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ABSTRACT
The parameters of many physical processes are unknown and have
to be inferred from experimental data. The corresponding parame-
ter estimation problem is often solved using iterative methods such
as steepest descent methods combined with trust regions. For a
few problem classes also continuous analogues of iterative meth-
ods are available. In this work, we expand the application of con-
tinuous analogues to function spaces and consider PDE (partial dif-
ferential equation)-constrained optimization problems. We derive a
class of continuous analogues, here coupled ODE (ordinary differ-
ential equation)–PDE models, and prove their convergence to the
optimum under mild assumptions. We establish sufficient bounds
for local stability and convergence for the tuning parameter of this
class of continuous analogues, the retraction parameter. To evaluate
the continuous analogues, we study the parameter estimation for a
model of gradient formation in biological tissues. We observe good
convergence properties, indicating that the continuous analogues
are an interesting alternative to state-of-the-art iterative optimiza-
tion methods.

ARTICLE HISTORY
Received 29 June 2017
Accepted 24 May 2018

KEYWORDS
Partial differential equations;
optimization; continuous
analogues; mathematical
biology; steady state

MSC SUBJECT
CLASSIFICATIONS
93D20; 49N45; 35K57; 37N40

1. Introduction

Partial differential equations (PDEs) are used in various application areas to describe phys-
ical, chemical, biological, economic, or social processes. The parameters of these processes
are often unknown and need to be estimated from experimental data [1,2]. The maximum
likelihood and maximum a posteriori parameter estimates are given by the solutions of
PDE-constrained optimization problems. Since PDE-constrained optimization problems
are in general nonlinear, non-convex as well as computationally challenging, efficient and
reliable optimization methods are required.

Over the last decades, a large number of numerical methods for PDE-constrained
optimization problems have been proposed (see [3–8] and references therein). Beyond
methodological contributions, there is numerous literature on parameter estimation in
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special applications available [9]. Most of the theoretical and applied work focuses on
iterative methods, which generate a discrete sequence of points along which the objec-
tive function decreases. In this manuscript, we pursue an alternative route and consider
continuous analogues (see [10–14] and references therein).

Continuous analogues are formulations of iterative optimization methods in terms of
differential equations and have been derived for a series of optimizers for real-valued
optimization problems, including the Levenberg–Marquardt and the Newton–Raphson
method [11,15]. For many constrained and unconstrained optimization problems, con-
tinuous analogues exhibit larger regions of attraction and more robust convergence than
discrete iterative methods [15]. In a recent study, the concept of continuous analogues has
been employed to develop a tailored parameter optimizationmethod for ordinary differen-
tial equation (ODE)models with steady-state constraints [16]. This method outperformed
iterative constrained optimization methods with respect to convergence and compu-
tational efficiency [16], and complemented methods based on computer algebra [17].
Although continuous analogues are generally promising, we are not aware of continuous
analogues for solving PDE-constrained optimization problems.

In this manuscript, we formulate a continuous analogue for PDE-constrained optimiza-
tion problems based on the structure of the PDE and the local geometry of its solution
space. The continuous analogue is a coupled system of ODEs and PDEs, which has the
optima of the PDE-constrained optimization problem as equilibrium points. We estab-
lish local stability and convergence under mild assumptions. The continuous analogue
enables us to use adaptive numerical methods for solving optimization problems with PDE
constraints. Beyond the generalization of previous results for ODEs (i.e. [16]) to function
spaces, we provide rationales and constraints for the choice of tuning parameters, in par-
ticular of the retraction factor. The methods are applied to a model of gradient formation
in biological tissues.

The manuscript is structured as follows . In Sections 2 and 3, we introduce the consid-
ered class of models and PDE-constrained optimization problems. For these classes, we
propose a continuous analogue to descent methods in Section 4. In Section 5, we prove
convergence of the continuous analogue to local optima. The assumptions under which
stability and convergence to local optima are achieved are discussed in Section 6. The
properties of the continuous analogues are studied in Section 7 for a model of gradient
formation in biological tissues.

2. Mathematical model

We consider parameter estimation for models with elliptic and parabolic PDE constraints.
In the parabolic case, the initial condition u0 of the parabolic PDE is defined as the solution
of an elliptic PDE:

ut(t) = C(θ , t, u(t)) t ∈]0,T[
u(0) = u0,

(1)

with

0 = C0(θ , u0), (2)
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in which u(t) is the time-dependent solution of the elliptic PDE, and C and C0 are
operators. The considered combination of parabolic and elliptic PDEs is flexible and allows
for the analysis ofmany practically relevant scenarios. Here, u0 denotes a stable steady state
of the unperturbed system, while u denotes the transient solution of the perturbed system
starting in the steady state of the unperturbed system u0. The observables of the models
are defined via observation operators B(θ , t, u(t)) and B0(θ , u0)

y(t) = B(θ , t, u(t)), y0 = B0(θ , u0). (3)

We work in the following functional analytic setting. Let V be a separable Banach space
with dual space V∗ and let V be continuously and densely embedded into a Hilbert
space H, such that V ⊆ H ∼= H∗ ⊆ V∗ forms a Gelfand triple. Furthermore, we consider
the initial value u0 ∈ V and the transient state u ∈ W(0,T) = L2(0,T;V) ∩ H1(0,T;V∗).
The parameters θ are assumed to be finite dimensional and real-valued, θ ∈ R

nθ . For
each t and θ , the observation operators B, B0 are mappings, B : Rnθ ×]0,T[×V → Z,
B0 : Rnθ × V → Z0, where the observation spaces Z,Z0 are Hilbert spaces. The operators
C and C0 are mappings, C : Rnθ ×]0,T[×V → V∗ and C0 : Rnθ × V → V∗. Existence of
a weak solution holds, e.g. under the following assumptions on the differential operator C
([18] p.770 ff.):

Assumption 2.1: There exists εθ > 0 such that for all θ ∈ Bεθ (θ
∗) = {θ ∈ R

nθ |
‖θ − θ∗‖ < εθ } ⊆ R

nθ , the following holds.

• The operator −C(θ , t, ·) is monotone and hemicontinuous for each t ∈]0,T[.
• The operator−C(θ , t, ·) is coercive for each t ∈]0,T[, i.e. there exist constants c1 > 0 and

c2 ≥ 0 such that

−〈C(θ , t, v), v〉V∗,V ≥ c1‖v‖2V − c2 for all v ∈ V , t ∈]0,T[.

• The operator C(θ , ·, ·) satisfies a growth condition, i.e. there exist a non-negative function
c3 ∈ L2(0,T) and a constant c4 > 0 such that

‖C(θ , t, v)‖V∗ ≤ c3(t) + c4‖v‖V for all v ∈ V , t ∈]0,T[.

• The function t 
→ 〈C(θ , ·,w), v〉V∗,V is measurable on ]0,T[ for all v,w ∈ V.

For the differential operator C0, the first two items in Assumption 2.1 are assumed to
hold, cf. Assumption 5.2 below.

In mathematical biology, the differential operator C is often semilinear and describes a
reaction–diffusion–advection equation,

C(θ , t, u) = f (k, u) − ∇x · (vu − D∇xu),

in which u(t) ∈ V is a concentration vector, x ∈ � ⊆ R
n is the spatial location and f :

R
nk × V → V∗ is the reaction term. The parameters θ = (k, v,D) are the velocity vector

v ∈ R
n, the diffusionmatrixD ∈ R

n×n and the kinetic parameters k ∈ R
nk . IfD is positive

definite and f fulfils a certain growth condition, then this operator satisfies Assumption 2.1.
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3. Parameter estimation problem

We consider the estimation of the unknown model parameters θ from noise-corrupted
measurements of the observables y. To obtain estimates for the unknown parameters, an
objective function is minimized, e.g. the negative log-likelihood function or the sum-of-
squared-residuals. In the following, we distinguish two cases.

