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Prony’s method is a prototypical eigenvalue analysis based method for the re-
construction of a finitely supported complex measure on the unit circle from its
moments up to a certain degree. In this note, we give a generalization of this
method to the multivariate case and prove simple conditions under which the
problem admits a unique solution. Provided the order of the moments is bounded
from below by the number of points on which the measure is supported as well
as by a small constant divided by the separation distance of these points, stable
reconstruction is guaranteed. In its simplest form, the reconstruction method con-
sists of setting up a certain multilevel Toeplitz matrix of the moments, compute
a basis of its kernel, and compute by some method of choice the set of common
roots of the multivariate polynomials whose coefficients are given in the second
step. All theoretical results are illustrated by numerical experiments.
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1 Introduction

In this paper we propose a generalization of de Prony’s classical method [10] for the parameter
and coefficient reconstruction of univariate finitely supported complex measures to a finite
number of variables. The method of de Prony lies at the core of seemingly different classes
of problems in signal processing such as spectral estimation, search for an annihilating filter,
deconvolution, spectral extrapolation, and moment problems. Thus we provide a new tool to
analyze multivariate versions of a broad set of problems.

To recall the machinery of the classical Prony method let C∗ := C \ {0} and let f̂j ∈ C∗
and pairwise distinct zj ∈ C∗, j = 1, . . . ,M , be given. Let δzj denote the Dirac measure in
zj on C∗ and let

µ =
M∑
j=1

f̂jδzj
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be a finitely supported complex measure on C∗. By the Prony method the f̂j and zj are
reconstructed from 2M + 1 moments

f(k) =

∫
C∗
xkdµ(x) =

M∑
j=1

f̂jz
k
j , k = −M, . . . ,M.

Since the coefficients p̂` ∈ C, ` = 0, . . . ,M , of the (not a priori known) so-called Prony
polynomial

p(Z) :=

M∏
j=1

(Z − zj) =

M∑
`=0

p̂`Z
`

fulfill the linear equations

M∑
`=0

p̂`f(`−m) =

M∑
j=1

f̂jz
−m
j

M∑
`=0

p̂`z
`
j =

M∑
j=1

f̂jz
−m
j p(zj) = 0, m = 0, . . . ,M,

and are in fact the unique solution to this system with p̂M = 1, reconstruction of the zj is
possible by computing the kernel vector (p̂1, . . . , p̂M−1, 1) of the rank-M Toeplitz matrix

T := (f(k − `))`=0,...,M
k=0,...,M

∈ CM+1×M+1

and, knowing this to be the coefficient vector of p, compute the roots zj of p. Afterwards, the

coefficients f̂j of f (that did not enter the discussion until now) can be uniquely recovered
by solving a Vandermonde linear system of equations. When attempting to generalize this
method to finitely supported complex measures on Cd∗, it seems natural to think that the
unknown parameters zj ∈ Cd∗ could be realized as roots of d-variate polynomials, and this
is the approach we will follow here. As in the univariate case, the coefficients will be given
as solution to a suitably constructed system of linear equations. However, for d ≥ 2, an
added difficulty lies in the fact that a non-constant polynomial always has uncountably many
complex roots, so that a single polynomial cannot be sufficient to identify the parameters
as its roots. A natural way to overcome this problem is to consider the common roots of a
(finite) set of polynomials. These sets, commonly called algebraic varieties, are the subject
of classical algebraic geometry and thus there is an immense body of algebraic literature on
this topic from which we need only some basic notions as provided at the end of Section 2.

Our main results are presented in Section 3, which is divided into three parts. In Sec-
tion 3.1 we prove sufficient conditions to guarantee parameter reconstruction for multivariate
exponential sums by constructing a set of multivariate polynomials such that their common
roots are precisely the parameters. In Section 3.2 we focus on the case that the parameters
zj lie on the d-dimensional torus, which allows us to prove numerical stability, provide some
implications on the parameter distribution, and construct a single trigonometric polynomial
localized at the parameters. Finally, we state a prototypical algorithm of the multivariate
Prony method.

