chromatin organization are opening up new avenues to begin to disentangle the              
causal relationship between -omics layers and how these co-determine higher-order cellular           
phenotypes. This technological revolution is not restricted to basic science but promises major             
breakthroughs in medical diagnostics and treatments. In this paper we review existing computational             
methods for the analysis and integration of different -omics layers and discuss what new approaches               
are needed to leverage the full potential of single cell multi-omics data. 
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Highlights 
- Single cell multi-omics measurements are available that link genome, methylome,          

chromatin architecture, transcriptome and proteome. 
- Current analysis methods consider correlations between the -omics layers, or          

calculation of independent single-cell maps followed by integration. 
- More sophisticated statistical approaches should include joint multi-omics kernels,         

view-specific classifiers such as neural networks, and network analysis. 
 
Introduction 
Single-cell biology is revolutionizing biomedical research with the promise to profile the basic             
entities of life at an unprecedented level of resolution. Single cell genomics has had a major                
impact in fields ranging from developmental biology to immunology and tumor biology [1]. It is               
increasingly realized that when dealing with inherently heterogeneous cellular populations, such           
as in stem cell research or in many diseases such as cancer, the corresponding molecular               
markers have to be scrutinized on a single cell level, instead of at the average level in the                  
cellular population. Promising international collaborations such as the Human Cell Atlas [2] are             
shaping up to address these questions on a large-scale level.  
 
Currently cell identity has been mostly considered on the level of RNA via a host of single cell                  
RNA-sequencing (scRNA-seq) approaches. Common analysis approaches typically proceed        
from initial preprocessing and quality control to dimension reduction for visualization and            
clustering to identify cell types, sometimes followed by lineage inference and/or differential            
comparison across conditions [3]. Although many methods initially proposed for bulk cell            
populations can be used for such analyses, it became clear early on that due to different noise                 
properties and data sparseness, amongst others, new computational strategies would have to            
be taken to fully make use of the richness of the data [4]. This has been pointed out for                   
scRNA-seq but increasingly becomes clear also for other single cell -omics techniques that have              
subsequently been developed, and in particular for the integration of the different -omics             
datasets. 
 
Since 2009, when the first scRNA-seq was performed [5], other single cell sequencing             
techniques have been developed. In 2011 Navin et al. [6] reported the first genome sequencing               
of a single human cell, while in 2012 Falconer et al. [7] demonstrated the first single-cell                
single-strand genome sequencing. More recently, several other single cell measurements have           
been introduced, such as single cell DNA methylation [8], single cell chromatin            
immunoprecipitation for assessing histone modification status [9], single cell open chromatin           
(scATAC-seq and scDNase-seq [10–12]), single cell chromosomal conformation [13] and single           
cell chromosome-lamina interactions [14], together with single cell proteomics [15] and           
metabolomics [16]. These methods complement single cell transcriptomic measurements by          
providing an extra layer of regulatory information. However, true regulatory inferences can only             
be made if the different -omics layers are measured on the same single cell. Such combined                
measurements are now becoming available (figure 1). In particular, one can currently combine             
measurements of transcriptome and genome [17,18], as well as transcriptome and methylome            
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[19–22], which in turn provides information about genomic gains and losses [21]. The             
combination of transcriptome, nucleosome positioning and DNA methylation has also been           
obtained thanks to the single cell NOME-seq techniques [23–25]. Finally, transcriptome and            
proteome have also been measured for the same cell [26,27]. 
 
These above-described multi-omics measurements constitute a major breakthrough in the life           
sciences. They enable – for the first time - systematic studies of the relationship between               
genome, epigenome, transcriptome and proteome, and thus allow us to investigate various            
questions of outstanding biological and medical relevance that have thus far been inaccessible             
with other technologies. Among these questions is how molecular states lead to different cell              
fates in development or disease, what mechanisms govern transient cell responses, or what             
role cellular heterogeneity plays in the onset and progression of diseases such as cancer,              
diabetes or Alzheimer’s. These developments are resulting in the generation of big data in the               
life sciences, as it is projected that the data generated from single cell sequencing experiments               
will reach 1 zetta-bases=106 peta-bases / year in 2025, the same range as data acquisition in                
astronomy [28]. A key challenge in the analysis of this data is to device efficient computational                
tools to process, integrate and characterize multiple functional measurements in a biologically            
meaningful manner, and overcome the extensive amount of missing data inherent in single cell              
sequencing experiments.  
 