3.1. Elliptic and parabolic PDE constraints

In the general case, observations are available for the initial state and the tran-
sient phase. The objective function J̃ depends on the parameters and the parameter-
dependent solutions of the parabolic and the elliptic PDE, J̃ : Rnθ × V × W(0,T) →
R, e.g. J̃(θ , u0, u) = 1

2‖y0 − B0(θ , u0)‖2Z0 + 1
2
∫ T
0 ‖y(t) − B(θ , t, u)‖2Z dt. The optimization

problem is given by

min
θ ,u0,u

J̃(θ , u0, u)

s.t. ut = C(θ , t, u) u(0) = u0
0 = C0(θ , u0).

(4)

3.2. Elliptic PDE constraint

In many applications, only experimental data for the steady state of a process are available.
Possible reasons include fast equilibration of the process and limitations of experimental
devices. In this case, the problem is simplified and the objective function J depends only on
the parameters and parameter-dependent solutions of the elliptic PDE, J : Rnθ × V → R,
e.g. J(θ , u0) = 1

2‖y0 − B0(θ , u0)‖2Z0 . The optimization problem is given by

min
θ ,u0

J(θ , u0)

s.t. 0 = C0(θ , u0).
(5)

The reduced formulation of the optimization problem (5) is given by

min
θ

j(θ) := J(θ ,ϕ0(θ)), (6)

in which ϕ0(θ) denotes the parameter-dependent solution ofC0(θ , u0) = 0, and j : Rnθ →
R denotes the reduced objective function.

4. Continuous analogue of descent methods for PDE-constrained problems

Optimization problems of types (4) and (5) are currently often solved using iterative
descent methods, combined with trust regions. In the following, we develop a continu-
ous analogue of an iterative descent method for PDEs. For simplicity, we first consider the
case of an elliptic PDE constraint (5) and afterwards generalize the results to the case of
mixed parabolic and elliptic PDE constraints (4).
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4.1. Elliptic PDE Constraint

To solve optimization problem (5), we derive a coupled ODE–PDE system. The trajectory
of this continuous analogue evolves in parameter and state space on the manifold defined
by C0(θ , u0) = 0 towards a local minimum. To evolve on the manifold, the continuous
analogue exploits the first-order geometry of the manifold, i.e. its tangent space.

Mathematically, the first-order geometry of C0(θ ,ϕ0(θ)) = 0 is defined by the sensitiv-
ity equations

∂C0

∂u0
(θ ,ϕ0(θ))

∂ϕ0

∂θi
(θ) + ∂C0

∂θi
(θ ,ϕ0(θ)) = 0, i ∈ {1, . . . , nθ }. (7)

The sensitivity equations can be reformulated to

∂ϕ0

∂θi
(θ) = −

(
∂C0

∂u0
(θ ,ϕ0(θ))

)−1
∂C0

∂θi
(θ ,ϕ0(θ)), i ∈ {1, . . . , nθ },

provided the inverse of (∂C0/∂u0)(θ ,ϕ0(θ)) exists. We extend ∇θϕ0 to points (θ , u0) not
necessarily lying on the solution manifold of C0 = 0 by defining the operator S0 : Rnθ ×
V → Vnθ that provides the solution of the sensitivity equations

∂C0

∂u0
(θ , u0)S0i(θ , u0) + ∂C0

∂θi
(θ , u0) = 0, i ∈ {1, . . . , nθ }, (8)

for given θ and u0. With (7), it holds that

S0(θ ,ϕ0(θ)) = ∇θϕ0(θ), (9)

provided the solutions to (7) and (8) are unique.
In order to couple changes in θ with appropriate changes in u0, we now use the fact that

the function ∇θϕ0(θ) provides the first-order term of the Taylor series expansion of the
steady state with respect to the parameter vector θ ,

ϕ0(θ + r�θ) = ϕ0(θ) + ∇θϕ0(θ)r�θ + o(r) as r → 0, r ∈ R. (10)

Defining ϕ̂0(r) := ϕ0(θ + r�θ) for some �θ ∈ R
nθ and differentiating (10) with respect

to r yields

dϕ̂0

dr
(r) = ∇θϕ0(θ)�θ + o(1) = S0(θ + r�θ , ϕ̂0(r))�θ + o(1) as r → 0. (11)

This relation motivates the formulation of the coupled ODE–PDE model

dθ
dr

(r) = g(θ , u0), θ(0) = θ0,

du0
dr

(r) = S0(θ , u0)
dθ
dr

(r) = S0(θ , u0)g(θ , u0), u0(0) = u0,0,
(12)

using the artificial time parameter r. For a change in the parameters dθ/dr, the update
in u0 is chosen according to (11). Solutions of this dynamical system evolve on the man-
ifold C0(θ(r), u0(r)) = 0 for arbitrary parameter update directions g : Rnθ × V → R

nθ ,
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provided that the initial state is on the manifold C0(θ0, u0,0) = 0. The state variables of this
coupled ODE–PDE system are θ and u0, and the path variable is r. To solve optimization
problem (6), g is chosen as an arbitrary descent direction satisfying

∇j(θ)Tg(θ , u0) < 0,

more precisely satisfying Assumption 5.5 below. For example, g can be chosen as a steepest
descent direction

g = argmin
‖v‖∗≤1

∇j(θ)Tv (13)

for some norm ‖ · ‖∗. For the Euclidian norm, we obtain the gradient descent direction,

gi(θ , u0) := − ∂J
∂θi

(θ , u0) −
〈

∂J
∂u0

(θ , u0), S0i(θ , u0)
〉
V∗,V

=: di(θ , u0), i ∈ {1, . . . , nθ },
(14)

in which we substituted ϕ0(θ) by u0 extending the definition also to states u0 that are not
on the steady-state manifold. Likewise, defining ‖v‖2∗ := vTH(θ , u0)v with some positive
definite matrix H(θ , u0), so that

g(θ , u0) = H(θ , u0)−1d(θ , u0) (15)

leads to a descent direction. Using, e.g. the Hessian of j,

Hij(θ , u0) = ∂2J
∂θi∂θj

(θ , u0) +
〈

∂2J
∂u0∂θj

(θ , u0), S0i(θ , u0)
〉
V∗,V

+
〈

∂2J
∂u0∂θi

(θ , u0), S0j(θ , u0)
〉
V∗,V

+ ∂2J
∂u20

(θ , u0)
(
S0i(θ , u0), S0j(θ , u0)

)

+
〈

∂J
∂u0

(θ , u0),T0i,j(θ , u0)
〉
V∗,V

, i, j ∈ {1, . . . , nθ }, (16)

with the second-order sensitivities defined by

∂C0

∂u0
(θ , u0)T0i,j(θ , u0) + ∂2C0

∂u20
(θ , u0)

(
S0i(θ , u0), S0j(θ , u0)

)+ ∂2C0

∂u0∂θj
(θ , u0)S0i(θ , u0)

+ ∂2C0

∂u0∂θi
(θ , u0)S0j(θ , u0) + ∂2C0

∂θi∂θj
(θ , u0) = 0, i, j ∈ {1, . . . , nθ },

leads to Newton, Gauss-Newton (upon skipping the T0i,j terms) or quasi-Newton meth-
ods (where approximations to the Hessian (16) are computed via low rank updates). As
the Hessian is not guaranteed to be positive definite, regularization with a scaled iden-
tity matrix, Hμ(θ , u0) = H(θ , u0) + μI with μ > 0, might be useful. However, how to
choose μ and possible continuous update rules are out of the scope of this work. The
coupled ODE–PDE systems (12) can be solved using numerical time-stepping methods.
These numerical methods might, however, accumulate errors resulting in the divergence
of the state (θ(r), u0(r)) from the steady-state manifold. Additionally, the initial state, u0,0,
might not be on the steady-state manifold. To account for this, we include the retraction
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term λC0(θ , u0) in the evolution equation of u0, with retraction factor λ > 0. This yields
the following continuous analogue of a descent method for optimization problems with
elliptic PDE constraints,

dθ
dr

(r) = g(θ , u0), θ(0) = θ0,

du0
dr

(r) = S0(θ , u0)g(θ , u0) + λC0(θ , u0), u0(0) = u0,0.
(17)

As, for fixed θ , the equation C0(θ , u0) = 0 defines a stable steady state of the PDE (2), the
retraction term stabilizes the manifold. For λ � 1, the system should first converge to the
steady state ϕ0(θ0) for the initial parameter θ0 and then move along the manifold to a local
optimum θ∗ as illustrated in Figure 1.