In Section 4 we discuss previous approaches towards the multivariate moment problem
as can be found in [18, 1] for generic situations, in [27, 25, 17] based on projections of the
measure, and in [7, 6, 4, 5] based on semidefinite optimization. Finally, numerical examples
are presented in Section 5 and we conclude the paper with a summary in Section 6.
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2 Preliminaries

Throughout the paper, the letter d ∈ N always denotes the dimension, C∗ := C \ {0}, and we
let

Cd∗ := (C∗)d = {z ∈ Cd : z` 6= 0 for all ` = 1, . . . , d}

be the domain for our parameters. For z ∈ Cd∗, k ∈ Zd, we use the multi-index notation
zk := zk11 · · · z

kd
d . We also let T := {z ∈ C : |z| = 1} and the d-fold Cartesian product

Td is called d-dimensional torus. We start by defining the object of our interest, that is,
multivariate exponential sums, as a natural generalization of univariate exponential sums.

Definition 2.1. A function f : Zd → C is a d-variate exponential sum if there is a finitely
supported complex measure µ on Cd∗, such that for all k ∈ Zd, f(k) is the k-th moment of µ,
that is, if there are M ∈ N, f̂1, . . . , f̂M ∈ C∗, and pairwise distinct z1, . . . , zM ∈ Cd∗ such that
with µ :=

∑M
j=1 f̂jδzj we have

f(k) =

∫
Cd
∗

xkdµ(x) =

M∑
j=1

f̂jz
k
j

for all k ∈ Zd.
In that case M , f̂j, and zj, j = 1, . . . ,M , are uniquely determined, and f is called M -

sparse, the f̂j are called coefficients of f , and zj are called parameters of f . The set of
parameters of f is denoted by Ωf or, if there is no danger of confusion, simply by Ω.

Remark 2.2. Let f̂j ∈ C∗ and pairwise distinct tj ∈ [0, 1)d, j = 1, . . . ,M , be given. Then

the trigonometric moment sequence of τ =
∑M

j=1 f̂jδtj ,

f : Zd → C, k 7→
∫

[0,1)d
e2πiktdτ(t) =

M∑
j=1

f̂je
2πiktj ,

(where kt denotes the scalar product of k and t) is a d-variate exponential sum with parameters
e2πitj = (e2πitj,1 , . . . , e2πitj,d) ∈ Td. This case will be analyzed in detail in Section 3.2.

Let f : Zd → C be an M -sparse d-variate exponential sum with coefficients f̂j ∈ C∗ and
parameters zj ∈ Cd∗, j = 1, . . . ,M . Our objective is to reconstruct the coefficients and
parameters of f given an upper bound n for M and a finite set of samples of f at a subset of
Zd that depends only on n, see also [23].

The following notations will be used throughout the paper. For n ∈ N, let In := {0, . . . , n}d
and let N := |In| = (n+ 1)d. The multilevel Toeplitz matrix

Tn(f) := (f(k − `))k,`∈In ∈ CN×N ,

which we also refer to as Tn, will play a crucial role in the multivariate Prony method. Note
that the entries of Tn are sampling values of f at a grid of |In − In| = (2n+ 1)d points.

Next we establish the crucial link between the matrix Tn and the roots of multivariate
polynomials. To this end, let

Π := C[Z1, . . . , Zd] = {
∑
k∈F

pkZ
k1
1 · · ·Z

kd
d : F ⊂ Nd0 finite, pk ∈ C}.
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denote the C-algebra of d-variate polynomials and for p =
∑

k pkZ
k1
1 · · ·Z

kd
d ∈ Π \ {0} let

maxdeg(p) := max{‖k‖∞ : pk 6= 0}.

The N -dimensional subvector space of d-variate polynomials of max-degree at most n is
denoted by

Πn := {p ∈ Π \ {0} : maxdeg(p) ≤ n} ∪ {0} ∼= span{Cd 3 z 7→ zk : k ∈ In},

and the evaluation homomorphism at Ω = {z1, . . . , zM} will be denoted by

AΩ
n : Πn → CM , p 7→ (p(z1), . . . , p(zM )),

or simply by An. Note that the representation matrix of An w.r.t. the canonical basis of CM
and the monomial basis of Πn is given by the multivariate Vandermonde matrix

An =
(
zkj
)
j=1,...,M
k∈In

∈ CM×N .