Current multi-omics integration approaches in bulk 
Analysis approaches to single cell multi-omics data have the goal to infer regulatory             
relationships between the multiple -omics layers, and to describe the unique cellular states in              
more detail. From a statistical perspective, the task of integrating multiple -omics levels is also               
known as multi-view learning [29], and includes methods ranging from kernel learning and             
Bayesian modeling to matrix factorization and multi-modal deep learning [30]. Integration of            
multiple -omics levels has been discussed in detail on bulk-averaged cell populations, resulting             
in analyses integrating genotypes, DNA methylation, histone modifications, RNA expression and           
splicing, as well as protein expression [31,32]. Methodologically, we can roughly outline three             
strategies: (i) statistical integration: statistical approaches that explore common variation across           
species, essentially using multi-view machine learning, resulting in regulatory networks with           
multiple node types of graphical models; (ii) QTL-based analysis: integration of ‘downstream’            
-omics levels by anchoring them by genetic variation, thereby defining e.g. expression QTLs,             
methylation QTLs as well as histone modification QTLs and overlaps thereof; (iii)            
mechanism-based integration: mechanism-based integration strategies that link -omics levels         
on individual units using approximations to assumed regulation levels, e.g. mRNA and protein             
using models for transcriptional and/or post-transcriptional regulation. Examples of these          
strategies outlined above are the construction of a correlation network of both transcripts and              
metabolites in blood to study transcriptional regulation of metabolism and its link to clinical              
markers [33] (for statistical integration); the analysis of the genetic drivers of both epigenetic and               
transcriptional variation in human immune cells, from the International Human Epigenome           
Consortium [34] (for QTL-based methods); and the linking of multiple -omics levels (such as              
mRNA and protein or mRNA and microRNA) using a model-based mechanistic Bayesian            
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approach, with subsequent joint enrichment for ontologies [35] (for mechanism-based          
integration). 
 
Current multi-omics integration approaches in single cells 
For the analysis and integration of single cell -omics layers measured in single cells, existing               
approaches have so far considered either computing correlations between –omic layers, or            
obtaining separate single cell maps for every measured -omics followed by integration (as             
outlined in [36]).  
 
At the genomic level, correlations between copy number variation and transcription levels have             
been studied to delineate the effect of genomic duplications and deletions on gene expression,              
and to study the effect of ploidy on the cell-to-cell transcriptional variability [17,18,37]. From a               
regulatory point of view, correlations between DNA methylation and transcription levels (both at             
the promoter and at the gene body) have been computed to investigate the direct role of DNA                 
methylation on transcription and to study the effect of heterogeneous DNA methylation in the              
cell population on gene expression [19,21,22]. Since single cell (reduced representation)           
bisulfite sequencing for measuring DNA methylation gives access to genomic information as            
well, it has also been possible to correlate both DNA methylation and gene expression to               
genomic gains and losses at the same time [21].  
 
Similar strategies have been implemented for other chromatin signatures, such as nucleosome            
positioning in combination with DNA methylation, to determine the role of chromatin architecture             
on expression and to study the DNA methylation levels of loci displaying highly heterogeneous              
chromatin signatures [23–25]. Finally, for the combined measurement of transcriptome and           
proteome, correlations have been calculated between gene expression and protein abundance           
for a few genes [26], a first result towards the study of post-transcriptional regulation.  
 
The second most common analysis approach has been to construct a separate single cell map               
for every -omics layer, followed by dimension reduction and clustering. The independent            
clustering outcomes for the different -omics layers are subsequently combined or compared            
[19–21,23,24,26,27]. Such an approach provides information on what –omic layer is most            
efficient at clustering cell types, and infers how much information is shared between layers by               
comparing clustering outputs. In the analysis of single cell transcriptomics and proteomics            
instead a common approach has been to cluster cells based on their genome-wide             
transcriptional profile and to then explore protein levels in the different clusters [26,27].  
 
Finally, other analysis strategies have been devised for the integration of multiple -omics layers              
measured in different cells, and not the same single cell, sampled from the same cell               
population. A method called MATCHER [38] has been developed to perform manifold alignment             
of transcriptomic and epigenomic measurements from different cells. The method uses first a             
Gaussian process latent variable model to obtain pseudotime values for every cell in every              
–omic layer, and then aligns the quantiles of the pseudotime distribution to match the quantiles               
of a uniform distribution, making them directly comparable. Another approach is the one from              
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Butler and Satija [39], who have devised a strategy for performing integrated or comparative              
analysis of scRNA-seq datasets produced across different platforms, conditions or species. The            
method uses diagonal canonical correlation analysis (CCA) to learn a shared gene correlation             
structure which is conserved between the different RNA-seq datasets, and aligns the datasets             
into a conserved low-dimensional space. CCA and other matrix factorization techniques have            
been used in bulk data analysis for the integration of multiple -omics layers [40–42], and               
therefore their single cell extensions could be used to incorporate other sources of variation              
such as DNA methylation or proteomic measurements (figure 2d), where the resulting loadings             
would indicate cell and view specific contributions to the overall data variation. 
 
Outlook 
Instead of the above-described methods, which treat the –omics layers separately, we argue             
that an ideal approach would be to construct single cell maps based on a joint kernel that                 
incorporates all measured –omic layers (figure 2a), similar to the above described statistical             
approaches above in bulk. The goal would be to construct a multi-space similarity measure, i.e.               
a real-valued function that takes as inputs the -omics measurements for every pair of cells        n         
and outputs a single similarity value between them, based on a combination of the -omics              n   
layers (figure 2a). Learning joint kernel or similarity matrices across the -omics levels allows              
standard analyses on the integrated cell-cell distances, such as t-SNE based visualization [43],             
pseudotime estimation [44], or clustering [45,46]. The underlying multi-omics single cell maps            
will increase the power for detecting differences between single cells and, especially in the              
cases where the independent single –omic analysis generate different results, will help identify             
intermediate populations and will help determine the contribution of the different regulatory            
layers to the cellular identity.  
 