4.2. Elliptic and parabolic PDE constraints

The continuous analogue for descent with elliptic PDE constraints can be generalized to
problems with parabolic and elliptic PDE constraints. One possibility for doing so is to

Figure 1. The state of the system is illustrated along the trajectory of (17). In the first phase, the equili-
bration phase, the system converges to themanifold. The solution is not feasible during this phase as the
equality constraint, C0(θ , u0) = 0, is violated. In the course of the equilibration, the objective function
value might increase. In the second phase, the minimization phase, the objective function is minimized
along the steady-state manifold.
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consider the partially reduced problem

min
θ ,u0

J̃ (θ , u0) := J̃(θ , u0,ϕ(θ , u0))

s.t. 0 = C0(θ , u0),
(18)

in which u = ϕ(θ , u0) denotes the solution to ut = C(θ , t, u) with u(0) = u0. Given this
formulation, we can use continuous analogue (17) with

g̃i(θ , u0) = −∂J̃
∂θi

(θ , u0) − ∂J̃
∂u0

(θ , u0)S0i(θ , u0), i ∈ {1, . . . , nθ }. (19)

To avoid the need for the solution operator ϕ : Rnθ × V → W(0,T), alternatively, a con-
tinuous analogue of the full problem can also be formulated. This is beyond the scope of
this study, though, and will be subject of future research.

5. Local stability and convergence to a local optimum

The behaviour of the coupled ODE–PDE system (17) introduced in the previous section
depends on the properties of the objective function and the PDE model, as well as the
retraction factor λ. To prove that a solution of (17) with an appropriate retraction factor
λ is well defined and converges to the local minimizer (θ∗, u∗

0) = (θ∗,ϕ0(θ
∗)) of (5), we

impose the following assumptions.

Assumption 5.1: The descent direction vanishes at the minimizer θ∗ of the optimization
problemminθ j(θ),

g(θ∗,ϕ0(θ
∗)) = 0.

Assumption 5.2: There exists εθ > 0 such that for all θ ∈ Bεθ (θ
∗) = {θ ∈ R

nθ | ‖θ −
θ∗‖ < εθ } ⊆ R

nθ , the following holds.

• The operator −C0(θ , ·) is monotone and hemicontinuous.
• The operator −C0(θ , ·) is coercive.

Assumption 5.3: The function C0(θ , u0) is locally uniformly monotonically decreasing, i.e.
there exist γc > 0 and εu0 > 0 such that〈

C0(θ , u10) − C0(θ , u20), u
1
0 − u20

〉
V∗,V ≤ −γc‖u10 − u20‖2V

for all θ ∈ Bεθ (θ
∗) and u10, u

2
0 ∈ Bεu0

(ϕ0(θ
∗)) := {u0 ∈ V | ‖u0 − ϕ0(θ

∗)‖V < εu0}.

Assumption 5.4: The sensitivity S0(θ , u0) is locally Lipschitz continuous with respect to u0,
i.e. there exists LS0 ≥ 0 such that

‖S0(θ , u10) − S0(θ , u20)‖Vnθ ≤ LS0‖u10 − u20‖V
for all θ ∈ Bεθ (θ

∗) and u10, u
2
0 ∈ Bεu0

(ϕ0(θ
∗)).
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Assumption 5.5: The mapping θ 
→ g(θ ,ϕ0(θ)) is uniformly monotonically decreasing on
Bεθ (θ

∗), i.e. there exists γg > 0 such that

(g(θ ,ϕ0(θ)) − g(θ∗,ϕ0(θ
∗)))T(θ − θ∗) ≤ −γg‖θ − θ∗‖2

for all θ ∈ Bεθ (θ
∗).

Assumption 5.6: The descent direction g is locally Lipschitz continuous with respect to u0,
i.e. there exists Lg ≥ 0 such that

‖g(θ , u10) − g(θ , u20)‖ ≤ Lg‖u10 − u20‖V
for all θ ∈ Bεθ (θ

∗) and u10, u
2
0 ∈ Bεu0

(ϕ0(θ
∗)) ⊆ V.

Moreover, g is uniformly bounded on Bεθ (θ
∗) × Bεu0

(ϕ0(θ
∗)), i.e there exists Kg ≥ 0 such

that

‖g(θ , u0)‖ ≤ Kg

for all (θ , u0) ∈ Bεθ (θ
∗) × Bεu0

(ϕ0(θ
∗)).

5.1. Elliptic PDE constraints

Using Assumptions 5.1–5.6 and the existence of a weak solution (Assumption 2.1), we can
prove the following theorem on stability and convergence for the continuous analogue of
the descent method for elliptic PDE constraints.

Theorem 5.1: Let Assumptions 5.1–5.6 be satisfied. Then there exists a λ∗ ≥ 0 such that for
all λ > λ∗ solutions to (17) are well defined for all r>0 and the local minimizer (θ∗, u∗

0) of
the optimization problem (5) is a locally exponentially stable steady state of the system (17).

Proof: Define θ̃ := θ − θ∗ and ũ0 = u0 − ϕ0(θ), with θ ∈ Bεθ (θ
∗) andu0 ∈ Bεu0

(ϕ0(θ
∗)),

where ϕ0(θ
∗) = u∗

0 exists, because of Assumption 5.2. We further define a Lyapunov
function V(r) = 1

2‖θ̃ (r)‖2 + 1
2‖ũ0(r)‖2H . To prove Theorem 5.1, we will show that the

Lyapunov function decreases exponentially. The derivative along the trajectories is given
by

d
dr
V(r) = d

dr

(
1
2
‖θ̃ (r)‖2

)
+ d

dr

(
1
2
‖ũ0(r)‖2H

)
.

First, we bound the first summand from above, using (17), and Assumptions 5.1, 5.5 and
5.6,

d
dr

1
2
‖θ̃‖2 =

(
d
dr

θ̃

)T
θ̃

= (g(θ , u0) − g(θ ,ϕ0(θ)))Tθ̃ + (g(θ ,ϕ0(θ)) − g(θ∗,ϕ0(θ
∗)))Tθ̃

≤ ‖g(θ , u0) − g(θ ,ϕ0(θ))‖ ‖θ̃‖ − γg‖θ − θ∗‖2

≤ Lg‖ũ0‖ ‖θ̃‖ − γg‖θ̃‖2.
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Second, we bound the second summand from above, using (17) and C0(θ ,ϕ0(θ)) = 0, as
well as the fact that by Assumption 5.3 we have (9),

d
dr

1
2
‖ũ0‖2H =

(
dũ0
dr

, ũ0
)
V∗,V

=
(
du0
dr

− ∇θϕ0(θ)
dθ
dr

, ũ0
)
V∗,V

= (
(S0(θ , u0) − S0(θ ,ϕ0(θ)))g(θ , u0), ũ0

)
V∗,V

+ λ
(
C0(θ , u0) − C0(θ ,ϕ0(θ)), ũ0

)
V∗,V

≤ ‖ (S0(θ , u0) − S0(θ ,ϕ0(θ))) ‖Vnθ ‖g(θ , u0)‖ ‖ũ0‖V
+ λ

(
C0(θ , u0) − C0(θ ,ϕ0(θ)), ũ0

)
V∗,V .