The connection between the matrix Tn and polynomials that vanish on Ω lies in the observa-
tion that, using Definition 2.1, the matrix Tn admits the factorization

Tn = (f(k − `))k,`∈In = PnA
>
nDnAn, (2.1)

with Dn = diag(d), dj = z−nj f̂j , j = 1, . . . ,M , and a permutation matrix Pn ∈ {0, 1}N×N .
Therefore the kernel of An, corresponding to the polynomials in Πn that vanish on Ω, is a
subset of the kernel of Tn.

In order to deal with the multivariate polynomials encountered in this way we need some
additional notation. The zero locus of a set P ⊂ Π of polynomials is denoted by

V (P ) := {z ∈ Cd : p(z) = 0 for all p ∈ P},

that is, V (P ) consists of the common roots of all the polynomials in P . For a set Ω ⊂ Cd,

I(Ω) := {p ∈ Π : p(z) = 0 for all z ∈ Ω} =
⋃
n∈N

kerAΩ
n

is the so-called vanishing ideal of Ω. Finally, for a set P ⊂ Π of polynomials,

〈P 〉 := {
m∑
j=1

qjpj : m ∈ N, qj ∈ Π, pj ∈ P}

is the ideal generated by P . Note that V (P ) = V (〈P 〉) always holds. Subsequently, we identify
Πn and CN and switch back and forth between the matrix-vector and polynomial notation.
In particular, we do not necessarily distinguish between An and its representation matrix An,
so that e.g. “V (kerAn)” makes sense.

3 Main results

In the following two subsections, we study conditions on the degree n, and thereby on the
number (2n+ 1)d of samples, such that the parameters zj can be uniquely recovered and the
polynomials used to identify them can be computed in a numerically stable way.
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3.1 Complex parameters, polynomials, and unique solution

Our first result gives a simple but nonetheless sharp condition on the order of the moments
such that the set of parameters Ω and the zero loci V (kerAn) and V (kerTn) are equal.

Theorem 3.1. Let f : Zd → C be an M -sparse d-variate exponential sum with parameters
zj ∈ Cd∗, j = 1, . . . ,M . If n ≥M then

Ωf = V (kerTn(f)).

Moreover, if this equality holds for all M -sparse d-variate exponential sums f , then n ≥M .

Proof. Let Ω := Ωf = {z1, . . . , zM}. We start by proving Ω = V (kerAn). Since V (kerAn) ⊃
V (An+1) ⊃ Ω, it is sufficient to prove the case n = M . It is a simple fact that I({zj}) =
〈Z1 − zj,1, . . . , Zd − zj,d〉, and that these ideals are pairwise comaximal, and hence we have

I(Ω) =
M∏
j=1

I({zj}) = 〈
M∏
j=1

(Z`j − zj,`j ) : `j ∈ {1, . . . , d}〉 ⊂ 〈kerAM 〉 ⊂ I(Ω),

which implies 〈kerAM 〉 = I(Ω). Thus we have V (kerAM ) = V (〈kerAM 〉) = V (I(Ω)) = Ω
where the last equality holds because Ω is finite (and can easily be derived from the above).

Thus it remains to show that kerAM = kerTM . We proceed by proving rankAM = M . To
simplify notation, we omit the subscript M on the matrices. Let N := dim ΠM and suppose
that A ∈ CM×N has rank r < M . Let Ω′ = {z1, . . . , zr} and w.l.o.g. let A′ ∈ Cr×N , denoting
the first r rows of A, be of rank r. Now the first part of the proof implies the contradiction
Ω = V (kerA) = V (kerA′) = Ω′.

Considering the factorization T = PA>DA as in Equation (2.1) and applying Frobenius’
rank inequality (see e.g. [15, 0.4.5 (e)]) yields

rankA>D + rankDA− rankD ≤ rankA>DA = rankT ≤ rankA

which implies rankT = rankA = M . The factorization clearly implies kerA ⊂ kerT which
together with the rank-nullity theorem dim kerA = N−M = dim kerT yields the final result.

