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2Helmholtz Center Munich, Germany

3University of Turku, Finland.

4Technical University of Munich, Germany

May 15, 2014

Abstract

Blind source separation (BSS) is a signal processing tool, which is widely

used in various fields. Examples include biomedical signal separation, brain

imaging and economic time series applications. In BSS, one assumes that the

observed p time series are linear combinations of p latent uncorrelated weakly

stationary time series. The aim is then to find an estimate for an unmixing

matrix, which transforms the observed time series back to uncorrelated latent

time series. In SOBI (Second Order Blind Identification) joint diagonalization

of the covariance matrix and autocovariance matrices with several lags is used

to estimate the unmixing matrix. The rows of an unmixing matrix can be
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derived either one by one (deflation-based approach) or simultaneously (sym-

metric approach). The latter of these approaches is well-known especially in

signal processing literature, however, the rigorous analysis of its statistical prop-

erties has been missing so far. In this paper, we fill this gap and investigate

the statistical properties of the symmetric SOBI estimate in detail and find

its limiting distribution under general conditions. The asymptotical efficien-

cies of symmetric SOBI estimate are compared to those of recently introduced

deflation-based SOBI estimate under general multivariate MA(∞) processes.

The theory is illustrated by some finite-sample simulation studies as well as a

real EEG data example.

Keywords: Asymptotic normality; Blind source separation; Joint diagonal-

ization; MA(∞); SOBI

1 Introduction

In blind signal separation or blind source separation (BSS) one assumes that a p-

variate observable random vector x is a linear mixture of p-variate latent source

vector z. The model can thus be written as x = µ + Ωz, where the full rank

p × p matrix Ω is so called mixing matrix and z is a random p-vector with certain

preassigned properties. The p-vector µ is a location parameter and usually considered

as a nuisance parameter, since the main goal in BSS is to find an estimate for an

unmixing matrix Γ such that Γx ∼ z, based on a p×n data matrixX = (x1, . . . ,xn)

from the distribution of x.

The BSS model was formulated for signal processing and computer science appli-

cations in the early 1980’s and since then, many approaches have been suggested to

solve the problem under various assumptions on z. For an account of the early history

of BSS, see Jutten and Taleb (2000). The most popular BSS approach is independent

component analysis (ICA), which assumes that E(z) = 0 and E(zz′) = Ip, and that
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the components of z are mutually independent. The ICA model is a semiparametric

model as the marginal distributions of the components of z are not specified at all.

For identifiability of the parameters, one has to assume, however, that at most one of

the components is normally distributed. Typical algorithms for ICA use centering and

whitening as preprocessing steps: Write Ω = UΛV ′ for the singular value decompo-

sition (SVD) of the mixing matrix Ω. Then, under the above mentioned assumptions

on z, E(x) = µ and Cov(x) = Σ = UΛ2U ′, and therefore V U ′Σ−1/2(x − µ) = z.

An iterative algorithm can then be applied to Σ−1/2(x − µ) to find the orthogonal

matrix V U ′. For an overview of ICA from a signal processing perspective, see for

example Hyvärinen et al. (2002) and Comon and Jutten (2010).

Since the late 1990’s, there has been an increasing interest in ICA methods among

statisticians. Oja et al. (2006), for example, used two scatter matrices, S1 and S2,

with the independence property to solve the ICA problem. We say that a p×p matrix

valued functional S(F ) is a scatter matrix if it is symmetric, positive definite and affine

equivariant in the sense that S(FAx+b) = AS(Fx)A
′ for all full-rank p× p matrices

A and for all p-vectors b. Moreover, a scatter matrix S(F ) has the independence

property if S(Fz) is a diagonal matrix for all z with independent components. An

unmixing matrix Γ and a diagonal matrix Λ (diagonal elements in a decreasing order)

then solve the estimating equations

ΓS1Γ
′ = Ip and ΓS2Γ

′ = Λ.

The independent components in Γx are thus standardized with respect to S1 and

uncorrelated with respect to S2, and Γ and Λ can be found as eigenvector-eigenvalue

solutions for S−1

1 S2. An example of such ICA methods is the classical FOBI (fourth

order blind identification) method which uses S1(Fx) = Cov(x) and

S2(Fx) = E
[

(x−E(x))(x−E(x))′Cov(x)−1(x− E(x))(x− E(x))′
]

.
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See Oja et al. (2006), for example. The unmixing matrix estimate Γ̂ is naturally

obtained by replacing the population values by their sample counterparts.

The limiting statistical properties of several ICA unmixing matrix estimates have

been developed quite recently and mainly for iid data: For the limiting behavior of the

unmixing matrix estimate based on two scatter matrices, see Ilmonen et al. (2010a).

For other recent work and different estimation procedures for ICA, see for example

Hastie and Tibshirani (2003), Chen and Bickel (2006), Bonhomme and Robin (2009),

Ilmonen and Paindaveine (2011), Allassonniere and Younes (2012), Samworth and Yuan

(2013) and Hallin and Mehta (2014).

In applications such as the analysis of medical images or signals (EEG, MEG

or fMRI) and financial or geostatistical times series, the assumption of indepen-

dent observations does not usually hold. Nevertheless, ICA has been considered

in this context in Chen et al. (2007), Garcia-Ferrer et.al (2011), Garcia-Ferrer et.al

(2012), Lee et al. (2011), Poncela (2012) and Schachtner et al. (2008) among others.