With Assumptions 5.3, 5.4 and 5.6, we get

d
dr

1
2
‖ũ0‖2H ≤ (LS0Kg − λγc)‖ũ0‖2V .

Hence, we can estimate the derivative of the Lyapunov function,

d
dr
V(r) ≤ −(−LS0Kg + λγc)‖ũ0‖2V + Lg‖ũ0‖V‖θ̃‖ − γg‖θ̃‖2.

To show that V decays exponentially, we have to show that

d
dr
V(r) ≤ −aV(r)

for some a>0. Based on our estimates, proving Theorem 5.1 reduces to finding a>0 with

0 ≤
(
−LS0Kg + λγc − a

2

)
‖ũ0‖2V − Lg‖ũ0‖V‖θ̃‖ +

(
γg − a

2

)
‖θ̃‖2. (20)

We want this inequality to be valid without restrictions on ‖θ̃‖ or ‖ũ0‖V . Due to the last
term, we can therefore only consider values of a that are smaller than 2γg . Hence, (20) is
equivalent to

0 ≤
⎛
⎝√γg − a

2
‖θ̃‖ − Lg

2
√

γg − a
2

‖ũ0‖V
⎞
⎠

2

+
(
−LS0Kg + λγc − a

2
− L2g

4(γg − a
2 )

)
‖ũ0‖2V .

Since the first term in the inequality is greater or equal to 0, we have to find a>0 such that

λγc − a
2

− LS0Kg − L2g
4(γg − a

2 )
≥ 0.

Multiplying with 4γg − 2a, we obtain a quadratic inequality for a

a2 + 2(−γg − λγc + LS0Kg)a + (4λγcγg − 4LS0Kgγg − L2g) ≥ 0.

The roots of the quadratic polynomial are given by

a1,2 = γg + λγc − LS0Kg ±
√
d,
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with discriminant

d = (γg − λγc + LS0Kg)
2 + L2g .

The discriminant is always positive, therefore, a1 = γg + λγc − LS0Kg − √
d < a2 = γg +

λγc − LS0Kg + √
d are real roots. In the following, we will assume that a1 > 0, which can

be achieved by choosing λ such that λ > λ∗ = LS0Kg/γc + L2g/(4γgγc) ≥ 0. This choice is
justified as follows. As the square root,

√
d, is always positive, γg + λγc − LS0Kg > 0, i.e.

λ > (LS0Kg − γg)/γc needs to hold to ensure a1 > 0. Squaring both sides of the inequality

γg + λγc − LS0Kg >
√
d (21)

yields

(γg + λγc − LS0Kg)
2 > (γg − λγc + LS0Kg)

2 + L2g

⇔ λ >
L2g

4γgγc
+ LS0Kg

γc
.

Taking

λ > λ∗ := max

{
LS0Kg − γg

γc
,

L2g
4γgγc

+ LS0Kg

γc

}
= L2g

4γgγc
+ LS0Kg

γc

ensures a1 > 0.
Therefore, a either fulfils 0 < a < a1 with a < 2γg or a2 < a < 2γg , provided λ > λ∗.

Hence, we distinguish the following three cases:

(1) 2γg < a1 < a2,
(2) a1 < a2 ≤ 2γg ,
(3) a1 ≤ 2γg ≤ a2,

for the relation of 2γg , a1 and a2 as illustrated in Figure 2.

Figure 2. The function f (a) = a2 + (−2γg − 2λγc + 2LS0Kg)a + (4λγcγg − 4LS0Kgγg − L2g) is illus-
trated with the two roots a1 and a2 and the three different positions of 2γg, as well as possible positions
of a.
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Case (1): 2γg < a1 is equivalent to

λγc − LS0Kg − γg >
√
d.

If the term λγc − LS0Kg − γg is negative, the inequality cannot be valid. The term λγc −
LS0Kg − γg is non-negative if λ ≥ (γg + LS0Kg)/γc. In this case, we can square the inequal-
ity and get a contradiction (0 > L2g).

Case (2): a2 ≤ 2γg is equivalent to
√
d ≤ γg + LS0Kg − λγc.

This leads to a contradiction with the same arguments as in case (1).
Case (3): a1 ≤ 2γg is equivalent to

−γg + λγc − LS0Kg ≤
√
d.

The left-hand side −γg + λγc − LS0Kg is non-negative for all λ ≥ (γg + LS0Kg)/γc. With
squaring, we get 0 ≤ L2g . On the other hand, if the term −γg + λγc − LS0Kg is negative,
that is λ < (γg + LS0Kg)/γc, we have

√
d > 0. This is true for all λ, because d>0. In total,

we find a1 ≤ 2γg for all λ > 0. Analogously we get for a2 that a2 ≥ 2γg is fulfilled for all
λ > 0. Hence, we know that a1 ≤ 2γg ≤ a2 holds for all λ > 0 and only case (3) is valid.

Altogether, we find that a lies in the interval [0, a1] provided λ > λ∗. In this case, it also
holds that

d
dr
V(r) ≤ −a

2

(
‖ũ0(r)‖2V + ‖θ̃ (r)‖2

)
≤ − a

2K2
V→H

‖ũ0(r)‖2H − a
2
‖θ̃ (r)‖2 ≤ −ãV(r),

with ã = −(a/2)min{1/K2
V→H , 1}, where KV→H is the embedding constant. �

Remark 5.1: To tune the choice of the retraction factor λ, we now consider the fact that
the value of a determines the speed at which V(r) decreases, thus a convenient choice
of the retraction factor λ > λ∗ maximizes a to yield the fastest exponential decay. In our
case, this means maximizing a(λ) = a1 = γg + λγc − LS0Kg − √

d(λ) with respect to λ.
An elementary computation yields

da
dλ

(λ) = γc + γgγc − λγ 2
c + LS0Kgγc√
d(λ)

≥ 0

with equality iff Lg = 0, thus λ 
→ a(λ) is monotonically increasing (strictly, if Lg > 0) and
therefore

sup
λ∈(λ∗,∞)

a(λ) = lim
λ→∞

a(λ) = lim
λ→∞

γg + λγc − LS0Kg −
√

(γg − λγc + LS0Kg)2 + L2g

= 2γg .

In case Lg = 0, we have a(λ) = γg + λγc − LS0Kg − |γg − λγc + LS0Kg |. Distinguishing
the two cases for the absolute value yields the maximal value a(λ) = 2γg , attained at all
λ ≥ (γg − LS0Kg)/γc.
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This shows that (unless Lg = 0) the exponential decay ismaximized by choosingλ > λ∗
as large as possible. Nevertheless, in practice, λ should not be chosen too large in order to
avoid stiffness of system (17).