The converse follows from the fact that for Ω := {(xj , 1, . . . , 1) ∈ Cd∗ : j = 1, . . . ,M} with
distinct xj ∈ C∗, any subset B ⊂ Πn such that V (B) = Ω (which holds, by assumption, for
B = kerTn) necessarily contains a polynomial of (max-)degree at least M .

Example 3.2. Let f be a 3-sparse 2-variate exponential sum with parameters zj ∈ C2
∗ and

Ω = {z1, z2, z3}. The generating system of I(Ω) given in the proof of Theorem 3.1 is

P :=
{
p` : ` ∈ {1, 2}3

}
, p`(Z1, Z2) :=

3∏
j=1

(Z`j − zj,`j ).

We start by illustrating the generic case that no two coordinates are equal, i.e., zj,` 6= zi,` if
j 6= i and ` = 1, 2. The zero locus of each individual polynomial p` is illustrated in Figure 3.1,
where each axis represents C. The zero locus of each linear factor is a complex curve and
illustrated by a single line. We note that the set P is redundant, i.e. the last three polynomials
in the first row of Figure 3.1 are sufficient to recover the points uniquely as their common
roots, but there is no obvious general rule which polynomials can be omitted.
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Four other point configurations are shown in Figure 3.2. In the first three configurations
coordinates of different points agree, which allows to remove some polynomials from P . In
particular, the third point set which is collinear is generated already by (Z1 − z1,1)(Z1 −
z2,1)(Z1 − z3,1) and (Z2 − z1,2)3. The fourth point set is generated either by the above set P
of polynomials or by

∏3
j=1(Z1 +Z2− zj,1− zj,2) and Z1−Z2, (which are not elements of P ).

Figure 3.1: Zero sets of the polynomials in P , d = 2, M = 3, and for the case that no two
coordinates are equal.

Figure 3.2: Point sets Ω ⊂ C2, d = 2, M = 3.

Remark 3.3. Concerning the “natural” generator P =
{∏M

j=1(Z`j − zj,`j ) : `j ∈ {1, . . . , d}
}

used in the proof above, we note that although the ideals 〈P 〉 = 〈kerAM 〉 coincide, the sub-
vector space inclusion

spanP ⊂ kerAM

is strict in general as can be seen for d = 2, M = 2, z1 = (0, 0), z2 = (1, 1) and the
polynomial Z1 − Z2 ∈ kerA2. Moreover, we have the cardinality |P | = dM , at least for
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different coordinates zj,`, and thus |P | � Md − M = dim kerAM , i.e., the generator P
contains many linear dependencies and is highly redundant for large M .

Finally, we would like to comment on the degree n and the total number of samples (2n+1)d

with respect to the number of parameters M :

i) A small degree n ∈ N, M < N < M + d, and surjective An results in an uncountably
infinite zero locus V (kerAn), since dim(kerAn) ≤ N−M < d and thus I(Ω) is generated
by less than d polynomials.

ii) Increasing the degree results “generically” in a finite zero locus, cf. [1], but “generically”
identifies spurious parameters since e.g. for d = 2 Bézout’s theorem yields |V (p, q)| ≤
deg(p) deg(q) with equality in the projective setting (counting the roots with multiplicity),
for coprime polynomials p, q ∈ kerAn.

Remark 3.4. We discuss a slight modification of our approach. Instead of In = {0, . . . , n}d =
{k ∈ Nd0 : ‖k‖∞ ≤ n} we take Jn := {k ∈ Nd0 : ‖k‖1 ≤ n} as index set and consider the matrix

Hn(f) := (f(k + `))k,`∈Jn ∈ C(n+d
d )×(n+d

d )

instead of Tn(f) = (f(k−`))k,`∈In. Theorem 3.1 also holds with Tn replaced by Hn with almost

no change to the proof. In this way we need only
(

2n+d
d

)
rather than (2n + 1)d samples of f

and also allow for arbitrary parameters zj ∈ Cd instead of zj ∈ Cd∗. While Tn is a multilevel
Toeplitz matrix, Hn is a submatrix of a multilevel Hankel matrix, and for the trigonometric
setting discussed in the following subsection, it is more natural to consider the moments f(k),
k ∈ Zd, ‖k‖∞ ≤ n, than f(k), k ∈ Nd0, ‖k‖1 ≤ 2n.