See also Matteson and Tsay (2011) for a slightly different model. Apart from these

results, other BSS models have been developed for time series data in signal processing

literature. The so called AMUSE (Algorithm for Multiple Unknown Signals Extrac-

tion) and SOBI (Second Order Blind Identification) procedures for the stationary

time series BSS models were suggested by Tong et al. (1990) and Belouchrani et al.

(1997), respectively. Miettinen et al. (2012, 2014) provided careful analysis of the

statistical properties of the AMUSE and so called deflation-based SOBI estimates.

Nordhausen (2014) considered methods that assume only local stationarity.

In this paper we will continue the work of Miettinen et al. (2012, 2014) and derive

the statistical properties of so called symmetric SOBI estimate. We will use a real

EEG data example to illustrate how the theoretical results derived in this paper may

be used to measure the accuracy of the unmixing matrix estimates. The structure of

this paper is as follows. In Section 2 we introduce the blind source separation model
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which assumes second order stationary components. In Section 3 we recall the defi-

nition for the deflation-based SOBI functional and define symmetric SOBI functional

using the Lagrange multiplier technique. The theoretical properties of deflation-based

and symmetric SOBI estimators are given in general case in Section 4. Further, in

Section 5 the limiting distributions of the two SOBI estimators will be more con-

cretely compared under the assumption ofMA(∞) processes. The theoretical results

are illustrated using simulation studies in Section 6.1 and a real EEG data example

in Section 7 before the paper is concluded in Section 8. Asymptotical results for the

symmetric SOBI estimates are proven in the appendix.

2 Second order source separation model

We assume that the observable p-variate time series x = (xt)t=0,±1,±2,... are distributed

according to

xt = µ+Ωzt, t = 0,±1,±2, . . . , (1)

where µ is a p-vector, Ω is a full-rank p× p mixing matrix and z = (zt)t=0,±1,±2,... is

a p-variate latent time series that satisfies

(A1) E(zt) = 0 and E(ztz
′
t) = Ip.

(A2) E(ztz
′
t+τ ) = E(zt+τz

′
t) = Λτ is diagonal for all τ = 1, 2, . . ..

This is again a semiparametric model as only the moment assumptions (A1)-(A2)

of the time series in z are made. The assumptions state that the p time series in z

are weakly stationary and uncorrelated. This model is called the second order source

separation (SOS) model. A model with stronger assumptions, i.e. the independent

component time series model, is obtained if the condition (A2) is replaced by the

condition
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Figure 1: Example time series z: Three independent stationary AR series.

(A2*) the p times series in z are mutually independent and E(ztz
′
t+τ ) = E(zt+τz

′
t) =

Λτ is diagonal for all τ = 1, 2, . . ..

Figure 1 serves as an example of a 3-variate time series z with three independent

components, namely AR processes with coefficient vectors (0.9, 0.09), (0, 0,−0.99) and

(0, 0.3). The observable 3-variate time series x consisting of three different mixtures

of the latent time series in z are shown in Figure 2. Given the observed time series

(x1, . . . ,xT ), the aim is to find an estimate Γ̂ of an unmixing matrix Γ such that

Γx has uncorrelated components. Clearly, Γ = CΩ−1 is an unmixing matrix for any

p × p matrix C with exactly one nonzero element in each row and in each column.

Notice that the signs and order of the components of z and the signs and order of

the columns of Ω are confounded also in the BSS model. Additional assumptions are

therefore needed in order to study the consistency and asymptotical properties of Γ̂.

Contrary to ICA in the iid case, the mixing matrix may now be identifiable for any

number of gaussian components. However, as we will see later in this paper, weak
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assumptions on the autocovariance matrices Λτ , τ = 1, 2, . . . , have to be made for

the identifiability of our functionals and for the study of the asymptotic properties of

corresponding estimates.
−

15
−

5
0

5
10

15

S
er

ie
s 

1

−
5

0
5

S
er

ie
s 

2

−
30

−
20

−
10

0
10

20
30

0 200 400 600 800 1000

S
er

ie
s 

3

Time

Figure 2: Time series x: Mixtures of the three independent stationary AR series in
Figure 1.

3 BSS functionals based on autocovariance matri-

ces

3.1 Joint diagonalization of autocovariance matrices

The separation of uncorrelated stationary time series can be solely based on auto-

covariances and cross-autocovariances of the p time series. Assume that x follows a

centered SOS model with µ = 0. This is not a restriction in our case as the asymptot-

ical properties of the estimated autocovariances are the same for known and unknown
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µ. It then follows that

E(xtx
′

t+τ ) = ΩΛτΩ
′, τ = 0, 1, 2, . . . .

Assume also that, for some lag τ > 0, the diagonal elements of the autocovariance

matrix E(ztz
′
t+τ ) = Λτ are distinct. An unmixing matrix functional Γτ is then

defined as a p× p matrix that satisfies

ΓτE(xtx
′

t)Γ
′

τ = Ip and ΓτE(xtx
′

t+τ )Γ
′

τ = P τΛτP
′

τ ,

where P τΛτP
′

τ is a diagonal matrix with the same diagonal elements as in Λτ but

in a decreasing order. (As in PCA and ICA, the signs of the rows of Γτ are not

fixed in this definition.) The components of Γτx are thus the components of z in

a permuted order. The permutation matrix P τ remains unidentifiable. Notice that

Γτ is affine equivariant, that is, the transformation x → Ax with a full-rank p × p

matrix A induces the transformation Γτ → ΓτA
−1. This implies that Γτx does not

depend on the mixing matrix Ω at all. The corresponding sample statistic, the so

called AMUSE (Algorithm for Multiple Unknown Signals Extraction) estimator, was

proposed by Tong et al. (1990). Figure 3 shows the estimated latent sources obtained

with AMUSE, τ = 1, from the data in Figure 2. See Miettinen et al. (2012) for a

recent study of the statistical properties of the AMUSE estimate.