Remark 5.2: The proof provides a lower bound for the retraction factor λ, namely
λ > λ∗ = L2g/(4γgγc) + LS0Kg/γc. In specific applications, it might not always be possi-
ble to explicitly compute all involved constants. If this is the case, an alternative Lyapunov
function can be used to derive a lower bound for λ. A possible candidate for this Lyapunov
function is

V(r) = j(θ(r)) − j(θ∗) + 1
2‖u0 − ϕ0(θ(r))‖2H . (22)

With this choice and analogous computations as above, different lower bounds involv-
ing different constants can be derived. The lower bound for the retraction factor can be
estimated as λ > λ̂∗ = L̂/γc + L̂2g/(4γc) with

L̂ =
⎧⎨
⎩

((S0(θ , u0) − S0(θ ,ϕ0(θ)))g(θ , u0), u0 − ϕ0(θ))V∗,V
‖u0 − ϕ0(θ)‖2V

, if u0 �= ϕ0(θ),

0, else,
(23)

and

L̂g =

⎧⎪⎨
⎪⎩
g(θ ,ϕ0(θ))T(g(θ ,ϕ0(θ)) − g(θ , u0))

‖u0 − ϕ0(θ)‖V‖g(θ ,ϕ0(θ))‖ , if u0 �= ϕ0(θ) and g(θ ,ϕ0(θ)) �= 0,

0, else.
(24)

This bound depends on θ , the current parameter estimates during computation, and there-
fore requires a posteriori adaptation of the retraction factor. A practical implementation
of such a retraction factor choice involves the evaluation of functionals of the residuals
g(θ ,ϕ0(θ)) − g(θ , u0),u0 − ϕ0(θ) aswell as sensitivities (S0(θ , u0) − S0(θ ,ϕ0(θ)))g(θ , u0)
(which can be done approximately, on a coarser computational mesh, and using adjoint
techniques) is subject of future work.

Remark 5.3: If the cost function is locally convex but not locally uniformly convex, the
parameters are identifiable but not strictly identifiable [19]. In this case, g(θ ,ϕ0) defined
by (14) is not uniformly monotone, but just monotone, i.e. formally γg = 0. In this case,
using a projection P on the orthogonal complement of the null space of ∇2j(θ∗) might
facilitate the proof of convergence on this subspace. A possible Lyapunov function in this
case is given by V(r) = 1

2‖Pg(θ ,ϕ0(θ))‖2 + 1
2‖u0 − ϕ0(θ)‖2X . Denoting the smallest pos-

itive eigenvalue of (dg/dθ)(θϕ0(θ)) with μ, we require that ξTP(dg/dθ)(θ ,ϕ0(θ))ξ ≤
−μ‖Pξ‖2 for all ξ ∈ R

nθ . Then a retraction factor λ should be chosen λ > λ∗ = L̂/γc +
L̂2g/(4γcμ), with

L̂ =
⎧⎨
⎩

((S0(θ , u0) − S0(θ ,ϕ0(θ)))g(θ , u0), u0 − ϕ0(θ))V∗,V
‖u0 − ϕ0(θ)‖2V

, if u0 �= ϕ0(θ),

0, else,
(25)
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and

L̂g =

⎧⎪⎨
⎪⎩
g(θ ,ϕ0(θ))T(g(θ ,ϕ0(θ)) − g(θ , u0))

‖u0 − ϕ0(θ)‖V‖g(θ ,ϕ0(θ))‖ , if u0 �= ϕ0(θ) and g(θ ,ϕ0(θ)) �= 0,

0, else.
(26)

However, the null space of ∇2j(θ∗) depends on the unknown optimal parameter θ∗ and
can in general not be assessed a priori, thus leaving this approach for further investigation.

Remark 5.4: Locality in Theorem 5.1 is only imposed in terms of the size of εθ , εu0 in
Assumptions 5.2–5.6. As a matter of fact, Assumptions 5.2, 5.3, 5.4, 5.6 will typically hold
for (θ , u0) values in a larger neighbourhood of the solution, possibly after imposing certain
constraints on the parameter values such as nonnegativity, in order to ensure that themodel
defined by C0 is valid. Smallness of εθ , εu0 will mainly be required in Assumption 5.5 to
guarantee, together with Assumption 5.1, that the descent direction defined by g really
points towards (θ∗,ϕ0(θ∗)).

To enlarge the convergence radius, globalization strategies for the solution of nonlin-
ear equations or optimization problems can be employed. In particular, as the analysis in
[20,21] indicates, the strategy of using a particular time-stepping algorithm together with
an appropriate step size control in place of the continuous flow defined by (17), might
enable to get rid of the locality assumption in Theorem 5.1. Indeed, with

F(θ , u0) =
( −d(θ , u0)

−λC0(θ , u0)

)
, M(θ , u0) =

(
H(θ , u0) 0

−S0(θ , u0)H(θ , u0) I

)−1
,

for the choice (15), method (17) can at least formally be cast into the framework of [20,
Equation (5.1)], see also the introduction of [21] for the infinite dimensional setting rel-
evant here. However, the detailed conditions from [21] would still have to be verified for
our special setting, which will be subject of future research.

5.2. Elliptic and parabolic PDE constraints

As we consider the partially reduced form of the optimization problem with elliptic and
parabolic PDE constraints (18), the results established for the elliptic problem can be easily
transferred given the existence of a solution operator for the parabolic problem.

Theorem 5.2: Let Assumptions 2.1, 5.1–5.6 be satisfied with g replaced by g̃ according to
(19). Then there exists a λ∗ > 0 such that for all λ > λ∗ solutions to

dθ
dr

(r) = g̃(θ , u0), θ(0) = θ0,

du0
dr

(r) = S0(θ , u0)g̃(θ , u0) + λC0(θ , u0), u0(r) = u0,0,
(27)

are well defined for all r>0 and the local minimizer (θ∗, u∗
0) of the optimization problem (4)

is a locally exponentially stable steady state of the system (27).

With the setting introduced in the last paragraph of Section 4, the result directly follows
from Theorem 5.1.
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6. Discussion of the assumptions

In this section, we discuss Assumptions 5.1–5.6 in more detail. In particular, we provide
sufficient conditions for these assumptions which show that the assumptions are rather
weak and fulfilled by many application problems.

Remark 6.1 (Assumption 5.1): For the choice (14) of g, this condition is satisfied due to
the identity

0 = ∇θ j(θ∗) = −∇θ J(θ ,ϕ(θ∗)) − ∂J
∂u0

(θ ,ϕ(θ∗))S0(θ ,ϕ(θ∗)).

This remains valid more generally for descent directions defined by (15), such as Newton-
type methods.

Remark 6.2 (Assumptions 5.2 and 5.3): Dynamical systems in engineering, physics and
life sciences will typically exhibit locally exponentially stable steady-state solutions. This
implies that these systems are locally uniformly monotone. This is especially true for
the optimal parameters θ∗ and thus (for smooth C0(θ , u0)) also in a neighbourhood
of (θ∗,ϕ0(θ

∗)). Hence, around the true parameters, Assumption 5.3 and thus also the
monotonicity part of Assumption 5.2 is locally fulfilled for most real-world systems.

An additional consequence of uniform monotonicity, hemicontinuity and coercivity
of C0 according to Assumption 5.2 is uniform monotonicity, hemicontinuity and coer-
civity of its linearization and thus, by the Theorem of Browder and Minty, existence and
boundedness of the inverse ((∂C0/∂u0)(θ∗, u∗

0))
−1 : V∗ → V , is assured, as will be used

below.

