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Highlights 

 Key facts on mitochondrial copper homeostasis and its derailment in Wilson disease  
 Mitochondria harbor the copper–dependent enzymes cytochrome c oxidase and around 1–5% of 

total cellular superoxide dismutase 1, and thus require an adequate copper supply. 
 Copper chaperones, low molecular mass proteins that hand over copper by protein-protein 

interactions, enable the activities of cytochrome c oxidase and mitochondrial superoxide dismutase 
1.  

 A large part of molecular players that supply the metal to the mitochondrial copper–dependent 
enzymes have been identified. Uncertainties exist with respect to the molecular mechanisms for 
mitochondrial metal uptake, storage and release.  

 Copper overload causes mitochondrial structural, biochemical and biophysical deficits, as 
exemplified in hepatocytes of Wilson disease patients and related animal models. 

 Treatments that reverse mitochondrial copper overload restore mitochondrial structure and function 
and avoid liver failure in Wilson disease patients and related animal models. 

Abstract 

In mitochondria, copper is a Janus-faced trace element. While it is the essential cofactor of the 

mitochondrial cytochrome c oxidase, a surplus of copper can be highly detrimental to these 

organelles. On the one hand, mitochondria are strictly dependent on adequate copper supply for 

proper respiratory function, and the molecular mechanisms for metalation of the cytochrome c 

oxidase have been largely characterized. On the other hand, copper overload impairs 
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mitochondria and uncertainties exist concerning the molecular mechanisms for mitochondrial 

metal uptake, storage and release. The latter issue is of fundamental importance in Wilson 

disease, a genetic disease characterized by dysfunctional copper excretion from the liver. Prime 

consequences of the progressive copper accumulation in hepatocytes are increasing 

mitochondrial biophysical and biochemical deficits. Focusing on this two-sided aspect of 

mitochondrial copper, we review mitochondrial copper homeostasis but also the impact of 

excessive mitochondrial copper in Wilson disease.  

 

Abbreviations: 

ATP7B ATPase copper transporting beta; CcO cytochrome c oxidase; CCS copper chaperone for 

superoxide dismutase; COX1 cytochrome c oxidase subunit 1; COX2 cytochrome c oxidase 

subunit 2; COX11cytochrome c oxidase assembly protein 11; COX17cytochrome c oxidase 

copper chaperone 17; COX19 cytochrome c oxidase assembly protein 19; COX23cytochrome c 

oxidase assembly protein 23; CuL copper ligand; D-PAD-penicillamine; GI gastrointestinal tract; 

GSH glutathione; GSSG glutathione disulfide; HEK293 human embryonic kidney 293 cell line; 

IMS intermembrane space; KCuCu1+-binding dissociation constant; LEC Long-Evans Cinnamon 

rat; LPP crossbred from Long-Evans Cinnamon rat and Piebald Virol Glaxo rat; MFRN1 

mitoferrin 1; MOMmitochondrial outer membrane; ROSreactive oxygen species; SCO1/2 

synthesis of cytochrome c oxidase proteins 1/2; SLC25A3 solute carrier family 25 member 3; 

SOD1superoxide dismutase 1; TGN trans-Golgi network; WD Wilson disease 

 

Keywords:Mitochondria; Liver; Wilson disease; CopperIntroduction 

ACCEPTED M
ANUSCRIP

T



3 
 

Copper is a trace element, essential for neurotransmitter, neuropeptide and collagen 

biosynthesis, wound healing, angiogenesis, growth and iron utilization (1, 2). Recently, copper 

has been suggested to regulate the systemic delivery of triglycerides from the GI tract (3, 4). 

Intracellularly, the two most important copper functions are linked to its redox ability as cofactor 

of either mitochondrial cytochrome c oxidase (CcO) or of the reactive oxygen species (ROS) 

detoxifying Cu/Zn superoxide dismutase (SOD1) (5). These two enzymes manage the 

biochemical challenge of a safe copper-mediated reduction/disproportionation of oxygen or ROS, 

respectively. Unbound “free” copper ions and ROS would otherwise inevitably cause the 

emergence of hydroxyl radicals that are highly detrimental to proteins, nucleic acids and lipids, 

via Fenton-based chemistry. Indeed, physiologically, copper ions are not “free”, i.e., dissolved in 

water, but strictly bound to carrier molecules and distributed intracellularly by so-called copper 

chaperones to avoid such cellular toxicity (6). 