Instead of distance learning, one could reformulate questions to multi-omics observations as            
classification tasks. Due to the added single cell resolution, we may have labels on cellular level                
but often only per sample or condition (such as control vs knockout). In machine learning this                
question is called multi-instance learning [47], and may be combined with multi-view learning.             
For simplicity, we would suggest to approach this by training view-specific classifiers such as              
neural networks on each view level first, and then integrating them via a joint network. This may                 
be combined with a feature selection stage, determining which -omics level contributes most             
and least to the classification performance, and potentially include interaction terms as well.             
Similarly, it would be interesting to ask how much expression values in each -omics level help                
classification versus using quantifiers of heterogeneity e.g. within a cell-type or cluster.            
Depending on the classification task, one may follow this up with a cell specific phenotype or                
reformulate the problem as a multi-view learning task (figure 2b). The latter would help to extend                
the above question of how much heterogeneity within a cell (‘bag’ in multi-instance learning)              
contributes to the classification, and how much so for each -omics level.  
 
Besides prediction, correlation based ideas can be extended to multiple views by determining             
how specific measurements jointly change across the cells. This corresponds to the            
mechanism-based integration approach in the bulk situation. One would simply ask if a             
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particular value within an -omics level is correlated to another value either within the same layer                
or within an adjacent/known to be influenced one; an example would be to determine if the                
expression of a transcription factor is correlated to the expression of its targets, similarly for a                
microRNA and its targets, or a methylated region in a particular gene’s promotor with the               
expression of that gene. Beyond correlation, other dependency measures such as mutual            
information may be used for the same questions, or if sample size and noise permits, even                
causal dependency indices (e.g. within a pseudotime). These dependencies can be visualized            
as in bulk using networks (figure 2c), allowing for analysis of jointly regulated hubs or dense                
network regions. 
 
Finally, QTL based analysis and mechanism-based integration can also be adapted to single             
cell multi-omics data integration. For QTL based analysis, genetic variation can be linked to              
population single cell metrics such as transcription heterogeneity, as has been done for             
scRNAseq only in a pilot study in human PBMCs using multiplexing by genetic barcodes [48].               
For the mechanism-based integration, mechanistic models can be explored, linking the -omics            
levels in the population of individual single cells like has been reviewed above (section Current               
multi-omics integration approaches in single cells), where the links between -omics layers are             
not obscured by the population average measurements like in bulk. 
 
Single cell RNA-seq approaches are rapidly scaling up to truly large sample numbers [49], going               
into the millions [50] and promising even billions of transcriptomes in the near future [51]. With                
other single cell -omics catching up, the field has started to develop more sophisticated              
multi-omics statistical models for data integration, while addressing related computational issues           
using efficient implementations, distributed computing and even distributed data storage [52].           
Many of the outlined integration algorithms are significantly more complex than the univariate             
analyses and are hence more difficult to upscale, but promise to exploit the full potential of                
single cell multi-omics sequencing techniques. 
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Figure 1: scheme of the different experimentally available single cell multi-omics           
measurements. 
 
 

 
Figure 2: General strategies for statistical integration of mutli-omics single cell measurements            
beyond only result integration [36]. (a) Multi-view kernel learning to allow standard downstream             
analyses. (b) Multi-view classification via neural networks, with multi-instance learning. (c)           
Network estimation. (d)  Multi-view matrix factorization. 

https://paperpile.com/c/zOLXXz/asi2


 

[1] S. Linnarsson, S.A. Teichmann, Single-cell genomics: coming of age, Genome Biol. 17 
(2016) 97. 

** [2] A. Regev, S.A. Teichmann, E.S. Lander, I. Amit, C. Benoist, E. Birney, B. Bodenmiller, 
P.J. Campbell, P. Carninci, M. Clatworthy, H. Clevers, B. Deplancke, I. Dunham, J. 
Eberwine, R. Eils, W. Enard, A. Farmer, L. Fugger, B. Göttgens, N. Hacohen, M. Haniffa, 
M. Hemberg, S.K. Kim, P. Klenerman, A. Kriegstein, E. Lein, S. Linnarsson, E. Lundberg, J. 
Lundeberg, P. Majumder, J.C. Marioni, M. Merad, M. Mhlanga, M. Nawijn, M. Netea, G. 
Nolan, D. Pe’er, A. Phillipakis, C.P. Ponting, S.R. Quake, W. Reik, O. Rozenblatt-Rosen, 
J.R. Sanes, R. Satija, T.N. Schumacher, A.K. Shalek, E. Shapiro, P. Sharma, J.W. Shin, O. 
Stegle, M.R. Stratton, M.J.T. Stubbington, F.J. Theis, M. Uhlen, A. van Oudenaarden, A. 
Wagner, F.M. Watt, J.S. Weissman, B.J. Wold, R.J. Xavier, N. Yosef, Human Cell Atlas 
Meeting Participants, Science Forum: The Human Cell Atlas, Elife. 6 (2017). 
doi:10.7554/eLife.27041. 

Description of the idea as well as the potential of the Human Cell Atlas Project, aiming to 
build an open molecular reference map of cell states in healthy human tissues. 

[3] R. Sandberg, Entering the era of single-cell transcriptomics in biology and medicine, Nat. 
Methods. 11 (2014) 22–24. 

