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ABSTRACT 

 
The problem of designing new anti-tubercular drugs against multiple-drug-resistant 

tuberculosis (MDR-TB) was addressed using advanced machine learning methods. Since there 
are only few published measurements against MDR-TB, we collected a large literature dataset 
and developed models against the non-resistant H37Rv strain. The predictive accuracy of these 
models had a coefficient of determination q2 = 0.7-0.8 (regression models), and balanced 
accuracies of about 80% (classification models) with cross-validation and independent test sets. 
The models were applied to screen a virtual chemical library, which was designed to have MDR-
TB activity. The seven most promising compounds were identified, synthesized and tested. All 
of them showed activity against the H37Rv strain, and three molecules demonstrated activity 
against the MDR-TB strain. The docking analysis indicated that the discovered molecules could 
bind enoyl reductase, InhA, which is required in mycobacterial cell wall development. The 
models are freely available online (http://ochem.eu/article/103868) and can be used to predict 
potential anti-TB activity of new chemicals. 
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1. Introduction 

Tuberculosis (TB) is an infectious disease primarily caused by the bacterium Mycobacterium 
tuberculosis (Mtb). While it usually affects the lungs, it can also perturb other organs. Almost 
one third of the world’s population is infected with TB, primarily in developing countries. In 
2015 about 1.4 million deaths were reported as a direct result of TB infection.[1] Streptomycin, 
discovered in 1943, was the first antibiotic active against TB. Since then, multiple new 
antibiotics against TB have been developed, with isoniazid, rifampicin, pyrazinamide and 
ethambutol being the most commonly used. Unfortunately, Mtb has developed resistance against 
these antibiotics, and spread of the TB epidemic increases due to multiple drug-resistant 
tuberculosis (MDR-TB), which cannot be easily cured with existing drugs.[1] Treatment of MDR-
TB requires the use of four or more antibiotics over a period of up to 18-24 months. Moreover, 
the number of cases of MDR-TB resistant to all currently available drugs is on the rise. 

 
The challenges in development of new tuberculosis drugs were recently reviewed.[2] Several 

chemical series such as quinolone-carbohydrazides,[3] pyrimidines, [4] isoniazid derivatives,[5,6] 
pyrazolopyridones[7] and others[8] were reported to have inhibitory activity against MDR-TB. 
Although several new compounds are currently in different stages of clinical trials, only one new 
drug, Bedaquiline (TMC207), was approved by the FDA as part of a combination therapy for the 
treatment of pulmonary TB tuberculosis resistant to standard drugs.[9] Thus, the search for new 
antibiotics, effective against MDR-TB, is very important in drug discovery.[10] 

 
 Isonicotinic acid hydrazide (isoniazid or INH) is one of the most efficient drugs for the 

treatment of Mtb infection.[1] INH is a prodrug that is activated in the Mtb cells by KatG 
(catalase-peroxidase enzyme). The main target of the activated INH is the enoyl reductase, InhA, 
which participates in the synthesis of mycolic acid, one of the building blocks of the 
mycobacterial cell wall.[11] Unfortunately, mutations in KatG decrease activation of INH and 
cause resistance of Mtb to this drug. Previously,[12,13] direct inhibition of InhA by diazole- and 
triazole-based compounds and their in vitro and in vivo anti-tubercular activity was reported. It is 
known that thiazole is one of the privileged cores in medicinal chemistry, and its derivatives 
were reported to show antimicrobial, anti-inflammatory, analgesic, antitubercular and anticancer 
properties.[14,15] In this study we propose to link the isoniazid and thiazole entities into single 
derivatives. The synergistic effect of such derivatives on two targets can help in overcoming the 
problem of Mtb resistance to INH. 

 
In order to address this goal, we applied machine learning, molecular docking, virtual 

screening, synthesis and experimental testing of novel INH derivatives. Since there are no 
sufficient experimental literature data to develop a model against MDR-TB, we collected data 
and developed models against Mtb H37Rv. Our assumptions were that such an approach can 
help us identify active compounds, while linking the isoniazid and thiazole entities could help 
overcome resistance against the MDR-TB strain. The machine learning was done using 
classification and regression methods provided by the Online Chemical Modeling Environment 
(OCHEM).[16] The models along with the data used are freely available online for the scientific 
community at http://ochem.eu/article/103868. 
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2. Materials and methods 

2.1 Datasets 
The data for our analysis were compounds evaluated against the H37Rv TB strain, which 

were obtained from multiple publications. These data were uploaded into the OCHEM database, 
which is a user-friendly, web-based platform designed for storing experimental properties and 
chemical activities with the primary goal of in silico modeling.[16]  

 
Two different datasets were used to build the models. The initial dataset I (6337 compounds) 

consisted of diverse chemical series, such as derivatives of azoles, isoniazids, indoles and others. 
The minimum inhibitory concentration (MIC) values of the molecules ranged from 0.0015 to 
99.9 µM. The data were divided into high activity (2705 compounds with MIC ≤ 10 µM) and 
low activity molecules (3632 compounds with MIC > 10 µM). This dataset was used for the 
development of global classification models against the H37Rv strain, which were used for a 
preliminary evaluation of the anti-TB activity of the investigated compounds. 