3.2 Parameters on the torus, trigonometric polynomials, and stable solution

We now restrict our attention to parameters zj ∈ Td, hence zj = e2πitj for a unique tj ∈
[0, 1)d. In this case, V (kerAn) fulfills a 2d-fold symmetry in the following sense. Let p(z) =∑n

k=0 p̂kz
k ∈ kerAn and z = (z1, . . . , zd)

> ∈ Cd with p(z) = 0, then z′ = (z1
−1, z2, . . . , zd)

>

is a root of the 1st-coordinate conjugate reciprocal polynomial

q(z) := z1
np(z1

−1, z2, . . . , zd) =
n∑
k=0

p̂n−k1,k2,...,kdz
k.

Since the roots z ∈ Ω ⊂ Td are self reciprocal z′ = z, we have q ∈ kerAn and thus z ∈
V (kerAn) implies z′ ∈ V (kerAn) for all choices of a conjugated reciprocal coordinate.

Moreover, we have the following construction of a so-called dual certificate [7, 6, 4, 5].

Theorem 3.5. Let d, n,M ∈ N, n ≥ M , tj ∈ [0, 1)d, j = 1, . . . ,M , zj := e2πitj , and
Ω := {zj : j = 1, . . . ,M} be given. Moreover, let p̂` ∈ CN , ` = 1, . . . , N , be an orthonormal
basis with p̂` ∈ ker(Tn)⊥, ` = 1, . . . ,M , and p` : Cd∗ → C, p`(z) =

∑
k∈In p̂`,kz

k, then

p : [0, 1)d → C,

p(t) =
1

N

M∑
`=1

|p`(e2πit)|2, (3.1)

is a trigonometric polynomial of degree n and fulfills 0 ≤ p(t) ≤ 1 for all t ∈ [0, 1)d and
p(t) = 1 if and only if t = tj for some j = 1, . . . ,M .
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Proof. First note that every orthonormal basis p̂` ∈ CN , ` = 1, . . . , N , leads to

N∑
`=1

|p`(z)|2 =
N∑

r,s=1

zrzs
N∑
`=1

p̂`,rp̂`,s =
N∑
r=1

|zr|2 = N

for z ∈ Td. Moreover, z̄ = z−1 on Td yields that p is indeed a trigonometric polynomial.
Finally, Theorem 3.1 assures

∑N
`=M+1 |p`(z)|2 = 0 if and only if z ∈ Ω.

We proceed with an estimate on the condition number of the preconditioned matrix T = Tn.

Definition 3.6. Let M ∈ N and Ω = {e2πitj : tj ∈ [0, 1)d, j = 1, . . . ,M}, then

sep(Ω) := min
r∈Zd, j 6=`

‖tj − t` + r‖∞

is the separation distance of Ω. For q > 0, we say that Ω is q-separated if sep(Ω) > q.

Theorem 3.7. Let d, n,M ∈ N, tj ∈ [0, 1)d, j = 1, . . . ,M , zj := e2πitj , q > 0, and Ω := {zj :

j = 1, . . . ,M} be q-separated. Moreover, let f̂j > 0, then n ≥ 2dq−1 implies the condition
number estimate

cond2WTW ≤ (nq)d+1 + (2d)d+1

(nq)d+1 − (2d)d+1
· maxj f̂j

minj f̂j
,

where the diagonal preconditioner W = diagw, wk > 0, k ∈ In, is well chosen. In particular,
limn→∞ cond2WTW = maxj f̂j/minj f̂j.

Proof. First note, that the matrix T is hermitian positive semidefinite and define the condition
number by cond2T := ‖T‖2‖T †‖2, where T † denotes the Moore-Penrose pseudoinverse. Let

D = diag d, dj = f̂
1/2
j , j = 1, . . . ,M , and K = AW 2A∗ ∈ CM×M , then we have

cond2WTW = cond2WA∗D2AW = cond2DAW
2A∗D =

max f̂j

min f̂j
· cond2K

and Corollary 4.7 in [20] yields the condition number estimate. The second claim follows since
limn→∞ cond2K = 1.

In summary, the condition

n ≥ max{2dq−1,M} (3.2)

allows for unique reconstruction of the parameters Ω and stability is guaranteed when com-
puting the kernel polynomials from the given moments.