The drawback of the AMUSE procedure is the assumption that, for the chosen

lag τ , the eigenvalues in Λτ must be distinct. This is of course never known in

practice. Therefore, the choice of τ may have a huge impact on the performance of

the method, as only information coming from S0 = E(xtx
′
t) and Sτ = E(xtx

′
t+τ )

is used. To overcome this drawback, Belouchrani et al. (1997) proposed the SOBI

(Second Order Blind Indentification) algorithm that aims to jointly diagonalize several

autocovariance matrices as follows. Let S1, . . . ,SK be K autocovariance matrices
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Figure 3: Time series Γ̂1x obtained with AMUSE from x in Figure 2.

with distinct lags τ1, . . . , τK . The p× p unmixing matrix functional Γ = (γ1, . . . ,γp)
′

is the matrix that minimizes
K
∑

k=1

||off(ΓSkΓ
′)||2

under the constraint ΓS0Γ
′ = Ip, or, equivalently, maximizes

K
∑

k=1

||diag(ΓSkΓ
′)||2 =

p
∑

j=1

K
∑

k=1

(γ ′

jSkγj)
2

under the same constraint. Here we write diag(S) for a p × p diagonal matrix with

the diagonal elements as in S and off(S) = S−diag(S).

Next notice that, as ΓS0Γ
′ = Ip, then Γ = US

−1/2
0 for some orthogonal p × p

matrix U = (u1, . . . ,up)
′. If then Rk = S

−1/2
0 SkS

−1/2
0 , k = 1, . . . , K, are the
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autocorrelation matrices, the solution for U can be found by maximizing

K
∑

k=1

||diag(URkU
′)||2 =

p
∑

j=1

K
∑

k=1

(u′

jRkuj)
2 (2)

under the orthogonality constraints UU ′ = Ip.

In the literature, several algorithms to solve the maximization problem in (2) are

proposed: In deflation-based approach, the rows ofU are found one by one using some

pre-assigned rule. In the symmetric approach, the rows are found simultaneously. The

solution Γ = US
−1/2
0 naturally depends on the approach as well as on the concrete

algorithm used in the optimization. In the following we consider deflation-based and

symmetric approaches in more detail.

3.2 Deflation-based approach

In the deflation-based approach, the rows of an unmixing matrix functional Γ =

(γ1, . . . ,γp)
′ are found one by one so that γj, j = 1, . . . , p− 1, maximizes

K
∑

k=1

(γ ′

jSkγj)
2, (3)

under the constraints γ ′
iS0γj = δij , i = 1, . . . , j. Recall that the Kronecker delta

δij = 1 (0) as i = j (i 6= j).

The solution γj then optimizes the Lagrangian function

L(γj , θj) =
K
∑

k=1

(γ ′

jSkγj)
2 − θjj(γ ′

jS0γj − 1)−
j−1
∑

i=1

θjiγ
′

iS0γj,

where θj = (θj1, . . . , θjj)
′ are the Lagrangian multipliers. Write

T (γ) =

K
∑

k=1

(γ ′Skγ)Skγ. (4)
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The unmixing matrix functional Γ found in this way then satisfies the following

estimating equations (Miettinen et al., 2014).

Definition 1. The deflation-based unmixing matrix functional Γ = (γ1, . . . ,γp)
′

solves the p− 1 estimating equations

T (γj) = S0

(

j
∑

r=1

γrγ
′

r

)

T (γj), j = 1, . . . , p− 1.

Recall that Γ = US
−1/2
0 with some orthogonal matrix U = (u1, . . . ,up)

′ and,

in the deflation-based approach, the rows of U are found one by one as well. The

estimating equations then suggest the following fixed point algorithm for the deflation-

based solution. After finding u1, . . . ,uj−1, the following two steps are repeated until

convergence to get uj .

step 1: uj ←
(

Ip −
j−1
∑

i=1

uiu
′

i

)

T (uj).

step 2: uj ← ||uj||−1uj.

Here T (u) =
∑K

k=1
(u′Rku)Rku. Notice that the algorithm naturally needs initial

values for each uj, j = 1, . . . , p−1, and different initial values may change the rows of

the estimate and produce them in a permuted order. Therefore, for uj , one should use

several randomly selected initial values to guarantee that the true maximum in (3) is

attained at each stage. For a more detailed study of this algorithm, see Appendix A

in Miettinen et al. (2014).
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3.3 Symmetric approach

In the symmetric approach, the rows of an unmixing matrix functional Γ = (γ1, . . . ,γp)
′

are found simultaneously. We then consider the maximization of

p
∑

j=1

K
∑

k=1

(γ ′

jSkγj)
2,

under the constraint ΓS0Γ
T = Ip. The matrix Γ now optimizes the Lagrangian

function

L(Γ,Θ) =

p
∑

j=1

K
∑

k=1

(γ ′

jSkγj)
2 −

p
∑

j=1

θjj(γ
′

jS0γj − 1)−
p
∑

j=1

j−1
∑

i=1

θijγ
′

iS0γj,

where the symmetric matrix Θ = (θij) contains the p(p+1)/2 Lagrangian multipliers

of the optimization problem. At the solution Γ we then have

2T (γj) = S0

(

2θjjγj +

j−1
∑

i=1

θijγi +

p
∑

i=j+1

θjiγi

)

,

where T (γ) is as in (4). Multiplying both sides from the left by γ ′
i gives 2γ

′
iT (γj) =

θij , for i < j, and 2γ ′
iT (γj) = θji, for i > j. Hence the solution Γ must satisfy the

following estimating equations.