 
A more specific dataset II was generated from the previous set by selection of 510 

compounds. This dataset consisted of INH and thiazole derivatives inhibiting the H37Rv TB 
strain, with MIC values ranging from 0.013 to 98.9 µM. MICs were converted into log(1/MIC) 
values and were used as the target variable to develop regression models. 
For all datasets, about 20-25 % of the compounds were randomly selected by OCHEM to form 
independent test sets while the remaining molecules were used as training sets. The chemical 
structures and the corresponding anti-TB activity data of the compounds used in the training and 
test sets as well as the full list of publications are publicly accessible at 
http://ochem.eu/article/103868. 

 
2.2 Machine learning methods 

Several machine-learning methods available on OCHEM were used to construct in silico 
models based on different descriptor sets. 

 
Associative Neural Network (ASNN). ASNN was inspired by the organization of neuronal 

connections in the brain[17] and represents a combination of an ensemble of the Feed-Forward 
Backpropagation Neural Networks and the k-Nearest Neighbors (kNN) method. While neural 
networks build an ensemble of global models, kNN provides a local correction of the global 
model set.[18] This combination corrects the bias of the neural network ensemble and increases its 
accuracy. The ensemble included 100 neural networks, which were developed using the default 
parameters provided by OCHEM. 

 
k-Nearest Neighbors (kNN). The kNN classifies the target molecule to the majority class of it 

k nearest neighbors. The parameter k is automatically selected to maximize kNN performance for 
the training set. 
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XGBoost. Extreme Gradient Boosting uses a weighted sum of individual trees in an 
ensemble.[19] The problem of overfitting is addressed by minimization of the norm of the learnt 
weights. A greedy algorithm is used to add new branches that most improve the objective 
function of the algorithm.[19] 

 
WEKA-RF. WEKA (Waikato Environment for Knowledge Analysis)[20] is a collection of 

machine learning algorithms for data mining tasks. The Random Forest (WEKA-RF) model 
consists of a set of decision trees, each of which is built using a bootstrap replica of the training 
set and randomly selected subsets of descriptors.[21] The random forest makes predictions by 
majority votes of the individual trees. 

 
The OCHEM provides an estimation of the applicability domain and accuracy of 

predictions,[22] which was used in this study to select reliable predictions of virtual compounds.  
 

2.3 Validation of models 
A five-fold cross-validation approach and external validation sets were used to evaluate the 

models.[23] Frequently, the validation of models in quantitative structure-activity relationship 
(QSAR) studies is performed after the variable selection. Such an approach can result in 
incorrect estimation of the predictive power of models due to over-fitting by variable 
selection.[23] OCHEM avoids this problem by repeating all steps of model development for each 
cross-validation step. Moreover, the aforementioned test sets were used to further confirm the 
quality of the models. 
 
2.4 Statistical parameters 

Sensitivity and specificity of classification models are calculated as: 
SN = TP / (TP + FN)                 (1) 

SP = TN / (TN + FP)                 (2) 
Here TP, FP, TN and FN denote the number of true positives, false positives, true negatives 

and false negatives, respectively. In this study we evaluated the performance of the models using 
the balanced accuracy (also sometimes referred to as the correct classification rate, BA), which is 
calculated as: 

BA = (SN + SP) /2                 (3) 

In addition to these parameters, OCHEM also provides the confusion matrix (see 
Supplementary materials), which can be used to derive other statistical measures. 

 
The accuracy of the regression models was evaluated using the root mean square error 

(RMSE), the mean absolute error (MAE), the squared correlation coefficient R2, and the 
coefficient of determination q2. 

 
 2.4 Molecular descriptors 

OCHEM provides several commonly used software packages for the calculation of vast 
collections of molecular descriptors. Five packages were used in this study: 
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E-State indices. The electro-topological state indices are 2D-descriptors that combine both 
electronic and topological characteristics of the analyzed compounds.[24] 

ALogPS. The program calculates the 1-octanol/water partition coefficient and aqueous 
solubility.[25] 

ChemAxon descriptors. The ChemAxon Calculator Plugin supports the calculation of seven 
descriptor groups, ranging from 0D to 3D: elemental analysis, charge, geometry, partitioning, 
protonation states and others. 