Remark 3.8. Up to the constant 2d, the condition n > 2d/q in the assumption of Theorem 3.7
is optimal in the sense that equidistant nodes tj = j/m, j ∈ Im, n < q−1 = m, imply

A ∈ Cmd×nd
and rankA = nd < md = M . We expect that the constant 2d can be improved

and indeed, a discrete variant of Ingham’s inequality [19], [27, Lemma 2.1] replaces 2d by
C
√
d but gives no explicit estimate on the condition number.

Moreover, Theorem 3.1 asserts that the condition on the degree n with respect to the number
ob parameters M is close to optimal in the specific setting. We briefly comment on the
following typical scenarios for the point set Ω and the relation (3.2):

8



i) quasi-uniform parameters tj ∈ [0, 1)d might be defined via sep(Ω) ≈ CdM
−1/d, i.e.,

max{2dq−1,M} = M ,

ii) equidistant and co-linear parameters, e.g. tj = M−1(j, . . . , j)>, imply sep(Ω) ≈ CM−1,
i.e., both terms are of similar size,

iii) and finally parameters tj ∈ [0, 1)d chosen at random from the uniform distribution,
imply E sep(Ω) = C ′dM

−2, see e.g. [29], and thus max{2dq−1,M} = C ′′dM
2.

Dropping the condition n > M in (3.2) and restricting to the torus, we still get the following
result on how much the roots of the polynomials in the kernel of T can deviate from the original
set Ω.

Theorem 3.9. Let d, n,M ∈ N, tj ∈ [0, 1)d, j = 1, . . . ,M , zj := e2πitj , q > 0, and Ω := {zj :
j = 1, . . . ,M} be q-separated, then n ≥ 2dq−1 implies

Ω ⊂ V (kerT ) ∩ Td ⊂ {ze2πit : z ∈ Ω, ‖t‖∞ < 2d/n}.

Proof. We prove the assertion by contradiction. Let y ∈ V (kerT ) ∩ Td be 2d/n-separated
from the point set Ω ⊂ Td and let p̂` ∈ CN , ` = 1, . . . , N −M , constitute a basis of kerT . By
definition, we have p`(y) = 0 and thus the augmented Fourier Matrix

Ay :=

(
A
ey

)
, ey := (e2πiky)>k∈In ,

fulfills Ayp̂` = 0, i.e., dim kerAy ≥ N −M . On the other hand, Corollary 4.7 in [20] implies
rankAy = M + 1 and thus the contradiction N = dim kerAy + rankAy ≥ N + 1.

3.3 Prototypical algorithm

Let f be an M -sparse d-variate exponential sum with pairwise distinct parameters zj ∈ Cd∗
and n ≥M be an upper bound. Theorem 3.1 justifies the following prototypical formulation
of the multivariate Prony method.

Algorithm 1 Multivariate Prony method.

Input: d, n ∈ N,
f(k), k ∈ {−n, . . . , n}d

Set up Tn = (f(k − `))k,`∈In ∈ CN×N

Compute kerTn

Compute V (kerTn)

Output: V (kerTn) = {z1, . . . , zM}

The third step, i.e., the computation of the zero locus V (kerTn), is beyond the scope of this
paper and several methods can be found elsewhere, see e.g. [2, 22, 33, 34]. We further note
that the number (2n + 1)d of used samples scales as O

(
Md
)

and that standard algorithms
for computing the kernel of the matrix Tn have cubic complexity.
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4 Other approaches

There are many variants of the one dimensional moment problem from Section 1, originating
from such diverse fields as for example signal processing, electro engineering, and quantum
chemistry, with as widespread applications as spectroscopy, radar imaging, or super-resolved
optical microscopy, see e.g. the survey paper [24]. Variants of Prony’s method with an in-
creased stability or a direct computation of the parameters without the detour via polynomial
coefficients include for example MUSIC [32], ESPRIT [30], the Matrix-Pencil method [16], the
Approximate Prony method [26], the Annihilating Filter method [35], and methods relying
on orthogonal polynomials [12].