Remark 6.3 (Assumption 5.4): The Lipschitz continuity of S is satisfied for example if

• ∂C0/∂u0 : Rnθ × V → L(V ,V∗) is continuous,
• ∇θC0 and ∂C0/∂u0 are locally Lipschitz continuous with respect to u0 in a neighbour-

hood of (θ∗, u∗
0), with Lipschitz constants LC0,θ and LC0,u0 , respectively,

• ∇θC0 is uniformly bounded on this neighbourhood by KC0,θ ,
• (∂C0/∂u0)(θ∗, u∗

0)
−1 is bounded by KC0,u0 , as discussed in Remark 6.2,

provided that C0 is continuously (Frèchet) differentiable. This can be seen as follows.
We want to show that ‖S0i(θ , u10) − S0i(θ , u20)‖V ≤ LSi‖u10 − u20‖V for all i ∈

{1, . . . , nθ }, θ ∈ Bεθ (θ
∗) and u10, u

2
0 ∈ Bεu(ϕ0(θ

∗)), where S0i is the ith component of S0.
Using S0i(θ , u0) = ((∂C0/∂u0)(θ , u0))−1((∂C0/∂θi)(θ , u0)) for i ∈ {1, . . . , nθ } yields∥∥S0i(θ , u10) − S0i(θ , u

2
0)
∥∥
V

≤
∥∥∥∥∥
(

∂C0

∂u0
(θ , u10)

)−1
∥∥∥∥∥
V∗→V

∥∥∥∥∂C0

∂θi
(θ , u10) − ∂C0

∂θi
(θ , u20)

∥∥∥∥
V∗

+
∥∥∥∥∥
(

∂C0

∂u0
(θ , u10)

)−1
−
(

∂C0

∂u0
(θ , u20)

)−1
∥∥∥∥∥
V∗→V

∥∥∥∥∂C0

∂θi
(θ , u20)

∥∥∥∥
V∗

.
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With A−1 − B−1 = A−1(B − A)B−1, we can further estimate∥∥S0i(θ , u10) − S0i(θ , u
2
0)
∥∥
V

≤
∥∥∥∥∥
(

∂C0

∂u0
(θ , u10)

)−1
∥∥∥∥∥
V∗→V

(∥∥∥∥∂C0

∂θi
(θ , u10) − ∂C0

∂θi
(q, u20)

∥∥∥∥
V∗

+
∥∥∥∥∂C0

∂u0
(θ , u20) − ∂C0

∂u0
(θ , u10)

∥∥∥∥
V→V∗

∥∥∥∥∥
(

∂C0

∂u0
(θ , u10)

)−1
∥∥∥∥∥
V∗→V

∥∥∥∥∂C0

∂θi
(θ , u20)

∥∥∥∥
V∗

)
.

The fact that the inverses ((∂C0/∂u0)(θ , u10))
−1, ((∂C0/∂u0)(θ , u20))

−1 exist and are
bounded follows from the regularity of (∂C0/∂u0)(θ∗,ϕ0(θ

∗)) and a perturbation argu-
ment. Taking L = (∂C0/∂u0)(θ∗,ϕ0(θ

∗)) and Mi = (∂C0/∂u0)(θ , ui0)), i=1,2 and using
that by continuity of (∂C0/∂u0)(θ , u0) in a neighbourhood of (θ∗, u∗

0) and by possibly
decreasing εθ , εu0 , we get

‖Mi − L‖ =
∥∥∥∥∂C0

∂u0
(θ , ui0) − ∂C0

∂u0
(θ∗,ϕ0(θ

∗))
∥∥∥∥
V→V∗

<
1

‖L−1‖V

for any (θ , ui0) ∈ Bεθ (θ
∗) × Bεu(ϕ0(θ

∗)). Therewith the operator M−1
i = ((∂C0/∂u0)

(θ , u0))−1 exists and is bounded by

∥∥M−1
i
∥∥
V =

∥∥∥∥∥
(

∂C0

∂u0
(θ , ui)

)−1
∥∥∥∥∥
V

≤ ‖L−1‖
1 − ‖L−1‖‖L − Mi‖ ≤ KC0,u0 .

Using this bound and local Lipschitz continuity with respect to u0 of the derivatives
∂C0/∂θi and ∂C0/∂u0 results in∥∥S0i(θ , u10) − S0i(θ , u

2
0)
∥∥
V ≤ KC0,u0

(
LC0,θi + KC0,u0KC0,θiLC0,u0

) ∥∥u10 − u20
∥∥
V

and hence ∥∥S0(θ , u10) − S0(θ , u20)
∥∥
V ≤ LS0

∥∥u10 − u20
∥∥
V

with LS0 = ∑nθ

i=1{KC0,u0(LC0,θi + KC0,u0KC0,θiLC0,u0)}, where KC0,θi denotes the bound of
the derivative w.r.t. θi of the steady-state residual.

Remark 6.4 (Assumption 5.5): If the descent direction g is defined by (14), then, accord-
ing to [19], Assumption 5.5 is equivalent to practical identifiability, which implies local
structural identifiability of the parameter vector θ . The same holds true for more gen-
eral choices (15), such as Newton-type methods, under a uniform positivity condition on
H(θ , u0).

If local structural identifiability cannot be guaranteed, one can still use regularization
[22] , e.g. by adding a term α(θ − θp)

T�−1(θ − θp) with positive definite � and positive
α to the cost function J (θ , u0) in (5) for which (17) yields a minimizer (θ∗(α), u∗

0(α)).
Regularization theory, e.g. [22], provides convergence of θ∗(α) to a parameter θ̄ that is
consistent with the observations as α → 0.



INVERSE PROBLEMS IN SCIENCE AND ENGINEERING 17

Remark 6.5 (Assumption 5.6): As an example, we check Assumption 5.6 for the case of a
gradient descent-based update of θ , i.e. g according to (14). We find∥∥g(θ , u10) − g(θ , u20)

∥∥
=
∥∥∥∥−∇θ J(θ , u10) − ∂J

∂u0
(θ , u10)S0(θ , u

1
0) + ∇θ J(θ , u20) + ∂J

∂u0
(θ , u20)S0(θ , u

2
0)

∥∥∥∥
≤ ∥∥∇θ J(θ , u10) − ∇θ J(θ , u20)

∥∥+
∥∥∥∥ ∂J
∂u0

(θ , u10) − ∂J
∂u0

(θ , u20)
∥∥∥∥
V→R

∥∥S0(θ , u10)∥∥Vnθ

+
∥∥∥∥ ∂J
∂u0

(θ , u20)
∥∥∥∥
V→R

∥∥S0(θ , u10) − S0(θ , u20)
∥∥
Vnθ .

Here, S0 is Lipschitz continuous according to Remark 6.3. Also boundedness of S0 is ful-
filled under the assumptions made in Remark 6.3, namely that ((∂C0/∂u0)(θ , u0))−1 and
∇θC0 are locally uniformly bounded.

∥∥S0(θ , u10)∥∥Vnθ ≤
∥∥∥∥∥
(

∂C0

∂u0
(θ , u10)

)−1
∥∥∥∥∥
V∗→V

∥∥∇θC0(θ , u10)
∥∥
V∗nθ

≤ KC0,u0KC0,θ =: KS0 . (28)

If J is differentiable and the derivatives ∇θ J and ∂J/∂u0 are locally Lipschitz continuous
with respect to u0 with Lipschitz constants LJ,θ ;u0 and LJ,u0;u0 , respectively, and ∂j/∂u0 is
uniformly bounded on Bεθ (θ

∗) × Bεu(ϕ0(θ
∗)), we can conclude∥∥g(θ , u10) − g(θ , u20)
∥∥ ≤ Lg‖u10 − u20‖V ,

with Lg = LJ,θ ;u0 + KJ,u0LS0 + LJ,u0;u0KS0 .
The more general choice (15) requires additionally Lipschitz continuity of H(θ , u0),

which in case of Newton-type methods with (16) amounts to higher smoothness of J and
C0.

Thus we have shown the following proposition.