ADRIANA.Code. The software uses a series of methods for the generation of 3D-structures 
and the calculation of physico-chemical descriptors and molecular properties based on empirical 
models.[26] 

Unsupervised filtering was used with each descriptor set before they were used as an input for 
the machine learning algorithms. Descriptors with fewer than two unique variables or with a 
coefficient of variance less than 0.01 were excluded. Moreover, descriptors with a pairwise non-
parametric Pearson’s correlation coefficient R > 0.95 were grouped. 

 
3. Results and discussion 
 
3.1 Classification models (dataset I) 

The initial set of 6337 compounds was randomly split into training (4753) and test (1584) 
sets. The numerical values of activity were discretized as described in section 2.1. The models 
were developed after the unsupervised filtering of descriptors as described in section 2.4. 
Additionally, the Unsupervised Forward Selection (UFS)[27] was used in classification models 1, 
2 and 4 (Table 1) to further filter descriptors. The RF algorithm uses random subsets of 
descriptors to build each tree in the forest and thus it is less subject to the problem of correlations 
between the descriptors. Therefore, the best WEKA-RF model (see Table 1) was obtained 
without the UFS. 

We preliminarily investigated all descriptors sets available at the OCHEM website. The final 
models with the highest prediction accuracies were calculated using all four sets of descriptors 
described in section 2.4. 

 
 

Table 1. Statistical coefficients calculated for classification models obtained for dataset I. 
N Method Sensitivity (%) Specificity (%) Balanced Accuracy (%) 

Traininga Testa Training Test Training Test 
1 ASNN 77.9 79.0 83.0 81.0 80.3 ± 0.6 80.0 ± 1.0 
2 kNN 75.9 77.0 81.5 79.0 78.5 ± 0.6 78.0 ± 1.0 
3 WEKA-RF 83.7 85.0 81.6 80.0 81.0 ± 0.6 81.0 ± 1.0 
4 XGBOOST 78.8 82.2 82.0 82.0 80.0 ± 0.6 81.2 ± 1.0 
5 Consensusb 82.5 85.0 82.9 82.0 81.7 ± 0.6 82.2 ± 0.9 

aThe training and test datasets included 4705 and 1569 molecules, respectively. bThe consensus model 
was built by averaging four models. 

 
The developed models are summarized in Table 1 and in Fig. 1S in the Supplementary 

materials. All the models show similar results in terms of sensitivity, specificity and balanced 
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accuracy (BA). The cross-validated BAs for the training sets were in the range of 78.5-81 % 
(Table 1). Similar accuracies were also calculated the test sets BA = 78-81.2 % (see Fig. 1S of 
the Supplementary materials). The consensus model calculated the highest performance. This 
model was applied to identify the most promising anti-TB agents in the virtual dataset as 
described in section 3.3. 
 
3.2 Regression models (dataset II) 

The initial dataset of 510 compounds was split by chance into training (408) and test (102) 
sets as described. The regression models built by the ASNN and XGBOOST methods (see Table 
2) gave the best performance. For this analysis Adriana, E-state and ALOGPS descriptors 
systematically contributed the top performing models for both methods. 

 
Table 2. Statistical coefficients of the regression models. 

N Method 
Training Seta Test Seta 

R2 q2 RMSEc R2 q2 RMSE 

1 

ASNN 
0.78 ± 

0.02 

0.77 ± 

0.02 

0.51 ± 

0.02 

0.72 ± 

0.05 

0.70 ± 

0.06 

0.54 ± 

0.05 

2 
XGBOO

ST 

0.71 ± 

0.03 

0.71 ± 

0.03 

0.57 ± 

0.03 

0.74 ± 

0.05 

0.73 ± 

0.05 

0.51 ± 

0.04 

3 
Consens

usb 

0.78 ± 

0.02 

0.78 ± 

0.02 

0.50 ± 

0.02 

0.76 ± 

0.04 

0.75 ± 

0.05 

0.49 ± 

0.04 
aThe training and test datasets included 408 and 102 molecules, respectively. The same descriptors 
calculated by the Adriana, E-state and ALOGPS programs were used for both models. bThe consensus 
model was simple average of ASNN and XGBOOST models. cRMSE is the root mean square error. R2 
and q2 are the squared linear correlation and coefficient of determination, respectively. 