Definition 2. The symmetric unmixing matrix functional Γ = (γ1, . . . ,γp)
′ solves

the estimating equations

γ ′

iT (γj) = γ
′

jT (γi) and γ ′

iS0γj = δij , i, j = 1, . . . , p.

Notice that the exact joint diagonalization is possible only if the matricesR1, . . . ,RK

have the same sets of eigenvectors. This is naturally true for the population matrices

in the SOS model. For estimated autocorrelation matrices from a continuous SOS

12
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Figure 4: Time series Γ̂x obtained with symmetric SOBI from x in Figure 2.

model, the eigenvectors are however almost surely different. As Γ = US
−1/2
0 , the

estimating equations for U = (u1, . . . ,up)
′ are

u′

iT (uj) = u
′

jT (ui) and u′

iuj = δij , i, j = 1, . . . , p,

where again T (u) =
∑K

k=1
(u′Rku)Rku. The equations then suggest a new fixed

point algorithm with the two steps

step 1: T ← (T (u1), . . . ,T (up))
′

step 2: U ← (TT ′)−1/2T .

Figure 4 shows the estimated latent sources obtained from the data in Figure 2.

In the signal processing literature, there are several other algorithms available for

approximate simultaneous diagonalization of K matrices. The most popular one for

SOBI is based on Jacobi rotations (Clarkson, 1988). Surprisingly, our new algorithm

13



and the algorithm based on Jacobi rotations seem to yield exactly the same solutions

for practical data sets. Notice also that the symmetric procedure does not fix the order

of the rows of U . To guarantee that the deflation-based and symmetric procedures

estimate the same U , we can reorder the rows of U = (u1, . . . ,up)
′ so that

K
∑

k=1

(u′

1Rku1)
2 ≥ · · · ≥

K
∑

k=1

(u′

pRkup)
2.

4 Asymptotical properties of the SOBI estimators

In this section we derive the asymptotical properties of the two competing SOBI

estimates under SOS model (1). We may assume without loss of generality that

µ = 0 and consider the limiting properties of the deflation-based and symmetric SOBI

estimates based on the autocovariance matrices S0,S1, . . . ,SK with lags 0, 1, . . . , K.

We then need some additional assumptions that are specific for these choices. First,

we assume

(A3) the diagonal elements of
∑K

k=1
Λ2

k are strictly decreasing.

Assumption (A3) guarantees the identifiability of the mixing matrix (with the speci-

fied autocovariance matrices) and fixes the order of the component time series in our

model. Our unmixing matrix estimate is based on the sample autocovariance matri-

ces Ŝ0, Ŝ1, . . . , ŜK . We then further assume that the estimates of the autocovariance

matrices are root-T consistent, that is,

(A4) Ω = Ip and
√
T (Ŝk −Λk) = Op(1), k = 0, 1, . . . , K as T →∞.

Whether (A4) is true or not depends on the distribution of the latent p-variate time

series z.

14



For the estimated autocovariance matrices, write then

T̂ (γ) =
K
∑

k=1

(γ ′Ŝkγ)Ŝkγ.

The deflation-based and symmetric unmixing matrix estimates are obtained when the

functionals are applied to estimated autocovariance matrices and, consequently, they

solve the following estimating equations.

Definition 3. The unmixing matrix estimate Γ̂ = (γ̂1, . . . , γ̂p)
′ based on Ŝ0 and

Ŝ1, . . . , ŜK solves the estimating equations

T̂ (γ̂j) = Ŝ0(

j
∑

r=1

γ̂rγ̂
′

r)T̂ (γ̂j), j = 1, . . . , p− 1, (deflation-based)

or

γ̂ ′

iT̂ (γ̂j) = γ̂
′

jT̂ (γ̂i) and γ̂ ′

iŜ0γ̂j = δij , i, j = 1, . . . , p (symmetric).

Using the estimating equations and assumptions (A1)-(A4), one easily derives the

following results. The first part was already proven in Miettinen et al. (2014). For

the proof of the second part, see the Appendix.

Theorem 1. Under the assumptions (A1)-(A4) we have

(i) the deflation-based Γ̂ = (γ̂1, . . . , γ̂p)
′ →p Ip, and for j = 1, . . . , p,

√
T γ̂ji = −

√
T γ̂ij − (

√
T Ŝ0)ij + op(1), i < j,

√
T (γ̂jj − 1) = −1

2

√
T ((Ŝ0)jj − 1) + op(1), i = j,

√
T γ̂ji =

∑

k λkj

[

(
√
T Ŝk)ji − λkj(

√
T Ŝ0)ji

]

∑

k λkj(λkj − λki)
+ op(1), i > j,

15



(ii) the symmetric Γ̂ = (γ̂1, . . . , γ̂p)
′ →p Ip, and for j = 1, . . . , p,

√
T γ̂jj = −

1

2

√
T ((Ŝ0)jj − 1) + op(1), i = j

√
T γ̂ji =

∑

k(λkj − λki)
[

(
√
T Ŝk)ji − λkj(

√
T Ŝ0)ji

]

∑

k(λkj − λki)2
+ op(1), i 6= j.

First note that, for Ω = Ip, the limiting distribution of the diagonal element
√
T (γ̂jj−1) only depends on the limiting distribution of

√
T ((Ŝ0)jj−1), j = 1, . . . , p.