* [4] O. Stegle, S.A. Teichmann, J.C. Marioni, Computational and analytical challenges in 
single-cell transcriptomics, Nat. Rev. Genet. 16 (2015) 133–145. 

Systematic review of the main challenges in the analysis of single cell transcriptomics 
data. 

[5] F. Tang, C. Barbacioru, Y. Wang, E. Nordman, C. Lee, N. Xu, X. Wang, J. Bodeau, B.B. 
Tuch, A. Siddiqui, K. Lao, M.A. Surani, mRNA-Seq whole-transcriptome analysis of a single 
cell, Nat. Methods. 6 (2009) 377–382. 

[6] N. Navin, J. Kendall, J. Troge, P. Andrews, L. Rodgers, J. McIndoo, K. Cook, A. Stepansky, 
D. Levy, D. Esposito, L. Muthuswamy, A. Krasnitz, W.R. McCombie, J. Hicks, M. Wigler, 
Tumour evolution inferred by single-cell sequencing, Nature. 472 (2011) 90–94. 

[7] E. Falconer, M. Hills, U. Naumann, S.S.S. Poon, E.A. Chavez, A.D. Sanders, Y. Zhao, M. 
Hirst, P.M. Lansdorp, DNA template strand sequencing of single-cells maps genomic 
rearrangements at high resolution, Nat. Methods. 9 (2012) 1107–1112. 

[8] S.A. Smallwood, H.J. Lee, C. Angermueller, F. Krueger, H. Saadeh, J. Peat, S.R. Andrews, 
O. Stegle, W. Reik, G. Kelsey, Single-cell genome-wide bisulfite sequencing for assessing 
epigenetic heterogeneity, Nat. Methods. 11 (2014) 817–820. 

[9] A. Rotem, O. Ram, N. Shoresh, R.A. Sperling, A. Goren, D.A. Weitz, B.E. Bernstein, 
Single-cell ChIP-seq reveals cell subpopulations defined by chromatin state, Nat. 
Biotechnol. 33 (2015) 1165–1172. 

[10] J.D. Buenrostro, B. Wu, U.M. Litzenburger, D. Ruff, M.L. Gonzales, M.P. Snyder, H.Y. 
Chang, W.J. Greenleaf, Single-cell chromatin accessibility reveals principles of regulatory 
variation, Nature. 523 (2015) 486–490. 

[11] W. Jin, Q. Tang, M. Wan, K. Cui, Y. Zhang, G. Ren, B. Ni, J. Sklar, T.M. Przytycka, R. 
Childs, D. Levens, K. Zhao, Genome-wide detection of DNase I hypersensitive sites in 
single cells and FFPE tissue samples, Nature. 528 (2015) 142–146. 

[12] D.A. Cusanovich, R. Daza, A. Adey, H.A. Pliner, L. Christiansen, K.L. Gunderson, F.J. 
Steemers, C. Trapnell, J. Shendure, Multiplex single cell profiling of chromatin accessibility 
by combinatorial cellular indexing, Science. 348 (2015) 910–914. 

[13] T. Nagano, Y. Lubling, T.J. Stevens, S. Schoenfelder, E. Yaffe, W. Dean, E.D. Laue, A. 

http://paperpile.com/b/zOLXXz/ZEQ1
http://paperpile.com/b/zOLXXz/ZEQ1
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://paperpile.com/b/zOLXXz/3Nny
http://dx.doi.org/10.7554/eLife.27041.
http://paperpile.com/b/zOLXXz/EVlH
http://paperpile.com/b/zOLXXz/EVlH
http://paperpile.com/b/zOLXXz/r9qk
http://paperpile.com/b/zOLXXz/r9qk
http://paperpile.com/b/zOLXXz/XV5A
http://paperpile.com/b/zOLXXz/XV5A
http://paperpile.com/b/zOLXXz/XV5A
http://paperpile.com/b/zOLXXz/iMV7
http://paperpile.com/b/zOLXXz/iMV7
http://paperpile.com/b/zOLXXz/iMV7
http://paperpile.com/b/zOLXXz/a1nv
http://paperpile.com/b/zOLXXz/a1nv
http://paperpile.com/b/zOLXXz/a1nv
http://paperpile.com/b/zOLXXz/DEJo
http://paperpile.com/b/zOLXXz/DEJo
http://paperpile.com/b/zOLXXz/DEJo
http://paperpile.com/b/zOLXXz/Vyh6
http://paperpile.com/b/zOLXXz/Vyh6
http://paperpile.com/b/zOLXXz/Vyh6
http://paperpile.com/b/zOLXXz/tu3D
http://paperpile.com/b/zOLXXz/tu3D
http://paperpile.com/b/zOLXXz/tu3D
http://paperpile.com/b/zOLXXz/ZU6C
http://paperpile.com/b/zOLXXz/ZU6C
http://paperpile.com/b/zOLXXz/ZU6C
http://paperpile.com/b/zOLXXz/Hzp8
http://paperpile.com/b/zOLXXz/Hzp8
http://paperpile.com/b/zOLXXz/Hzp8
http://paperpile.com/b/zOLXXz/qyUg


Tanay, P. Fraser, Single-cell Hi-C reveals cell-to-cell variability in chromosome structure, 
Nature. 502 (2013) 59–64. 