Mitochondria harbor the CcO and around 1–5% of total cellular SOD1 and, therefore, are 

a major site of intracellular copper utilization (7). Indeed, especially in yeast, these organelles 

have been suggested to be the intracellular copper store (8, 9). This view originates from the 

rationale that increased cellular energetic needs may be met by enhanced mitochondrial oxidative 

phosphorylation activities and plausibly by elevated CcO and consequently elevated copper 

amounts (10, 11). Thus, in order to meet the basal but also enhanced energetic cellular demand, 

there is a constant copper supply to mitochondria, and elevated copper loads can be handled by 

mitochondria (9, 12). However, a steadily increasing and excessive mitochondrial copper load 

may severely affect these organelles. As it is the case in Wilson disease (WD), hepatic copper 

overload leads to mitochondrial destruction, hepatocyte death and even liver failure. In this 

article, we focus on current knowledge but also on controversial theories about mitochondrial 
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copper homeostasis with a special focus on liver mitochondria. We further outline how a 

disturbed copper balance induces mitochondrial dysfunction and cellular damage in WD.  

1. Mitochondrial copper homeostasis 

It has been estimated that a rat liver mitochondrion contains about fifteen to sixteen 

thousand CcO molecules (13), and that mitochondrially localized SOD1 constitutes around 

0.06 % of the total mitochondrial protein content (14). This means that 109 mitochondria 

comprising about 125 µg total protein (15) would contain around 75 ng SOD1, i.e., about 

4.7 pmoles SOD1 (M = 15,943 g/mol) or about 2.800 SOD1 molecules per mitochondrion. Given 

three copper ions per CcO and one per SOD1, this would amount to around 45.000–50.000 

copper atoms per mitochondrion, or around 40 ng/mg mitochondrial protein (assuming 8.1*109 

mitochondria per mg of mitochondrial protein (15)). This value matches reported mitochondrial 

copper contents of rat liver but also human liver mitochondria ranging from 30–50 ng/mg (12, 16, 

17). As these two mitochondrial copper enzymes are essential for hepatocyte bioenergetics and 

survival, mitochondria therefore require an adequate copper supply.  

The functional mitochondrial copper need is met by copper transporters, so-called copper 

chaperones (below) and small molecular copper ligands as depicted in Figure 1. Two 

prerequisites ensure a safe and robust mitochondrial copper supply. First, in cells, copper is 

strictly bound to proteins or small molecule ligands to avoid uncontrolled copper redox activity 

(6). Second, the main driving force of copper to be incorporated into CcO and SOD1 is their 

enormous copper binding affinity (Cu1+-binding dissociation constant KCu below femtomolar), 

and an increasing copper affinity of the intermediate copper transporting molecules ensures their 

directed delivery to CcO and SOD1 (18).  

As the copper-containing subunits of CcO, COX1 and COX2, are mitochondrially 

encoded proteins and as metal free apo-SOD1 is imported into the mitochondrial intermembrane 
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space (IMS), copper metalation of these proteins occurs within mitochondria (19). How is the 

metal delivered and distributed to and within mitochondria? Most of our current knowledge 

concerning this issue comes from sophisticated studies in yeast and several, not mutually 

exclusive, hypotheses have been put forward: 

First, copper chaperones, low molecular mass proteins that hand over copper by protein-

protein interactions (18), have been suggested to transport copper into mitochondria. Indeed, the 

CcO assembly proteins 19 and 23 (COX19, COX23), as well as COX17, are small soluble 

proteins containing cysteine residues that bind Cu(I), exhibiting dual localization in cytosol and 

the IMS (Fig. 1) (20-22). However, yeast depleted in these proteins had wild-type mitochondrial 

copper levels (9, 20-22). Moreover, CcO deficiency in cox17Δ, cox19Δ or cox23Δ mutant yeast 

can be restored by external copper supplementation (20-22). The same holds true for the dually 

localized CCS, the SOD1 copper chaperone (9, 19). Thus, while copper chaperones enable 

mitochondrial CcO and SOD1 activities, alternative mitochondrial copper uptake molecules are 

likely to be present.  

A second potential copper entry or export mechanism to or from the IMS may occur via 

the tripeptide glutathione (GSH, Fig. 1), as GSH can easily cross the mitochondrial outer 

membrane (MOM) through porin channels (23). However, the idea of such a GSH-copper 

cotransport into the IMS or mitochondrial matrix has been challenged by experiments in yeast 

depleted in GSH that had wild-type mitochondrial copper levels (9). Nevertheless, due to its high 

mitochondrial concentration (around 10 mM, (24)), but comparably low copper affinity (KCu = 

9.1 pM, (18)), GSH may indirectly regulate or participate in mitochondrial copper homeostasis, 

as the redox state of cysteine sulfurs needs to be controlled for proper copper binding of i.e., 