Hence, the comparison of the estimates should be made only using the off-diagonal

elements. Also,

√
T (Γ̂+ Γ̂

′ − 2Ip) = −
√
T (Ŝ0 − Ip) + op(1),

and the limiting behavior of
√
T (Γ̂+Γ̂

′−2Ip) is therefore similar for both approaches.

If the joint limiting distribution of the (vectorized) autocovariance matrices is multi-

variate normal, Slutsky’s theorem implies that the same is true also for the unmixing

matrix estimates.

Corollary 1. Under the assumptions (A1)-(A4), if the joint limiting distribution of

√
T
[

vec(Ŝ0, Ŝ1, . . . , ŜK)− vec(Ip,Λ1, . . . ,ΛK)
]

is a (singular) (K + 1)p2-variate normal distribution with mean value zero, then the

joint limiting distribution of
√
Tvec(Γ̂− Γ) is a singular p2-variate normal distribu-

tion.

In Section 5 we consider multivariateMA(∞) processes since their autocovariance

matrices have limiting joint multivariate normal distribution. So far, we have assumed

that the true value of Ω is Ip. Due to the affine equivariance of Γ̂, the limiting

16



distribution of
√
Tvec(Γ̂Ω− Ip) does not depend on Ω. If, for Ω = Ip,

√
Tvec(Γ̂− Ip)→d Np2(0,Σ),

then, for any full-rank true Ω, Γ̂− Γ = (Γ̂Ω− Ip)Γ and

√
Tvec(Γ̂− Γ)→d Np2 (0, (Γ

′ ⊗ Ip)Σ(Γ⊗ Ip)) .

Moreover, for any true Ω and Ω̂ = Γ̂
−1

,

0 =
√
T
(

Γ̂ΩΓΩ̂− Ip
)

=
√
T (Γ̂Ω− Ip) +

√
T (ΓΩ̂− Ip) + oP (1),

which implies that

√
Tvec(Ω̂−Ω)→d Np2 (0, (Ip ⊗Ω)Σ(Ip ⊗Ω′)) .

5 An example: MA(∞) processes

5.1 MA(∞) model

An example of multivariate time series having a limiting multivariate normal dis-

tribution is a MA(∞) process. From now on we assume that zt are uncorrelated

multivariate MA(∞) processes, that is,

zt =

∞
∑

j=−∞

Ψjǫt−j , (5)

17



where ǫt are standardized iid p-vectors and Ψj, j = 0,±1,±2, . . . , are diagonal ma-

trices satisfying
∑

∞

j=−∞
Ψ2

j = Ip. Hence

xt = Ωzt =
∞
∑

j=−∞

(ΩΨj)ǫt−j (6)

is also a multivariate MA(∞) process. Notice that every second-order stationary

process is either a linear process (MA(∞)) or can be transformed to a such one using

Wold’s decomposition. Notice also that causal ARMA(p, q) processes are MA(∞)

processes (see for example Chapter 3 in (Brockwell and Davis, 1991)).

For our assumptions, we need the following notation and definitions. We say that

a p × p matrix J is a sign-change matrix if it is a diagonal matrix with diagonal

elements ±1, and P is a p× p permutation matrix if it is obtained from an identity

matrix by permuting its rows and/or columns. For the iid ǫt, we then assume that

(B1) ǫt are iid with E(ǫt) = 0 and Cov(ǫt) = Ip and with finite fourth order moments,

and

(B2) the components of ǫt are exchangeable and marginally symmetric, that is,

JPǫt ∼ ǫt for all sign-change matrices J and for all permutation matrices

P .

Assumption (B1) implies that E(ǫ3tiǫtj) = 0 and that E(ǫ4ti) = βii and E(ǫ
2
tiǫ

2
tj) = βij

are bounded for all i, j = 1, . . . , p. The above assumptions also imply that the

model (6) satisfies assumptions (A1)-(A2).

5.2 Limiting distributions of the SOBI estimates

To obtain the limiting distributions of the (symmetrized) sample autocovariance ma-

trices

Ŝk =
1

2(T − k)

T−k
∑

t=1

[

xtx
′

t+k + xt+kx
′

t

]

,
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we define

F k =

∞
∑

t=−∞

ψtψ
′

t+k, k = 0,±1,±2, . . .

where ψt = (ψt1, . . . , ψtp)
′ is the vector of the diagonal elements ofΨt, t = 0,±1,±2, . . . .

The diagonal elements of Fk are the autocovariances of the components of z at lag

k. We also define the p× p matrices Dlm, l, m = 0, . . . , K, with elements

(Dlm)ii = (βii − 3)(F l)ii(Fm)ii +
∞
∑

k=−∞

((F k+l)ii(F k+m)ii + (F k+l)ii(F k−m)ii) ,

(Dlm)ij =
1

2

∞
∑

k=−∞

((F k+l−m)ii(F k)jj + (F k)ii(F k+l−m)jj)

+ (βij − 1)(F l + F
′

l)ij(Fm + F ′

m)ij , i 6= j.

The ijth element ofDlm is the limiting covariance of (Ŝl)ij and (Ŝm)ij. The following

lemma is proved in Miettinen et al. (2012).

Lemma 1. Assume that (x1, . . . ,xT ) is a multivariate MA(∞) process defined in (5)

that satisfies (B1) and (B2). Then the joint limiting distribution of

√
T (vec(Ŝ0, Ŝ1, . . . , ŜK)− vec(Ip,Λ1, . . . ,ΛK))

is a singular (K + 1)p2-variate normal distribution with mean value zero and covari-

ance matrix

V =













V 00 . . . V 0K

...
. . .