[14] J. Kind, L. Pagie, S.S. de Vries, L. Nahidiazar, S.S. Dey, M. Bienko, Y. Zhan, B. Lajoie, 
C.A. de Graaf, M. Amendola, G. Fudenberg, M. Imakaev, L.A. Mirny, K. Jalink, J. Dekker, 
A. van Oudenaarden, B. van Steensel, Genome-wide maps of nuclear lamina interactions 
in single human cells, Cell. 163 (2015) 134–147. 

[15] A.P. Frei, F.-A. Bava, E.R. Zunder, E.W.Y. Hsieh, S.-Y. Chen, G.P. Nolan, P.F. Gherardini, 
Highly multiplexed simultaneous detection of RNAs and proteins in single cells, Nat. 
Methods. 13 (2016) 269–275. 

[16] M. Fessenden, Metabolomics: Small molecules, single cells, Nature. 540 (2016) 153–155. 
[17] I.C. Macaulay, W. Haerty, P. Kumar, Y.I. Li, T.X. Hu, M.J. Teng, M. Goolam, N. Saurat, P. 

Coupland, L.M. Shirley, M. Smith, N. Van der Aa, R. Banerjee, P.D. Ellis, M.A. Quail, H.P. 
Swerdlow, M. Zernicka-Goetz, F.J. Livesey, C.P. Ponting, T. Voet, G&T-seq: parallel 
sequencing of single-cell genomes and transcriptomes, Nat. Methods. 12 (2015) 519. 

[18] S.S. Dey, L. Kester, B. Spanjaard, M. Bienko, A. van Oudenaarden, Integrated genome and 
transcriptome sequencing of the same cell, Nat. Biotechnol. 33 (2015) 285–289. 

[19] C. Angermueller, S.J. Clark, H.J. Lee, I.C. Macaulay, M.J. Teng, T.X. Hu, F. Krueger, S.A. 
Smallwood, C.P. Ponting, T. Voet, Others, Parallel single-cell sequencing links 
transcriptional and epigenetic heterogeneity, Nat. Methods. (2016). 
http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.3728.html. 

[20] L.F. Cheow, E.T. Courtois, Y. Tan, R. Viswanathan, Q. Xing, R.Z. Tan, D.S.W. Tan, P. 
Robson, Y.-H. Loh, S.R. Quake, W.F. Burkholder, Single-cell multimodal profiling reveals 
cellular epigenetic heterogeneity, Nat. Methods. 13 (2016) 833–836. 

** [21] Y. Hou, H. Guo, C. Cao, X. Li, B. Hu, P. Zhu, X. Wu, L. Wen, F. Tang, Y. Huang, J. 
Peng, Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic 
heterogeneity in hepatocellular carcinomas, Cell Res. 26 (2016) 304–319. 

One of a few papers describing the measurement of more than two -omics layers of the 
same single cell, in particular genomics, epigenomics and transcriptomics. 

[22] Y. Hu, K. Huang, Q. An, G. Du, G. Hu, J. Xue, X. Zhu, C.-Y. Wang, Z. Xue, G. Fan, 
Simultaneous profiling of transcriptome and DNA methylome from a single cell, Genome 
Biol. 17 (2016) 88. 

[23] S. Pott, Simultaneous measurement of chromatin accessibility, DNA methylation, and 
nucleosome phasing in single cells, Elife. 6 (2017). doi:10.7554/eLife.23203. 

[24] F. Guo, L. Li, J. Li, X. Wu, B. Hu, P. Zhu, L. Wen, F. Tang, Single-cell multi-omics 
sequencing of mouse early embryos and embryonic stem cells, Cell Res. 27 (2017) 
967–988. 

** [25] S.J. Clark, R. Argelaguet, C.-A. Kapourani, T.M. Stubbs, H.J. Lee, F. Krueger, G. 
Sanguinetti, G. Kelsey, J.C. Marioni, O. Stegle, W. Reik, Joint Profiling Of Chromatin 
Accessibility, DNA Methylation And Transcription In Single Cells, (2017). 
doi:10.1101/138685. 

One of a few papers profiling more than two -omic layers of the same single cell, 
combining NOME-seq (chromatin accessibility and DNA methylation) with 
scRNA-seq. 

[26] V.M. Peterson, K.X. Zhang, N. Kumar, J. Wong, L. Li, D.C. Wilson, R. Moore, T.K. 
McClanahan, S. Sadekova, J.A. Klappenbach, Multiplexed quantification of proteins and 
transcripts in single cells, Nat. Biotechnol. 35 (2017) 936–939. 