Proposition 6.1: Let Assumption 6.1 be satisfied. Then there exist εθ , εu0 > 0 such that on
Bεθ (θ

∗) × Bεu(ϕ0(θ
∗)), Assumptions 5.1–5.6 are fulfilled.

Assumption 6.1:

(1) (a) C0(θ , ·) is locally uniformly monotonically decreasing.
(b) C0 is continuous and continuously (Fréchet) differentiable in a neighbourhood of

(θ∗, u∗
0).

(c) ∇θC0 and ∂C0/∂u0 are locally Lipschitz continuous w.r.t. u0 and ∇θC0 is bounded
in a neighbourhood of (θ∗, u∗

0).
(2) g(θ , u0) is defined by (14) and θ is locally structurally identifiable.
(3) (a) J is continuously (Fréchet) differentiable in a neighbourhood of (θ∗, u∗

0).
(b) ∂J/∂u0 and ∇θ J are locally Lipschitz continuous with respect to u0.
(c) ∂J/∂u0 is bounded in a neighbourhood of (θ∗, u∗

0).
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7. Application

To illustrate the continuous analogue of the descent method, we use it to study CCL21
gradient formation in biological tissues. This process is highly relevant in immune response
[23,24] and described by a reaction–diffusion equation [25]. In the following, we outline
the model, estimate its parameters using the approach proposed in this paper and analyse
the results.

7.1. Model formulation

CCL21 gradients are necessary for the guidance of dendritic cells towards lymphatic vessels
[26]. They are formed by the combination of several biological processes. The chemokine
CCL21 is produced in the lymphatic vessels, which cover a subset domain�L of the domain
� of interest, �L ⊂ �. The source term is defined via the function

Q(x) =
{
1, for x ∈ �L,
0, otherwise.

The concentration of free CCL21 is denoted by u. Free CCL21 binds to a sugar whose con-
centration is denoted by s. The binding yields immobilized CCL21 whose concentration
is denoted by c. The parameters k1, k−1,D, γ ,α denote the binding and unbinding rates,
the diffusion coefficient, the degradation rate and the production rate of CCL21 from the
lymphatic vessels, respectively. A PDE model for the process has been developed in [25]
and is given by

ut − D�u = αQ − k1us + k−1c − γ u,

ṡ = −k1us + k−1c, (29)

ċ = k1us − k−1c,

for t ∈]0,T[ and x ∈ �, with initial conditions u(0, x) = c(0, x) = 0, s(0, x) = s0 and no-
flux boundary conditions (∂/∂ν)u = 0 where ν is the outer normal on �. The parameter
s0 denotes the initial sugar concentration.

As the formation of the gradient is apparently fast, we consider the steady state of (29).
By considering the PDE for the time evolution of s and c, we find that c = s0us/(1 + us)
and s = s0/(us + 1) with the scaled CCL21 concentration us := k1u/k−1. Using the addi-
tional reformulation D̃ = D/γ , α̃ = αk1/(γ k−1), the scaled steady-state concentration of
CCL21, us, has to fulfil 0 = D̃��̃us + α̃Q − us and the boundary conditions (∂/∂ν)us =
0.

For the considered process, imaging data have been collected [27]. These images pro-
vide information about the localization of the lymphatic vessels (encoded in Q) and the
concentration of immobilized CCL21. As the measured intensity values are corrupted
by background fluorescence and as the data are not normalized, we model the readout
following [25] as

yi = sl
(
b +

∫
Ai

c(t, x) dx
)
,

where b denotes the intensity of the background fluorescence, sl is a scaling constant and
Ai ⊂ � is the domain of the pixel k. As the parameters are structurally non-identifiable,
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we reformulate the models in terms of b̃ = slb and s̃0 = sls0 in the parameter estimation to
one parameter and just consider b̃ and s̃0.

The optimization problem is then given by

min
θ ,us

J(θ , us) = 1
2

{ M∑
i=1

log(2πσ 2
i ȳi) +

(
log(ȳi) − log(yi)

σi

)2
}

(30)

s.t. − D̃�us + us = α̃Q, x ∈ �

∂

∂ν
us = 0, x ∈ ∂�

yi = b̃ +
∫
Ai

s̃0us(x)
us(x) + 1

dx = b̃ + s̃0hi(us),

where� ⊆ R
2,σi is the scale parameter of the log-normally distributedmeasurement error

and hi(us) = ∫
Ai

(us(x)/(us(x) + 1)) dx, i = 1, . . . ,M. The parameter vector θ is given by
θ = (D̃, α̃, s̃0, b̃, σ) ∈ R

nθ , with nθ = 5.
All parameters are assumed to be non-negative due to their biological meaning. The

spaces V and V∗ for which we examine the problem are V = H1(�) and V∗ = H1(�)∗.
The operator C0 is given by C0(θ , us) = D̃�us − us + α̃Q. For these spaces and operators,
it can easily be checked that all assumptions for applying the method (17) are satisfied.

7.2. Numerical implementation

For the numerical simulation of the biological process, we employed a finite element dis-
cretization of the PDE model. The discretization was obtained using the MATLAB PDE
toolbox and accounts for the stationary topology of the model (Figure 3A). The mesh con-
sists of 2170 elements and the concentrations in these elements are the state variables of
the discretization. For parameter optimization using the coupled ODE–PDE model (17),
the same mesh was employed and the states of the discretized PDE were coupled with

Figure 3. (A) Geometry of a lymphoid vessel obtained from biological imaging data [27]. (B) Simulated
data of the CCL21 gradient generated by simulating model (29).
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the ODE for the parameters. This yields a model with 2170+5 equations. The simulation-
based method for parameter estimation was implemented in MATLAB extending the
routine published in [16]. The numerical simulation was performed using the MATLAB
ODE solver ode15s, an implicit scheme applicable to stiff problems. To accelerate the
calculations, we implemented the Jacobian of the coupled ODE–PDE model. The simu-
lation of the continuous analogue was terminated, if the gradient of the right-hand side
became small, i.e. ‖C0(θ , u0)‖V∗/‖u0‖V ≤ 10−6. Furthermore, simulations were inter-
rupted whenever the objective function value became complex, which can happen due to
the log-transformation of the output.

7.3. Simulated data

To evaluate the convergence properties of the proposed algorithm for the models, we con-
sidered published simulated data for the ground truth (similar to [28]). The geometry of
lymphatic tissue was extracted from the available imaging data [27] using the MATLAB
PDE toolbox. On this geometry, the discretized PDEwas simulated using biologically plau-
sible parameter values (Table 1). The simulated data for CCL21 gradient formation process
were corrupted by noise to obtain a plausible scenario (Figure 3B).

7.4. Optimization

The objective function for most parameter estimation problems is non-convex and can be
multimodal. For this reason, we employed multi-start local optimization using the contin-
uous analogue for which we have established local convergence in this paper. The starting
points for the local optimizations were sampled using a latin hypercube approach with
lower and upper bounds provided inTable 1.Weused a linear parametrization for the states
and a log-parametrization ξ = log(θ) for the parameters following previous evaluations for
biochemical systems [29]. We did not implement any bounds for values of parameter or
states. The implementation of the multi-start local optimization is based upon the MAT-
LAB toolbox PESTO [30]. The implementation of the objective function and finite element
schemes was adapted from [25]. For the local optimization with the continuous analogue,
we chose the negative gradient as descent direction.

As a reference, we performed also multi-start local optimization using a discrete
iterative optimization method. We used the state-of-the-art optimizer fmincon.m
with the starting points sampled for the continuous analogue and the interior point
algorithm implemented in the MATLAB Optimization Toolbox. This interior point
algorithm employs either a Newton step, where the Hessian is approximated by the

Table 1. Trueparameters, estimatedparameters andparameter ranges for the latinhypercube sampling
for the CCL21 model.