...

V K0 . . . V KK













,

with submatrices of the form

V lm = diag(vec(Dlm))(Kp,p −Dp,p + Ip2)
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where

Kp,p =
∑

i

∑

j

(eie
T
j )⊗ (eje

T
i ) and Dp,p =

∑

i

(eie
T
i )⊗ (eie

T
i ).

Remark 1. If we assume (B1) but replace (B2) by

(B2*) the components of ǫt are mutually independent,

then, in this independent component model case, the joint limiting distribution of

(Ŝ0, Ŝ1, . . . , ŜK) is again as given in Lemma 1 but with βij = 1 for i 6= j. If we

further assume that innovations ǫt are iid from Np(0, Ip), then βii = 3 and βij = 1

for all i 6= j, and the variances and covariances in Lemma 1 become even more

simplified.

The first part of the next theorem was presented in Miettinen et al. (2014), the

second part is new.

Theorem 2. Assume that (x1, . . . ,xT ) is an observed time series from the MA(∞)

process (6) that satisfies (B1), (B2) and (A3). Assume (wlog) that Ω = Ip. If

Γ̂ = (γ̂1, . . . , γ̂p)
′ is the SOBI estimate, then the limiting distribution of

√
T (γ̂j −ej)

is a p-variate normal distribution with mean zero and covariance matrix

(i) (deflation-based case)

ASV (γ̂j) =

j−1
∑

r=1

ASV (γ̂jr)ere
′

r + ASV (γ̂jj)eje
′

j +

p
∑

t=j+1

ASV (γ̂jt)ete
′

t,
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where

ASV (γ̂jj) =
1

4
(D00)jj,

ASV (γ̂ji) =

∑

l,m λliλmi(Dlm)ji − 2µij

∑

k λki(Dk0)ji + µ2
ij(D00)ji

(µij − µii)2
,

for i < j

ASV (γ̂ji) =

∑

l,m λljλmj(Dlm)ji − 2µjj

∑

k λkj(Dk0)ji + µ2
jj(D00)ji

(µjj − µji)2
,

for i > j

with µij =
∑

k λkiλkj, or

(ii) (symmetric case)

ASV (γ̂j) =

p
∑

r=1

ASV (γ̂jr)ere
′

r

where, for i 6= j,

ASV (γ̂jj) =
1

4
(D00)jj,

ASV (γ̂ji) =

∑

l,m(λlj − λli)(λmj − λmi)(Dlm)ji

(
∑

k(λkj − λki)2)2

+
−2νji

∑

k(λkj − λki)(Dk0)ji + ν2ji(D00)ji

(
∑

k(λkj − λki)2)2
,

with νji =
∑

k(λ
2
kj − λkjλki).

6 Efficiency comparisons

6.1 Performance indices

In this section we compare asymptotic and finite-sample efficiencies of the two SOBI

estimates. The performance of the estimates in simulation studies can be measured
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using for example the minimum distance index (MDI) (Ilmonen et al., 2010)

D̂ = D(Γ̂Ω) =
1√
p− 1

inf
C∈C
‖CΓ̂Ω− Ip‖

where ‖ · ‖ is the matrix (Frobenius) norm and

C = {C : each row and column of C has exactly one non-zero element.}

The minimum distance index is invariant with respect to the change of the mixing

matrix, and it is scaled so that 0 ≤ D̂ ≤ 1. It is also surprisingly easy to compute.

The smaller the MDI-value, the better is the performance.

From the asymptotic point of view, the most attractive property of the minimum

distance index is that for an estimate Γ̂ with
√
T vec(Γ̂Ω − Ip) → Np2(0,Σ), the

limiting distribution of T (p − 1)D̂2 is that of a weighted sum of independent chi

squared variables with the expected value

tr ((Ip2 −Dp,p)Σ(Ip2 −Dp,p)) .

Notice that tr((Ip2 −Dp,p)Σ(Ip2 −Dp,p)) equals the sum of the limiting variances of

the off-diagonal elements of
√
T vec(Γ̂− Ip) and therefore provides a global measure

of the variation of the estimate Γ̂.

If for example PCA, FOBI, AMUSE, deflation-based SOBI and symmetric SOBI

are used to find the latent times series based on x given in Figure 2, the minimum

distance index gets the values

0.914, 0.628, 0.246, 0.062 and 0.058,

respectively. As PCA and FOBI are solely based on the 3-variable marginal distri-
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bution of the observations, they ignore time order and temporal dependence present

in data. Of course, there is no reason why PCA should perform well here. Sim-

ilarly, FOBI can be used for independent time series only if the latent series have

distinct kurtosis values. The failure of these two methods in this example is clearly

demonstrated by their high MDI values. AMUSE performs better here than PCA

and FOBI, but is still much worse than symmetric SOBI. Clearly the first lag is not

a good choice for the separation in this example.

Finally recall that, in the signal processing literature, several other indices have

been proposed for the finite sample comparisons of the performance of the unmixing

matrix estimates (for an overview see for example Nordhausen et al. (2011a)). One

of the most popular performance indices, the Amari index (Amari et al., 1996), is

defined as

1

p

[

p
∑

i=1

∑p
j=1
|Ĝij |

maxj |Ĝij|
+

p
∑

j=1

∑p
i=1
|Ĝij |

maxi |Ĝij |

]

− 2,

where Ĝ = Γ̂Ω. The index is invariant under permutations and sign changes of the

rows and columns of Ĝ. However, heterogeneous rescaling of the rows (or columns)

on Ĝ changes its value. Therefore, for the comparisons, the rows of Γ̂ should be

rescaled in a similar way. We prefer MDI, since the Amari index is based on the L1

norm and cannot be easily related to the limiting distribution of the unmixing matrix

estimate.