[27] M. Stoeckius, C. Hafemeister, W. Stephenson, B. Houck-Loomis, P.K. Chattopadhyay, H. 
Swerdlow, R. Satija, P. Smibert, Simultaneous epitope and transcriptome measurement in 

http://paperpile.com/b/zOLXXz/qyUg
http://paperpile.com/b/zOLXXz/qyUg
http://paperpile.com/b/zOLXXz/4fRo
http://paperpile.com/b/zOLXXz/4fRo
http://paperpile.com/b/zOLXXz/4fRo
http://paperpile.com/b/zOLXXz/4fRo
http://paperpile.com/b/zOLXXz/KlyG
http://paperpile.com/b/zOLXXz/KlyG
http://paperpile.com/b/zOLXXz/KlyG
http://paperpile.com/b/zOLXXz/i4BQ
http://paperpile.com/b/zOLXXz/mpQI
http://paperpile.com/b/zOLXXz/mpQI
http://paperpile.com/b/zOLXXz/mpQI
http://paperpile.com/b/zOLXXz/mpQI
http://paperpile.com/b/zOLXXz/9kwj
http://paperpile.com/b/zOLXXz/9kwj
http://paperpile.com/b/zOLXXz/AfqE
http://paperpile.com/b/zOLXXz/AfqE
http://paperpile.com/b/zOLXXz/AfqE
http://www.nature.com/nmeth/journal/vaop/ncurrent/full/nmeth.3728.html
http://paperpile.com/b/zOLXXz/AfqE
http://paperpile.com/b/zOLXXz/Dp1G
http://paperpile.com/b/zOLXXz/Dp1G
http://paperpile.com/b/zOLXXz/Dp1G
http://paperpile.com/b/zOLXXz/zFyI
http://paperpile.com/b/zOLXXz/zFyI
http://paperpile.com/b/zOLXXz/zFyI
http://paperpile.com/b/zOLXXz/5Pny
http://paperpile.com/b/zOLXXz/5Pny
http://paperpile.com/b/zOLXXz/5Pny
http://paperpile.com/b/zOLXXz/Z5aI
http://paperpile.com/b/zOLXXz/Z5aI
http://dx.doi.org/10.7554/eLife.23203.
http://paperpile.com/b/zOLXXz/t6GY
http://paperpile.com/b/zOLXXz/t6GY
http://paperpile.com/b/zOLXXz/t6GY
http://paperpile.com/b/zOLXXz/XLKw
http://paperpile.com/b/zOLXXz/XLKw
http://paperpile.com/b/zOLXXz/XLKw
http://paperpile.com/b/zOLXXz/XLKw
http://dx.doi.org/10.1101/138685.
http://paperpile.com/b/zOLXXz/lvEJ
http://paperpile.com/b/zOLXXz/lvEJ
http://paperpile.com/b/zOLXXz/lvEJ
http://paperpile.com/b/zOLXXz/NKYb
http://paperpile.com/b/zOLXXz/NKYb


single cells, Nat. Methods. 14 (2017) 865–868. 
[28] Z.D. Stephens, S.Y. Lee, F. Faghri, R.H. Campbell, C. Zhai, M.J. Efron, R. Iyer, M.C. 

Schatz, S. Sinha, G.E. Robinson, Big Data: Astronomical or Genomical?, PLoS Biol. 13 
(2015) e1002195. 

** [29] S. Sun, A survey of multi-view machine learning, Neural Comput. Appl. 23 (2013) 
2031–2038. 

A comprehensive review and categorization of machine learning methods dealing with 
the integration of multi-modal (“multi-view”) data sets, i.e. samples with multiple 
alternative multivariate observations. 

[30] Y. Li, F.-X. Wu, A. Ngom, A review on machine learning principles for multi-view biological 
data integration, Brief. Bioinform. (2016). doi:10.1093/bib/bbw113. 

[31] S. Huang, K. Chaudhary, L.X. Garmire, More Is Better: Recent Progress in Multi-Omics 
Data Integration Methods, Front. Genet. 8 (2017) 84. 

[32] M. Civelek, A.J. Lusis, Systems genetics approaches to understand complex traits, Nat. 
Rev. Genet. 15 (2014) 34–48. 

[33] J. Bartel, J. Krumsiek, K. Schramm, J. Adamski, C. Gieger, C. Herder, M. Carstensen, A. 
Peters, W. Rathmann, M. Roden, K. Strauch, K. Suhre, G. Kastenmüller, H. Prokisch, F.J. 
Theis, The Human Blood Metabolome-Transcriptome Interface, PLoS Genet. 11 (2015) 
e1005274. 

[34] L. Chen, B. Ge, F.P. Casale, L. Vasquez, T. Kwan, D. Garrido-Martín, S. Watt, Y. Yan, K. 
Kundu, S. Ecker, A. Datta, D. Richardson, F. Burden, D. Mead, A.L. Mann, J.M. Fernandez, 
S. Rowlston, S.P. Wilder, S. Farrow, X. Shao, J.J. Lambourne, A. Redensek, C.A. Albers, 
V. Amstislavskiy, S. Ashford, K. Berentsen, L. Bomba, G. Bourque, D. Bujold, S. Busche, 
M. Caron, S.-H. Chen, W. Cheung, O. Delaneau, E.T. Dermitzakis, H. Elding, I. Colgiu, F.O. 
Bagger, P. Flicek, E. Habibi, V. Iotchkova, E. Janssen-Megens, B. Kim, H. Lehrach, E. 
Lowy, A. Mandoli, F. Matarese, M.T. Maurano, J.A. Morris, V. Pancaldi, F. Pourfarzad, K. 
Rehnstrom, A. Rendon, T. Risch, N. Sharifi, M.-M. Simon, M. Sultan, A. Valencia, K. 
Walter, S.-Y. Wang, M. Frontini, S.E. Antonarakis, L. Clarke, M.-L. Yaspo, S. Beck, R. 
Guigo, D. Rico, J.H.A. Martens, W.H. Ouwehand, T.W. Kuijpers, D.S. Paul, H.G. 
Stunnenberg, O. Stegle, K. Downes, T. Pastinen, N. Soranzo, Genetic Drivers of Epigenetic 
and Transcriptional Variation in Human Immune Cells, Cell. 167 (2016) 1398–1414.e24. 