COX17 or SCO and for its copper transfer to CcO (11, 25) (Fig. 1).  
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Third, Winge and coworkers have suggested that mitochondrial copper transport occurs 

via a non-protein, anionic copper ligand (CuL) of low molecular mass that was consistently found 

in yeast and mammalian cytosol as well as within the mitochondrial matrix (9, 10). In thorough 

studies, CuL was detected via a copper-sensitive fluorescence emission at 360 nm in the copper-

rich fraction upon anion exchange chromatography. Gel filtration experiments further indicated a 

molecular weight of the CuL of about 13 kDa, but neither proteinase K digestion, nor mass 

spectrometry, SDS-PAGE, and protein detecting Sypro-Ruby stain allowed to establish CuL as a 

protein (9). Thus, the molecular identity of the CuL is still unclear, and further studies are 

warranted to support this concept of a CuL-dependent transport into and within mitochondria. 

Besides copper entry into the IMS, it was only very recently that the mitochondrial 

phosphate carrier SLC25A3 (yeast homologue: Pic2) has been demonstrated to import copper 

into the mitochondrial matrix (Fig. 1) (26, 27). Copper is also located within the mitochondrial 

matrix plausibly bound to CuL, and it has been suggested that this matrix copper is redistributed 

to the IMS for CcO and SOD1 metalation (9). Indeed, SLC25A3 knockdown and knockout cells 

(e.g., HEK293) presented with lower CcO activity (26, 27). Moreover, SLC25A3, reconstituted 

into liposomes, demonstrated copper transporting activity and restored CcO activity in pic2Δ 

yeast (26). However, lack of SLC25A3 (or Pic2) caused partial copper depletion (30–60%) and 

lowered (but not absent) CcO activity compared to wild-type mitochondria (26, 27). This either 

indicates that copper import to the IMS is still present and copper may metalize CcO via 

alternative routes, or that further/alternative mitochondrial copper import routes into the matrix 

may exist, possibly via the mitochondrial iron transporter MFRN1/2 (yeast homologue: Mrs3/4) 

that has been reported to transport copper besides iron (28, 29).  

While these molecular players may constitute a large part of therepertoire to supply 

mitochondrial CcO and SOD1 with copper, a molecularly undefined issue is the removal of 
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copper from mitochondria. Leary et al. have stated that “the [matrix copper] pool can be 

expanded to a much greater extent than it can be depleted, [which] supports the idea that the 

organelle’s relative priority is to retain sufficient copper” (30). Indeed, mitochondria can 

accumulate high copper amounts before they ultimately break down (12, 31, 32). Thus, at 

present, it is unclear whether specific mitochondrial copper excretion routes that would 

counterbalance mitochondrial copper overload exist. This question, however, is of tremendous 

importance with respect to human pathologies, especially in Wilson disease.  

2. Liver mitochondrial impairment in Wilson disease 

Wilson disease (WD) is an autosomal recessively inherited disorder, characterized by 

mutations in the intracellular copper transporting ATPase ATP7B (33). ATP7B is localized at the 

membranes of the trans-Golgi network (TGN) or at the apical membrane of hepatocytes to 

facilitate either metalation of secreted copper enzymes in the TGN or liver copper excretion via 

the bile (34). Consequently, ATP7B mutation results in disrupted hepatic copper excretion, 

copper overload, hepatocyte death and finally liver failure.  

Ultrastructural alterations of mitochondria - besides steatosis - have been amply reported 

to be early adverse features in hepatocytes of WD patients and WD animal models (12, 31, 35-

37). These include organelle elongations, deformations, inclusions and cristae dilatations (Fig. 2). 

In their seminal publications, Sternlieb and coworkers reported these alterations in livers of WD 

patients being especially prominent in (still) asymptomatic patients (35-37). In agreement, we 

have reported similar mitochondrial structure alterations in livers from either LEC or LPP rats 

that both carry a homozygous ATP7B deletion (Atp7b-/- rats) (12, 31). These alterations were 

already apparent in Atp7b-/- rat livers at an animal age of 50 days and steadily increased in 

severity and incidence with age but also with hepatocellular damage (12, 31). Importantly, the 

more copper was deposited in these mitochondria the worse their abnormal appearance was. 
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Moreover, an additional fraction containing mitochondrial debris with massive copper load was 

isolated from diseased but not from still healthy animals (12). These studies are in full agreement 

with feeding studies with excessive copper in rats (38-40). Microcystic formations at the 

mitochondrial cristae were visible after 1 week, and after 3 weeks, mitochondria appeared 

swollen, indicative of mitochondrial destruction coinciding with a drastic rise in hepatic 

mitochondrial copper content (38-40). In contrast, endoplasmic reticulum, plasma and canalicular 

membranes appeared structurally normal (40). Thus, the mitochondrial structure is a sensitive 

first responder to an increasing liver copper load. In agreement with these observations in humans 

and rats, abnormally shaped and sized liver mitochondria already occurred in 6 weeks old Atp7b-/- 

mice with otherwise unremarkable liver histology (41). Of note, the livers of 3 months old toxic 

milk mice, which carry an Atp7b missense mutation, also showed these changes prior to liver 

inflammation (first occurring in 6 month old mice) (42).   