6.2 Four models for the comparison

The following four models were chosen for the comparison of the deflation-based and

symmetric SOBI estimates. The components of the source vectors are

(a) three MA(10)-series with coefficient vectors

(0.8, 3.8, 1.2, 1.4, 1.1, 0.5, 0.7, 0.3, 0.5, 1.8),

(−0.6, 1.3,−0.1, 1.3, 1.6, 0.4, 0.5,−0.4, 0.1, 2.8) and
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(−0.4,−1.5, 0,−1.1,−1.9, 0,−0.7,−0.4,−0.2, 0.4),

respectively, and normal innovations,

(b) three AR-series with coefficient vectors (0.6), (0, 0.6) and (0, 0, 0.6), respectively,

and normal innovations,

(c) three ARMA-series with AR-coefficient vectors (0.3, 0.3,−0.4),

(0.2, 0.1,−0.4), (0.2, 0.2, 0.4), and MA-coefficient vectors

(−0.6, 0.3, 1.1, 1.0,−1.1,−0.3), (1.2, 2.8,−1.0,−1.0, 0.1, 0.1),

(−1.4,−1.9,−0.5,−0.3,−0.4, 0.4), respectively, and normal innovations,

(d) three AR(1)-series with coefficients 0.6, 0.4 and 0.2, respectively, and normal

innovations.

Each component is scaled to unit variance. Due to the affine equivariance of the

estimates, it is not a restriction to use Ω = I3 in the comparisons.

6.3 Asymptotic efficiency

The asymptotic efficiency of the estimates can be compared using the sum of the

limiting variances of the off-diagonal elements of
√
T vec(Γ̂ − Ip). In Table 1, these

values are listed for the symmetric and deflation-based SOBI estimates, when both

methods are using lags k = 1, . . . , 10 in all four models.

Table 1: The sums of the estimated variances of selected rows of Γ̂ for the symmetric
SOBI estimates utilizing four candidate sets of lags.

model
(a) (b) (c) (d)

deflation-based 46.5 31.8 11.0 61.6
symmetric 24.1 10.6 9.4 75.1

First notice that model (d) is the only one, where the deflation-based estimate

outperforms the symmetric estimate. Also in model (c) the deflation-based method
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has quite competitive variances whereas in models (a) and (b) the symmetric estimate

is much more accurate than the deflation-based estimate.

6.4 Finite sample behavior

For finite sample efficiencies, we use simulated time series from models (a)-(d). For

each model and for each value of T , we have 10 000 repetitions of the simulated time

series. The averages of T (p− 1)D̂2 were then computed for the symmetric SOBI and

deflation-based SOBI estimates. Again, we use lags k = 1, . . . , 10 for both estimates.

The results are plotted in Figure 5.

As explained in Section 6.1, the limiting distribution of T (p− 1)D̂2 has expected

values as given in Table 1. We then expect that the averages of T (p− 1)D̂2 converge

to these expected values in all four models. As seen in Figure 5, this seems to happen

but the convergence is quite slow in all cases. Notice also that the finite sample

efficiencies are higher than their approximations given by the limiting results.

Functions to compute deflation-based and symmetric SOBI estimates and their

theoretic and finite sample efficiencies are provided in the R packages JADE (Nordhausen et al.,

2013) and BSSasymp (Miettinen et al., 2013).

7 EEG example

Let us now illustrate how the theoretical results derived in Section 5.2 can be used

to select a good set of autocovariance matrices to be used in SOBI method for a

problem at hand. We consider EEG (electroencephalography) data recorded at the

Department of Psychology, University of Jyväskylä, from an adult using 129 elec-

trodes placed on the scalp and face. The EEG data was online bandpass filtered at

0.1 - 100 Hz and sampled at 500 Hz. The length of the data set equals T = 100000.

An extract of five randomly selected EEG components is plotted in Figure 6.
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Figure 5: The averages of T (p − 1)D̂2 for the symmetric and deflation-based SOBI
estimates from 10 000 repetitions of observed time series with length T from models
(a)-(d). The horizontal lines give the expected values of the limiting distributions of
T (p− 1)D̂2.

The goal in EEG data analysis is to measure the brain’s electrical activity. As the

measurements are made along the scalp and face, a mixture of unknown source signals

is observed. Moreover, EEG recordings are often contaminated by non-cerebral arti-

facts, such as eye movements and muscular activity. Our aim is to use SOBI methods

to separate few clear artifact components from EEG data. When choosing the set of

autocovariance matrices to be diagonalized in SOBI, we follow the recommendations

of Tang et al. (2005) and compare the results given by the following four sets of lags.

(1) 1, 2, . . . , 10, 12, . . . , 20, 25, . . . , 100, 120, . . . , 300.

(2) 1, 2, . . . , 10, 12, . . . , 20.
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Figure 6: Five randomly selected EEG components of length T = 10000, from 20001
to 30000.

(3) 1, 2, . . . , 10, 12, . . . , 20, 25, . . . , 100.

(4) 25, 30, . . . , 100, 120, . . . , 300.