Multivariate generalizations of these methods have been considered in [18, 1] by realizing
the parameters as common roots of multivariate polynomials. In contrast to our approach,
both of these papers have an emphasis on the generic situation where e.g. the zero locus
of two bivariate polynomials is finite. In this case, the total number of used moments for
reconstruction might indeed scale as the number of parameters but no guarantee is given for a
specific instance of the moment problem. A second line of multivariate generalizations [27, 25]
decomposes the multivariate moment problem into a series of univariate moment problems
via projections of the measure. While again this approach typically works well, the necessary
number of a-priori chosen projections for a signed measure scales as the number of parameters
in the bivariate case [17]. We note that the subset

P0 := {
M∏
j=1

(Z` − zj,`) : ` = 1, . . . , d} ⊂ I(Ω),

of the set of generators in the proof of Theorem 3.1 are exactly the univariate polynomials
when projecting onto the d coordinate axes, see also the first and last zero locus in Figure 3.1.

A different approach to the moment problem from Section 1 has been considered in [7, 6,
4, 5] and termed ‘super-resolution’. From a signal processing perspective, knowing the first
moments is equivalent to sampling a low-pass version of the measure and restoring the high
frequency information from these samples. With the notation of Remark 2.2 the measure τ
with parameters tj ∈ [0, 1)d is the unique minimizer of

min ‖ν‖TV s.t.

∫
[0,1)d

e2πiktdν(t) = f(k), k ∈ In,

provided the parameters fulfill a separation condition as in Section 3.2. This is proven via
the existence of a so-called dual certificate [7, Appendix A] and becomes computationally
attractive by recasting this dual problem as a semidefinite program. The program has just
(n + 1)2/2 variables in the univariate case [7, Corollary 4.1], but at least we do not know
an explicit bound on the number of variables in the multivariate case, see [11, Remark 4.17,
Theorem 4.24, and Remark 4.26].

Finally note that there is a large body of literature on the related topic of reconstructing a
multivariate sparse trigonometric polynomials from samples, see e.g. [3, 21, 13, 8, 28, 31, 14].
Translated to the situation at hand, all these methods heavily rely on the fact that the
parameters tj ∈ [0, 1)d are located on a Cartesian grid with mesh sizes 1/m1, . . . , 1/md for
some m1, . . . ,md ∈ N and deteriorate if this condition fails [9]. Hence, these methods lack one
major advantage of Prony’s method, namely that the parameters tj ∈ [0, 1)d can, in principle,
be reconstructed with infinite precision.

10



5 Numerical results

All numerical experiments are realized in MATLAB 2014a on an Intel i7, 12GByte, 2.1GHz,
Ubuntu 14.04.
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(a) Sum of squared absolute val-
ues of kernel polynomials on T
(identified with [0, 1)).
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Figure 5.1: Parameters d = 1, M = 3, n = 30, t1 = 0.12, t2 = 1/π, and t3 = e−1/2. Dashed
lines and × indicate no weighting, solid lines and · indicate triangular weights
wk = min{k + 1, n− k}, k = 0, . . . , n− 1.

Example 5.1 (d = 1). We consider the case d = 1 with parameters on the 1-torus T that
we identify with the interval [0, 1). For a 3-sparse exponential sum some of the associated
(trigonometric) polynomials are visualized in Figure 5.1, where we start with the upper bound
n = 30 ≥ 3 and also indicate the effects of a preconditioner W according to Theorem 3.7 on
the roots of the polynomials.

The method introduced in [7] finds a polynomial of the form (3.1) as a solution to a convex
optimization problem, whereas we find such a polynomial with Prony’s method. For this com-
parison we used the MATLAB code provided in [7] and modified it so that it runs for different
problem sizes depending on the sparsity M = 1, . . . , 100. This means that we used roughly
5M samples and random parameters tj ∈ [0, 1), j = 1, . . . ,M , satisfying the separation con-
dition in [7]. We only measured the time for finding a polynomial of the form (3.1), since
the calculation of the roots is basically the same in both algorithms. In Figure 5.2 (a), where
the times needed with cvx are depicted as circles and the times needed by Prony’s method
are depicted as crosses, we see that the solution via convex optimization takes considerably
more time. Note that the end criterion of the convex optimization program is set to roughly
10−6, therefore the solution accuracy does not increase beyond this point, whereas for Prony’s
method the solutions in this test are all in the order of machine accuracy, 10−15.