Name True value Estimates Lower bound sampling Upper bound sampling

D 8.50 101 8.51 101 1.50 10−2 2.50 104

α 2.40 10−1 2.36 10−1 4.50 10−5 2.00 101

s0 2.10 10−1 2.13 10−1 2.50 10−3 3.00 100

b 1.30 10−2 1.30 10−2 2.50 10−3 1.00 100

σ 5.00 10−2 4.99 10−2 2.50 10−3 3.00 100
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Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm, or a conjugate gradient step using
a trust region [31–33]. The optimizer was provided with the objective function, the non-
linear constraint, as well as the corresponding derivatives. We used the same parametriza-
tion as for the continuous analogue and additionally constrained parameter values for
ξ = log(θ) in the optimization by the same upper and lower bounds used for the sampling
(Table 1). The value of u0 at the nodes of the mesh for the finite element discretization was
constrained using upper and lower bounds for the optimization to lie in [−1, 3]. A total of
2000 iterations and 4000 function evaluations was allowed.

7.5. Comparison of continuous analogue and discrete iterative procedure

We performed 100 local optimization runs with the continuous analogue for a retraction
factor λ = 107 and a discrete iterative method (Figure 4A). Both methods found the same
best parameter value (Table 1) and achieved a good fit to the data. The assessment of
the results revealed a good convergence of the continuous analogue. Almost 90% of the
runs achieved an objective function value which was comparable with the best objective

Figure 4. Results of parameter estimation for CCL21 model. (A) Sorted objective function values for
the multi-start optimization with continuous analogue (λ = 107) and discrete iterative procedure. Con-
verged runs are indicated in blue. (B) CPU time needed per optimizer run for the optimization using
the continuous analogue and the discrete iterative procedure (lighter grey colour indicates runs which
stopped because themaximal number of iterationswas reached). The box covers the range between the
25th and the 75thpercentile of thedistribution. ThemedianCPU time is indicatedby a line. (C) Histogram
of values for λ̂∗ (Remark 5.2) obtained for 1000 points sampled in parameter-state space. (D) Percentage
of completed runs (top), converged runs (middle)and median as well as 25th and 75th percentile of the
runtime of completed runs (bottom) for different values of λ. For each value of λ, 100 local optimization
runs were performed.
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function value found across all runs (relative difference < 0.001%). Overall, 96% of the
runs finished successfully, meaning that either the optimization was stopped because the
stopping criterion was fulfilled or the maximum number of iterations was reached, while
4% of the runs stopped prematurely.

The discrete iterative optimization converged for 66% of the runs to the optimal value
(Figure 4A). Accordingly, the success rate was substantially lower than for the proposed
continuous analogue. Of the runs which did not converge to the global optimum 25 runs
were stopped because the maximal number of iterations was reached.

For the considered problem, the continuous analogue outperformed the discrete itera-
tivemethod regarding the CPU time (Figure 4B).We found amedian CPU time of 15min-
utes for the continuous solver and 174 minutes for the discrete iterative procedure. In light
of the fact that the discrete iterativemethod uses second-order information, it is interesting
to observe that a continuous analogue using the negative gradient is more efficient. One
possible explanation is that the efficiency of the continuous analogue is a result of the appli-
cation of sophisticated numerical solvers. The adaptive, implicit solver ode15s, which is
provided with the analytical Jacobian of the ODE–PDE model, might facilitate large step-
sizes and fast convergence. Indeed, the Jacobian also provides second-order information.

7.6. Evaluation of retraction factor influence

As an analytical calculation of the bound for the retraction factor was not possible, we sam-
pled 1000 points in parameter-state space and evaluated the estimate for the lower bound
λ̂∗ (Remark 5.2). The histogramof the resulting values for λ̂∗ is presented in Figure 4C. The
values for λ̂∗ spanmany orders of magnitude, and the distribution peaks at 104. This result
indicated that for different starting points very different retraction factors might be ideal.

To investigate the convergence properties for the different values of the retraction factor
λ, we performed 100 local optimization runs for a range of different retraction factors.
For each retraction factor, we assessed the number of completed runs and the number of
converged runs (Figure 4D). Interestingly, as λ was increased the percentage of completed
runs decreased. Yet, for large retraction factorsmany of the completed runs also converged,
while for small retraction factors no runs converged as the maximum number of iterations
becomes too large. The median CPU time for the optimization of one run decreased for
increasing values of λ (Figure 4D). Notably, for the small values, the median CPU time
was nearly six to seven times higher than the smallest one. The quantiles indicate that also
the variability was higher for small values of λ. These results indicated that the retraction
factor should be chosen large enough but not too large.

In summary, the analysis of the model of CCL21 gradient formation revealed that the
retraction factor λ has a substantial influence on the convergence properties as well as the
run time. For low values of λ starts did not converge while for large values of λ increasing
stiffness of the problem could be observed. In an intermediate regime, which could here
also be found by random sampling, we found the best convergence properties.

8. Conclusion and outlook

Parameter estimation is an important problem in a wide range of applications. Robust-
ness and performance of the available iterative methods is, however, often limited. In
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this study, we introduced continuous analogues of descent methods for optimization
with PDE constraints. For these continuous analogues, we proved local convergence
of their solutions to the optima. The necessary assumptions are fulfilled for a wide
range of application problems, rendering the results interesting for several research
fields.

We demonstrated the applicability of continuous analogues for a model of gradient
formation in biological tissues and compared them with an iterative discrete procedure.
The results highlight the potential of the continuous analogues, e.g. a high convergence
rate and lower computation times than the discrete iterative procedure. For the com-
parison, we used the MATLAB optimization routine fmincon.m, a state-of-the-art
discrete iterative procedure. Alternatives would be IPOPT or KNITRO. As fmincon is
a generic interior point method, there might apparently be approaches which are effi-
cient for the considered PDE-constrained problems (see also the no free lunch theorem
[34]). The evaluation of the influence of the retraction factor revealed the importance
of an appropriate choice of the retraction factor as well as the issue of premature stop-
ping. In this study, we provide a lower bound for λ which ensures local convergence. As
this bound might, however, be conservative and can only be assessed pointwise, the use
of adaptive methods might be interesting. To address the issue of premature stopping,
bounds for parameters and state variables have to be implemented, e.g. by including log-
barrier functions [35] in the objective function or through projection into the feasible
space.

In the application problem, we only considered elliptic PDE constraints as for the pro-
posed continuous analogues parabolic constraints can be encapsulated in the objective
function. This changes the objective function landscape and indirectly influences the con-
vergence. Conceptually, it should also be possible to formulate continuous analogueswhich
do not require a solution operator for the parabolic PDE but also have the solution of the
parabolic PDE as a state variable. This mathematically more elegant approach is left for
future research.

In conclusion, this study presented continuous analogues for a new problem class. Simi-
lar to other problem classes for which continuous analogues have been established [15,16],
we expect an improvement of convergence and computation time. The continuous ana-
logues for optimization also complement recent work on simulation-based methods for
uncertainty analysis [36]. The efficient implementation of these methods in easily accessi-
ble software packages should be a focus of future research as it would render the methods
available to a broad community.

The method and its analysis apply as they are to the case of infinite dimensional param-
eters θ . However, in that situation, the inverse problem of identifying θ is often ill-posed,
so the assumption of practical identifiability (cf. Assumption 5.5 and Remark 6.4) might
not be satisfied. To restore stability, regularization can be employed, as pointed out in
Remark 6.4.

Future research in this context will be concerned with globalization strategies, such as
those proposed in [20,21], cf. Remark 5.4.
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