We applied both, deflation-based and symmetric, SOBI methods to the EEG data

using the four different autocovariance sets. However, as the deflation-based method

gave significantly larger variance estimates for the unmixing matrix estimate, we only

report the results based on symmetric SOBI. We chose three recognizable components,

i.e. eye blink, horizontal eye movement and muscle activity, and estimated the sum

of variances of the corresponding rows of the unmixing matrix under the assumption

that the source signals are generated by MA(∞) processes with normal innovations.

The resulting variance estimates are reported in Table 2.

Table 2: The sums of the estimated variances of selected rows of Γ̂ for the symmetric
SOBI estimates utilizing four candidate sets of lags.

set of lags
(1) (2) (3) (4)

eye blink 0.052 0.021 0.060 0.091
horizontal eye movement 0.234 0.192 0.337 0.517
muscle activity 0.058 0.051 0.057 0.123

As the results of Table 2 indicate, the symmetric SOBI method that used au-

tocovariance matrices with lags in set (2) gave best separation results for the three
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components of interest. These findings are confirmed by the time plots of separated

components in Figure 7. The good performance of symmetric SOBI based on lags in

set (2) is especially visible when looking at the corresponding eye blink and horizontal

eye movement components.

Figure 7: Estimated eye blink (top figure), horizontal eye movement (middle figure)
and muscle activity (bottom figure) components of length T = 10000, from 20001 to
30000. The components are estimated using symmetric SOBI method with lags given
in sets (1)-(4), respectively.
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8 Concluding remarks

Symmetric SOBI is a popular blind source separation method but a careful analysis of

its statistical properties has been missing so far. The theoretical results for deflation-

based SOBI were presented only recently in Miettinen et al. (2014). There is a lot of

empirical evidence that symmetric BSS methods perform better than their deflation-

based competitors. In this paper we used the Lagrange multiplier technique to derive

estimating equations for symmetric SOBI that allowed a thorough theoretic analysis

of the properties of the estimate. In most cases we studied, the limiting efficiency of

the symmetric SOBI estimate was better than that of the deflation-based estimate.

The estimating equations also suggested a new algorithm for symmetric SOBI. Such

an algorithm gave, in all our simulations, exactly the same results as the most popular

algorithm based on Jacobi rotations. In a separate paper, these and other algorithms

with associated estimates are compared in various settings with different values of p

and K.

The problem corresponding to the selection of lags is still open; only few ad-hoc

guidelines are available in the literature, see for example Tang et al. (2005). We fol-

lowed these guidelines in our EEG data example. Notice however that the results

presented in this paper can be used to build a two-stage estimation procedure where,

at stage 2, the final SOBI estimate is selected among all SOBI estimates using their

estimated efficiencies in a model determined by a preliminary SOBI estimate ap-

plied at stage 1. The results derived here can also be applied to different inference

procedures, including hypothesis testing and model selection.
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Appendix

Proof of Theorem 1

(i) The proof for the consistency and limiting behavior of the deflation-based SOBI

estimate can be found in Miettinen et al. (2014).

(ii) We first prove the consistency of the estimate. Let U be the compact set of all

p× p orthogonal matrices. For U = (u1, . . . ,up)
′ ∈ U , write

∆(U) =

p
∑

i=1

K
∑

k=1

(u′

iRkui)
2 and ∆̂(U ) =

p
∑

i=1

K
∑

k=1

(u′

iR̂kui)
2

As (u′R̂ku)
2 − (u′R̂u)2 = (u′(R̂k − Rk)u)(u

′(R̂k + Rk)u) and R̂k →P Rk, for

k = 1, . . . , K,

M = sup
U∈U

|∆(U)− ∆̂(U)| ≤ 2

K
∑

k=1

||R̂k −Rk|| →P 0.

Under our assumptions, U = Ip is the unique maximizer of ∆(U ) in the subspace

U 0 = {U ∈ U : uiRiui descending and u′
i1p ≥ 0, i = 1, . . . , p} .

Notice that, in this subspace U , the order and signs of the rows of U are fixed. For

all ǫ > 0, write next

U ǫ = {U ∈ U 0 : ||U − Ip|| ≥ ǫ}

and

δǫ = ∆(Ip)− sup
U∈U ǫ

∆(U ).

Clearly, δǫ > 0 and δǫ → 0 as ǫ→ 0. Let Û be the unique maximizer of ∆̂(U) in U 0.
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Then

P
(

||Û − Ip|| < ǫ
)

≥ P

(

∆̂(Ip) > sup
U∈U ǫ

∆̂(U)

)

≥ P (M ≤ δǫ/3)→ 1, ∀ǫ

and the convergence Û →P Ip follows. Thus Γ̂ = Û Ŝ
−1/2

0 →P Ip also holds true.

To prove the second part of the result (ii), notice that the estimating equations

give

0 =
√
T γ̂ ′

iŜ0γ̂j =
√
T γ̂ij +

√
T γ̂ji +

√
T (Ŝ0)ij + op(1), (7)

for i 6= j, and

0 =
√
T (γ̂ ′

iŜ0γ̂i − 1) = 2
√
T (γ̂ii − 1) +

√
T ((Ŝ0)ii − 1) + op(1). (8)

Next note that

γ̂ ′

iT̂ (γ̂j)− e′iT (ej) = γ̂ ′

jT̂ (γ̂i)− e′jT (ei) (9)

and

√
n
(

γ̂ ′

iT̂ (γ̂j)− e′iT (ej)
)

=
K
∑

k=1

λ2kj
√
nγ̂ij +

K
∑

k=1

λkj
√
n(Ŝk)ij

+

K
∑

k=1

λkiλkj
√
nγ̂ji + op(1).

(10)

for all i 6= j. The result then follows from equations (7)-(10).
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