Example 5.2 (d = 2). We demonstrate our method to reconstruct the parameters from the
moments f : Z2 → C, k 7→ (1, 1)k + (−1,−1)k. For moments of order |k| ≤ n = 2 and the
associated space of polynomials Π2 with reverse lexicographical order on the terms, we get the
9× 9 block Toeplitz matrix T = T2 with the Toeplitz blocks T ′, T ′′ as follows:

T = (f(k − `))k,`∈I2 =

T ′ T ′′ T ′

T ′′ T ′ T ′′

T ′ T ′′ T ′

 , T ′ =

2 0 2
0 2 0
2 0 2

 , T ′′ =

0 2 0
2 0 2
0 2 0

 .
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Figure 5.2: Time comparison for extracting a polynomial of form (3.1), once with cvx depicted
as circles and via Prony’s method depicted as crosses.

A vector space basis of kerT is given by the polynomials

p1 = −1 + Z2
1 , p2 = −Z1 + Z2, p3 = −1 + Z1Z2,

p4 = −Z1 + Z2
1Z2, p5 = −1 + Z2

2 , p6 = −Z1 + Z1Z
2
2 ,

p7 = −1 + Z2
1Z

2
2 .

Since p3 = p1 + Z1p2, p4 = Z1p3, p5 = Z2p2 + p3, p6 = Z1p5, and p7 = (1 + Z1Z2)p3, we
have 〈kerT 〉 = 〈p1, p2〉 and hence V (kerT ) = V (p1, p2) = {(1, 1), (−1,−1)}. The zero loci
of p1, p2 are depicted in Figure 5.3 (a) (in the style of Figure 3.1) resp. (b), where the torus
T2 is identified with [0, 1)2. Note that we would typically expect the intersection of the zero
locus of each polynomial with the torus to be finite, which is the case neither for p1 nor p2.
In Figure 5.3 (c) the sum of the squared absolute values of an orthonormal basis of kerT is
drawn.

Example 5.3 (d = 3). Figure 5.4 depicts the intersection of T3 (identified with [0, 1)3) and
the zero loci of two polynomials that arise with the Prony method for M = 2 parameters
choosing n = 1 (which is not an upper bound for M). This illustrates that, in the case d = 3,
the zero locus of a single polynomial intersected with the torus can typically be visualized as
a “one-dimensional” curve as suggested by the heuristic argument that a complex polynomial
can be thought of as two real equations, which together with the three real equations that define
T3 as a subset of C3 = R6 provides five equations, thus leaving one real degree of freedom.

6 Summary

We suggested a multivariate generalization of Prony’s method and gave sharp conditions
under which the problem admits a unique solution. Moreover, we provided a tight estimate
on the condition number for computing the kernel of the involved Toeplitz matrix of moments.
Numerical examples were presented for spatial dimensions d = 1, 2, 3 and showed in particular
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(a) See also Fig. 3.1, zero
loci V (p1), V (p2) ⊂ C2.
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(b) Zeros of the kernel polyno-
mial p1 (lines) and p2 (dashed)
on T2.
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(c) Sum of squared absolute val-
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Figure 5.3: Parameters d = 2, M = 2, n = 2, t1 = (0.0, 0.0) and t2 = (0.5, 0.5).

(a) Zeros of the kernel polynomial p1 on T3. (b) Zeros of the kernel polynomials p1, p2 on T3.

Figure 5.4: Parameters d = 3, M = 2, n = 1, t1 = (0.1, 0.3, 0.25) and t2 = (0.7, 0.8, 0.9).

13



that a so-called dual certificate in the semidefinite formulation of the moment problem can
be computed much faster by solving an eigenvalue problem.

Beyond the scope of this paper, future research needs to address the actual computation of
the common roots of the kernel polynomials, the stable reconstruction from noisy moments,
and reductions both in the number of used moments as well as in computation time.

Acknowledgment. The authors thank S. Heider for the implementation of the ap-
proach [7] for the bivariate case and H. M. Möller for several enlightening discussions. The
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