In further examinations of Atp7b-/- rat liver mitochondria, we found that copper is 

progressively deposited at the mitochondrial membranes, paralleled by a decreased membrane 

fluidity and membrane stability (31). Thus, increased mitochondrial copper deposition causes 

biophysical and biochemical alterations in mitochondria. Using isolated wild-type rat liver but 

also brain mitochondria, we further found that mitochondrial protein thiols are important targets 

of copper exposure (12, 32). While there still is a paucity concerning copper toxicity in WD 

patient brains, these findings indicate that mitochondrial copper toxicity may also be relevant in 

neurological WD. This suggested mechanism of copper-mediated protein impairment is in 

agreement with earlier findings about copper toxicity (43) and resembles “classical” protein 

damage by direct attack of vulnerable target amino acid residues (e.g., cysteine and methionine) 

(44). Conformational changes and/or loss of protein activity may occur (45), which are especially 

critical for proteins of the mitochondrial oxidative phosphorylation. 
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In agreement with this suggested toxic mode of action of accumulating mitochondrial 

copper, functional deficits have been reported in liver mitochondria from WD patients and WD 

animal models. Patients with acute hepatic failure present with electron transport chain deficits in 

their mitochondria (46). A progressive loss of the mitochondrial ATP production capacity, 

coinciding with increased copper load and disease severity, was found in Atp7b-/- rats (31, 32). Of 

note, oxidative damage or elevated mitochondrial ROS emergence, indicative of Fenton-

chemistry based copper toxicity were rather late features, only observed in irreversibly damaged 

mitochondria (31, 32). In agreement with these findings, compared to wild-type controls, 3 to 47 

weeks old Atp7b-/-mice appeared with progressively lower respiratory chain function and GSH 

levels in liver homogenates. However, a significantly elevated GSSG/GSH ratio first occurred at 

an age of 47 weeks (47).  

Maybe the strongest line of evidence for a decisive role of mitochondrial copper overload 

in the progression from WD comes from treatments that aimed at liver copper removal. Sternlieb 

and Feldmann demonstrated that the successful treatment of WD patients with the copper 

chelator D-penicillamine (D-PA) largely resolved the “characteristic mitochondrial 

abnormalities” and serum parameters indicative of liver damage returned to normal (36). This 

positive treatment effect is remarkable, as overall liver copper loads were reported to stay high in 

WD patients, even after years of D-PA treatment (48). Conversely, three WD patients who had 

responded unfavorably to D-PA treatment were found to have a massive mitochondrial copper 

load (16). Similarly, four week treatments of Atp7b-/- rats with either D-PA or the copper binding 

peptide methanobactin (MB) avoided liver damage and significantly reduced the mitochondrial 

copper burden, but only slightly reduced the overall liver copper load (12). Moreover, intense 

methanobactin treatments of just a few days primarily caused a significant mitochondrial copper 

depletion, restored mitochondrial structure and function, and avoided or rescued liver damage 
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(31). Importantly, upon therapy stop, within weeks, a re-accumulating mitochondrial copper load 

was paralleled by mitochondrial structural and functional deficits, and by progressive liver 

damage (31). This correlation between disease state and copper was not apparent from the overall 

liver copper load, which was comparable in either still healthy or diseased animals (31). 

Mitochondrial copper overload, therefore, is not an innocent bystander or secondary effect but 

appears to be one, but not necessarily the only key parameter in WD progression (49-51). The 

mitochondrial copper content, structure, and biochemical functionality not only serve as early 

response markers for disease progression in WD patients or Atp7b-/- rodents, but also as 

diagnostic biomarkers of treatment efficacy and predictive markers of recurrence of liver damage 

(31). 

In conclusion, mitochondria are strictly copper-dependent organelles and several molecular 

players in mitochondrial copper homeostasis have been identified. The “dark side” of 

mitochondrial copper, however, is that overload is highly detrimental to them, especially in WD 

and animal models livers. It appears that their progressively impaired biochemical function is a 

key player in liver demise. Future studies have to reveal how hepatocytes initially try to 

counterbalance such mitochondrial decay and why they ultimately fail.    
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