 
The q2 values were 0.71-0.78 and 0.70-0.75 for training and test sets, respectively. Other 

statistical parameters of the models are summarized in Table 2 as well as in Fig. 2S of the 
Supplementary materials. A consensus model, which was an average of both models, gave the 
best performance. It was used to provide a quantitative evaluation of potential antitubercular 
agents as described in the next section.  

3.3 Prediction activity of new compounds 
 A virtual database of drug-like compounds was generated. It included 165 isoniazid 
derivatives with different substitution patterns (see Fig. 1 and Supplementary materials, 
Table 1S). All of these compounds were screened using the consensus classification 
models, and only compounds predicted to be active were selected for further evaluation 
(see Supplementary materials, Table 2S). The 18 compounds with the most confident 
predictions (>70%) were selected for the next step. 
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Fig. 1. Virtual library of the 165 thiazole-containing isoniazid derivatives. Substituent “R” was 
chosen based on the availability of the starting materials for synthesis. 
 
 
 All 18 compounds were also predicted to have anti-TB activities in the range 1-10 µM 
(i.e., 5-6 on the log(1/MIC) scale) using the consensus regression model (see Table 4 and 
Table 3S of Supplementary materials). Since all of them were active no compounds were 
excluded in this step. 
 
 The next analysis was screening to flag potentially reactive, chemically unstable 
compounds and compounds with other liabilities using the OCHEM ToxAlerts[28]. The 
ten compounds with the lowest number of liabilities were proposed for synthesis. From 
this set, based on their synthetic feasibility, seven compounds were synthesized and tested 
for their anti-TB activity (Table 3). The results of the biological testing of the synthesized 
compounds confirmed the QSAR predictions (see Table 4). 
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3.4 Chemistry 
 
Table 3. Chemical structures of seven synthesized compounds tested for their anti-TB activity. 

Comp. 
No. 

Molecular 
weight 

Chemical Structure Chemical Name 

8 289.36 

N

O

N
H
N S

N N

 

N'-({5-[(dimethylamino)methyl]-1,3-thiazol-
2-yl}methylene)isonicotinohydrazide 

9 262.29 

N

O

N
H
N S

N OH

 

N'-{[5-(hydroxymethyl)-1,3-thiazol-2-
yl]methylene}isonicotinohydrazide 

10 276.32 

N

O

N
H
N S

N

OH

 

N'-{[5-(1-hydroxyethyl)-1,3-thiazol-2-
yl]methylene}isonicotinohydrazide 

11 338.39 

N

O

N
H
N S

N

OH

 

N'-({5-[hydroxy(phenyl)methyl]-1,3-thiazol-
2-yl}methylene)isonicotinohydrazide 

15 276.32 

N

O

N
H
N S

N

OH

 

N'-{[2-(1-hydroxyethyl)-1,3-thiazol-5-
yl]methylene}isonicotinohydrazide 

16 338.39 

N

O

N
H
N S

N

OH

 

N'-({2-[hydroxy(phenyl)methyl]-1,3-thiazol-
5-yl}methylene)isonicotinohydrazide 

17 304.33 

N

O

N
H
N S

N

O

O

 

N'-{[2-(1,3-dioxolan-2-yl)-1,3-thiazol-5-
yl]methylene}isonicotinohydrazide 

 
The detailed description of the chemical synthesis of selected compounds (Table 3) is 

provided in the supplementary materials. Compound 15 was synthetized by us earlier[29] but had 
not been tested against Mtb. 
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It is known that the acylhydrazone-like compounds may not be stable in acidic conditions. 
We checked the chemical stability of all seven compounds and found that they were stable both 
at neutral pH as well as under the biological assay conditions. 

 
3.5 Anti-mycobacterial activity 

The antimicrobial activity of the selected compounds against the H37Rv and MDR Mtb 
strains was determined using the proportional method of Canetti (see also supplementary 
materials).[30] This approach is the most commonly used to study the sensitivity and resistance of 
tuberculosis strains.[1] 

 
Table 4. Experimental and predicted antimycobacterial activity of the tested compounds.a 
Compound 
No. 

Predicted activity Biological testing 
log(1/MIC) H37Rvb MDR Mtbc 

8 4.80 ± 1.70 Sd S 
9 5.85 ± 0.49 S S 
10 5.95 ± 0.35 S Ie 

11 5.95 ± 0.21 S Rf 

15 5.80 ± 0.42 S I 
16 6.00 ± 0.42 S R 
17 4.70 ± 1.60 S S 

aThe compound concentration was 10 µМ. bThe H37Rv strain is sensitive to isoniazid and rifampicin. 
cThe MDR Mtb strain is resistant to isoniazid and rifampicin. dS is the sensitive culture. eI is the 
intermediate sensitive culture. fR is the resistant culture. 