[35] S. Sass, F. Buettner, N.S. Mueller, F.J. Theis, A modular framework for gene set analysis 
integrating multilevel omics data, Nucleic Acids Res. 41 (2013) 9622–9633. 

[36] C. Bock, M. Farlik, N.C. Sheffield, Multi-Omics of Single Cells: Strategies and Applications, 
Trends Biotechnol. 34 (2016) 605–608. 

[37] K.Y. Han, K.-T. Kim, J.-G. Joung, D.-S. Son, Y.J. Kim, A. Jo, H.-J. Jeon, H.-S. Moon, C.E. 
Yoo, W. Chung, H.H. Eum, S. Kim, H.K. Kim, J.E. Lee, M.-J. Ahn, H.-O. Lee, D. Park, W.-Y. 
Park, SIDR: simultaneous isolation and parallel sequencing of genomic DNA and total RNA 
from single cells, Genome Res. (2017). doi:10.1101/gr.223263.117. 

* [38] J.D. Welch, A.J. Hartemink, J.F. Prins, MATCHER: manifold alignment reveals 
correspondence between single cell transcriptome and epigenome dynamics, Genome Biol. 
18 (2017) 138. 

Description of a computational method to align multiple single cell omics layers, albeit 
assuming they have been measured in different single cells. 

* [39] A. Butler, R. Satija, Integrated analysis of single cell transcriptomic data across 
conditions, technologies, and species, bioRxiv. (2017) 164889. doi:10.1101/164889. 

Computational integration of single cell transcriptomic measurements performed on 
different populations of single cells 

http://paperpile.com/b/zOLXXz/NKYb
http://paperpile.com/b/zOLXXz/aqsG
http://paperpile.com/b/zOLXXz/aqsG
http://paperpile.com/b/zOLXXz/aqsG
http://paperpile.com/b/zOLXXz/jIAL
http://paperpile.com/b/zOLXXz/jIAL
http://paperpile.com/b/zOLXXz/ckoa
http://paperpile.com/b/zOLXXz/ckoa
http://dx.doi.org/10.1093/bib/bbw113.
http://paperpile.com/b/zOLXXz/TdCP
http://paperpile.com/b/zOLXXz/TdCP
http://paperpile.com/b/zOLXXz/efiH
http://paperpile.com/b/zOLXXz/efiH
http://paperpile.com/b/zOLXXz/3BNz
http://paperpile.com/b/zOLXXz/3BNz
http://paperpile.com/b/zOLXXz/3BNz
http://paperpile.com/b/zOLXXz/3BNz
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ho5n
http://paperpile.com/b/zOLXXz/ZcSR
http://paperpile.com/b/zOLXXz/ZcSR
http://paperpile.com/b/zOLXXz/asi2
http://paperpile.com/b/zOLXXz/asi2
http://paperpile.com/b/zOLXXz/Tn2n
http://paperpile.com/b/zOLXXz/Tn2n
http://paperpile.com/b/zOLXXz/Tn2n
http://paperpile.com/b/zOLXXz/Tn2n
http://dx.doi.org/10.1101/gr.223263.117.
http://paperpile.com/b/zOLXXz/5WKY
http://paperpile.com/b/zOLXXz/5WKY
http://paperpile.com/b/zOLXXz/5WKY
http://paperpile.com/b/zOLXXz/6ws0
http://paperpile.com/b/zOLXXz/6ws0
http://dx.doi.org/10.1101/164889.


[40] D.M. Witten, R. Tibshirani, T. Hastie, A penalized matrix decomposition, with applications to 
sparse principal components and canonical correlation analysis, Biostatistics. 10 (2009) 
515–534. 

[41] K.-A. Lê Cao, P.G.P. Martin, C. Robert-Granié, P. Besse, Sparse canonical methods for 
biological data integration: application to a cross-platform study, BMC Bioinformatics. 10 
(2009) 34. 

[42] S. Waaijenborg, P.C. Verselewel de Witt Hamer, A.H. Zwinderman, Quantifying the 
association between gene expressions and DNA-markers by penalized canonical 
correlation analysis, Stat. Appl. Genet. Mol. Biol. 7 (2008) Article3. 

[43] L. van der Maaten, G. Hinton, Visualizing Data using t-SNE, J. Mach. Learn. Res. 9 (2008) 
2579–2605. 

[44] L. Haghverdi, M. Büttner, F.A. Wolf, F. Buettner, F.J. Theis, Diffusion pseudotime robustly 
reconstructs lineage branching, Nat. Methods. 13 (2016) 845–848. 

[45] V.D. Blondel, J.-L. Guillaume, R. Lambiotte, E. Lefebvre, Fast unfolding of communities in 
large networks, J. Stat. Mech. 2008 (2008) P10008. 

[46] J.H. Levine, E.F. Simonds, S.C. Bendall, K.L. Davis, E.-A.D. Amir, M.D. Tadmor, O. Litvin, 
H.G. Fienberg, A. Jager, E.R. Zunder, R. Finck, A.L. Gedman, I. Radtke, J.R. Downing, D. 
Pe’er, G.P. Nolan, Data-Driven Phenotypic Dissection of AML Reveals Progenitor-like Cells 
that Correlate with Prognosis, Cell. 162 (2015) 184–197. 

[47] J. Amores, Multiple instance classification: Review, taxonomy and comparative study, Artif. 
Intell. 201 (2013) 81–105. 

[48] H.M. Kang, M. Subramaniam, S. Targ, M. Nguyen, L. Maliskova, E. Wan, S. Wong, L. 
Byrnes, C. Lanata, R. Gate, S. Mostafavi, A. Marson, N. Zaitlen, L.A. Criswell, J. Ye, 
Multiplexing droplet-based single cell RNA-sequencing using natural genetic barcodes, 
bioRxiv. (2017) 118778. doi:10.1101/118778. 

* [49] P. Angerer, L. Simon, S. Tritschler, F.A. Wolf, D. Fischer, F.J. Theis, Single cells make 
big data: New challenges and opportunities in transcriptomics, Current Opinion in Systems 
Biology. 4 (2017) 85–91. 

Review of computational challenges arising from the increasing size of scRNAseq data 
sets, highlighting opportunities and challenges in the context of big data analytics. 

[50] G.X.Y. Zheng, J.M. Terry, P. Belgrader, P. Ryvkin, Z.W. Bent, R. Wilson, S.B. Ziraldo, T.D. 
Wheeler, G.P. McDermott, J. Zhu, M.T. Gregory, J. Shuga, L. Montesclaros, J.G. 
Underwood, D.A. Masquelier, S.Y. Nishimura, M. Schnall-Levin, P.W. Wyatt, C.M. Hindson, 
R. Bharadwaj, A. Wong, K.D. Ness, L.W. Beppu, H.J. Deeg, C. McFarland, K.R. Loeb, W.J. 
Valente, N.G. Ericson, E.A. Stevens, J.P. Radich, T.S. Mikkelsen, B.J. Hindson, J.H. Bielas, 
Massively parallel digital transcriptional profiling of single cells, Nat. Commun. 8 (2017) 
14049. 

[51] A.B. Rosenberg, C. Roco, R.A. Muscat, A. Kuchina, S. Mukherjee, W. Chen, D.J. Peeler, Z. 
Yao, B. Tasic, D.L. Sellers, S.H. Pun, G. Seelig, Scaling single cell transcriptomics through 
split pool barcoding, bioRxiv. (2017) 105163. doi:10.1101/105163. 

[52] C.-C. Hon, J.W. Shin, P. Carninci, M.J.T. Stubbington, The Human Cell Atlas: Technical 
approaches and challenges, Brief. Funct. Genomics. (2017). doi:10.1093/bfgp/elx029. 

 

http://paperpile.com/b/zOLXXz/ZqN2
http://paperpile.com/b/zOLXXz/ZqN2
http://paperpile.com/b/zOLXXz/ZqN2
http://paperpile.com/b/zOLXXz/kKG7
http://paperpile.com/b/zOLXXz/kKG7
http://paperpile.com/b/zOLXXz/kKG7
http://paperpile.com/b/zOLXXz/vZuV
http://paperpile.com/b/zOLXXz/vZuV
http://paperpile.com/b/zOLXXz/vZuV
http://paperpile.com/b/zOLXXz/Oawg
http://paperpile.com/b/zOLXXz/Oawg
http://paperpile.com/b/zOLXXz/IDhc
http://paperpile.com/b/zOLXXz/IDhc
http://paperpile.com/b/zOLXXz/EeCI
http://paperpile.com/b/zOLXXz/EeCI
http://paperpile.com/b/zOLXXz/BsRn
http://paperpile.com/b/zOLXXz/BsRn
http://paperpile.com/b/zOLXXz/BsRn
http://paperpile.com/b/zOLXXz/BsRn
http://paperpile.com/b/zOLXXz/OyYm
http://paperpile.com/b/zOLXXz/OyYm
http://paperpile.com/b/zOLXXz/9lmH
http://paperpile.com/b/zOLXXz/9lmH
http://paperpile.com/b/zOLXXz/9lmH
http://paperpile.com/b/zOLXXz/9lmH
http://dx.doi.org/10.1101/118778.
http://paperpile.com/b/zOLXXz/2siC
http://paperpile.com/b/zOLXXz/2siC
http://paperpile.com/b/zOLXXz/2siC
http://paperpile.com/b/zOLXXz/OpIX
http://paperpile.com/b/zOLXXz/OpIX
http://paperpile.com/b/zOLXXz/OpIX
http://paperpile.com/b/zOLXXz/OpIX
http://paperpile.com/b/zOLXXz/OpIX
http://paperpile.com/b/zOLXXz/OpIX
http://paperpile.com/b/zOLXXz/OpIX
http://paperpile.com/b/zOLXXz/qzHC
http://paperpile.com/b/zOLXXz/qzHC
http://paperpile.com/b/zOLXXz/qzHC
http://dx.doi.org/10.1101/105163.
http://paperpile.com/b/zOLXXz/ARaT
http://paperpile.com/b/zOLXXz/ARaT
http://dx.doi.org/10.1093/bfgp/elx029.