 
The results of experimental testing are summarized in Table 4, where S, I and R indicate 

cultures sensitive, intermediate and resistant to the tested compound. All synthesized compounds 
showed anti-TB activity against H37Rv (Table 4) thus validating the results of the computational 
analysis. Importantly, the culture of MDR Mtb strains was sensitive to compounds 8, 9 and 17 
using operating concentrations (10 µМ), which are similar to that of the reference compound 
rifampicin. Thus, these compounds could serve as prototypes for potentially effective anti-TB 
compounds, in particular for the treatment of drug resistant forms of tuberculosis. 

 
3.6 Molecular docking studies with enoyl acyl carrier protein reductase (InhA) 

After discovery of compounds active against the MDR-TB strain, we hypothesized as to their 
mechanism of action (MOA). It is known that INH acts as a prodrug that requires catalytic 
activation by KatG to form an isonicotinic acyl radical that eventually reacts with NADH.[5] The 
resulting adduct binds strongly to InhA and inhibits its function. Since all the active compounds 
contain the isoniazid moiety, it is possible that they have similar MOA. However, the 
compounds can also inhibit InhA directly, which was also hypothesized as the MOA for other 
types of compounds.[12,13] To investigate whether our compounds could inhibit InhA directly, we 
performed molecular docking of compounds 8, 9 and 17 against a crystal structure of InhA (PDB 
code 4TZK, 1.62 Å) as described in Supplementary Materials. The docking calculations resulted 
in a similar binding mode for all three compounds (see Fig. 2, 3S and 4S). The carboxamide 
moiety forms two H-bonds, one with the 2’-hydroxy group of the NAD ribose and another with 
the Y158 phenolic group. The pyridine ring forms a favorable charge-π interaction with the 
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K165 side chain. In addition the complex is stabilized by interactions between the thiazole ring 
and the aromatic side chains of F149 and Y158. The hydroxyl group of compound 9 also forms a 
H-bond with the backbone carbonyl of P156. An overlay of the docking poses of all three 
compounds and the co-crystallized compound from the 4TZK crystal structure of InhA is shown 
in Fig. 5S. 

 
 

 
 

Fig. 2. Molecular docking of compound 9 in the InhA crystal structure (PDB code 4TZK, 1.62 Å). A) 
Ribbon representation of InhA with NAD (purple) bound and compound 9 (green) docked in the active 
site; the active site crevice is represented by the orange surface, partially clipped for clarity. B) Details of 
the interaction between compound 9 (green) and NAD-bound InhA (orange). H-bonds are depicted by 
dotted lines. NAD is shown in purple.  

 

Since all three compounds fit well in the active site of InhA, it is likely that the observed 
anti-TB MDR activity of isonicotinic acid hydrazide derivatives (8, 9 and 17) is due to the direct 
inhibition of InhA. Further experiments are necessary to validate this hypothesis. 

 
4. Conclusions 

A set of predictive in silico models based on different machine learning techniques and a 
broad range of molecular descriptors were built using the OCHEM web-based platform. The 
models demonstrated good stability, robustness and predictive power when verified by cross-
validation, prediction of external test sets and by prospective validation involving synthesis and 
biological testing of seven isonicotinic acid hydrazide derivatives. Of note, all compounds 
predicted to be active as a result of the machine learning models were found to be active against 
the H37Rv strain. This result confirms that the expert use of machine learning approaches 
facilitates a rational search for active molecules within budget and time constrains, which are 
especially tight in academic settings.[31] The developed models are publicly available and can be 
used to predict the anti-TB inhibitor activity of new compounds. Importantly, three compounds 
showed activity against the Mtb resistant strain. They are possible candidates for the 
development of novel anti-mycobacterial agents. The docking studies suggested that these 
compounds might directly inhibit the InhA. 
 

NAD 
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F149 
 

Y158 
 

Compound 9 
 

A) 
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FIGURE CAPTIONS 

 
Fig. 1. Virtual library of the 165 thiazole-containing isoniazid derivatives. Substituent “R” 
was chosen based on the availability of the starting materials for synthesis. 
 
Fig. 2. Molecular docking of compound 9 in the InhA crystal structure (PDB code 4TZK, 1.62 
Å). A) Ribbon representation of InhA with NAD (purple) bound and compound 9 (green) docked 
in the active site; the active site crevice is represented by the orange surface, partially clipped for 
clarity. B) Details of the interaction between compound 9 (green) and NAD-bound InhA 
(orange). H-bonds are depicted by dotted lines. NAD is shown in purple. 
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