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[bookmark: _uodgrpd3vmr]Abstract
Allergic rhinitis is the most common clinical presentation of allergy, affecting 400 million people worldwide, and with increasing incidence in westernized countries. Genome-wide association studies have thus far only identified 7 risk loci. To elucidate the genetic architecture and understand disease mechanisms of allergic rhinitis, we carried out a meta-analysis of allergic rhinitis in 59,762 cases and 152,358 controls of European ancestry and further performed GWASs of the related traits allergic sensitization and non-allergic rhinitis in a subset of individuals. We identified a total of 41 risk loci for allergic rhinitis, including 20 loci not previously associated with allergic rhinitis, other inhalant allergy or allergic sensitization, which were confirmed in a replication phase of 679,247 individuals. Functional annotation of risk markers implied genes involved in various immune pathways and immune cells. Comparison across rhinitis traits suggested shared genetic origins. Future studies of the identified loci and genes might identify novel targets for treatment and prevention of allergic rhinitis.  

[bookmark: _bq7z63sylipm]Introduction
Allergic rhinitis (AR) is an inflammatory disorder of the nasal mucosa mediated by allergic hypersensitivity responses to environmental allergens1, which has large adverse effects on quality of life and health care expenditures. AR is the most common clinical presentation of allergy, affecting around 400 million people worldwide, and its global prevalence is still increasing1,2. The underlying causes for AR and its increasing prevalence are still not understood and, as a consequence, prevention of disease is not possible. The heritability of AR is estimated to be more than 65%3,4. Nevertheless, only 7 loci have been associated with allergic rhinitis in genome-wide association studies (GWAS) of AR per se, while another 21 loci have been suggested from GWAS studies on related traits, such as self-reported allergy, asthma plus hay fever, or allergic sensitization.5–9 
We carried out a large-scale meta-GWAS of AR combined with extensive systems biology approaches to gain insight into mechanistic underpinnings of susceptibility loci. AR is strongly correlated to allergic sensitization (the presence of allergen-specific IgE), but symptoms of AR can be present without evidence of sensitization and vice versa, suggesting specific immune-related or local organ (eg mucosal) effects determining progression from sensitization to disease. In order to better understand such mechanisms, we further conducted GWASes on sensitization to inhalant allergens (allergic sensitization) and symptoms of allergic rhinitis without detectable sensitization (non-allergic rhinitis).
The discovery meta-analysis of AR included 16,531,985 genetic markers from 18 studies comprising 59,762 cases and 152,358 controls of primarily European ancestry (Supplemental Table 1, cohort recruitment details in Supplemental Note). We report the genetic heritability on the liability scale of allergic rhinitis as at least 7.8% (assuming 10% disease prevalence; 9.8% assuming 20% disease prevalence), with a genomic inflation of 1.048 (Supplementary Figure 1). We identified 42 genetic loci, with index markers (defined as marker with lowest p-value in locus) below genomewide significance (p < 5e-8), of which 3 have previously been reported in relation to allergic rhinitis, and another 18 were reported associated to other inhalant allergies or allergic sensitization6–9 (Fig. 1, Table 1, Supplementary Fig. 2, Supplementary Fig. 3).
 As data from one study (23andMe) had a proportionally large weight in the discovery phase (~80%), we compared results from 23andMe with those from the other studies. The genetic correlation between 23andMe and the other studies was 0.80 (p < 2e-17), and overall  there was good agreement between 23andMe and the other studies with respect to effect direction and effect size (Supplementary Table 2, Supplementary Fig. 4). Furthermore, similar association patterns for top-loci were seen from regional association plots, except for one locus near RTF1 (index marker rs111371454) (Supplementary Fig. 5). Heterogeneity between 23andMe and the remaining studies was statistically significant (p < 0.05) for 7 of 42 loci, in most cases due to higher effect size in non-23andMe studies. This is likely due to differences in phenotype definition since in 23andMe the phenotype was based on self reported symptoms, while in many of the other studies it was based on interview or doctor-diagnosed AR (Supplementary Table 11). AR loci were significantly enriched (p < 1e-5) for variants reported to be associated with asthma, eczema, and autoimmune disorders.
 	The index markers from a total of 25 loci that had not previously been associated with AR, other inhalant allergy or allergic sensitization were carried forward to the replication phase. These included 16 loci that showed genome-wide significant association in the discovery phase and also showed evidence of association (nominal significance p value < 0.05) in both 23andMe and non-23andMe studies. (Supplementary Table 2), and an additional 9 loci that were selected from the p-value stratum between 5e-8 and 1e-6 using a gene-set overrepresentation informed approach selecting loci based on enrichment of gene sets involved in NFKB-, TNF-alpha-, and general immune-signalling (Supplementary Table 3). Replication was sought in another 10 studies with 60,720 cases and 618,527 controls. Of the 25 loci, 20 loci reached a Bonferroni-corrected significance threshold of 0.05 in a meta-analysis of replication studies (Fig. 1 (blue), Table 1, Supplementary Fig. 3), and all of these reached genome-wide significance in the combined fixed-effect meta-analysis of all discovery and replication studies (Table 1). Evidence of heterogeneity was seen for one of these loci (rs1504215), which did not reach statistical significance in the random effects model (0.95 [0.92; 0.97] P=2.83e-07, Supplementary Fig. 3) . Stratification of replication results into the main contributor (23andMe weighing approximately 70%) and other cohorts showed same direction of effect for all of the 20 replicating loci (Supplementary Table 2). 
	To identify secondary independent signals at the top loci, we carried out a conditional analysis, identifying 13 additional independent variants at p < 1e-5, with 4 of these being genome-wide significant (near WDR36, HLA-DQB1, IL1RL1 and LPP) (Supplementary Table 4).
To gain insight into functional consequences on the gene expression level of known and novel loci, we utilised a number of data sources, including 1) 11 eQTL sets and 1 meQTL set from blood and blood subsets; 2) 2 eQTL sets and 1 meQTL set from lung tissue; and 3) data on enhancer-promoter interactions in 15 different blood subsets. Support of regulatory effects on coding genes was found for 33 out of the 41 loci. Many loci showed evidence of regulatory effects across a wide range of immune cell types (including B- and T-cells), while other seemed cell type-specific, like e.g. innate lymphoid cells (Table 2 and Supplementary Table 5). In addition, we calculated the “credible set” of markers for each locus using a Bayesian approach that selects markers that are 95% likely to contain the causal disease-associated markers (Supplementary Table 6) and looked up these sets in the Variant Effect Predictor database generating a list of 17 markers producing amino acid changes, including deleterious changes in NUSAP1, SULT1A1 and PLCL, as predicted by SIFT (Supplementary Table 7). 
Three of the 20 loci not previously associated with AR have previously been associated with other atopic traits. These include the locus at 5p13.2 previously associated with eczema10. This index SNP is in strong LD with a missense variation in IL7R and with meQTLs in blood and lung tissue. IL-7R is necessary for V(D)J recombination of T and B cell receptors, for cellular activation by the type 2 immune inducer TSLP, and IL7R polymorphisms have been associated with the autoimmune disease multiple sclerosis11, 12. A second locus at 12q24.12 has been associated with blood eosinophil count13. A possible functional candidate at this locus, supported by a blood cis-eQTL and a correlated missense variation, is SH2B3 which is involved in inflammatory pathways and T Cell activation14. The third locus at 19q13.11 has previously been associated with eosinophilic esophagitis.15 We found evidence of enhancer-promotor interaction with CEBPA and CEBPG in macrophages, monocytes and neutrophils. CEBPA is essential for myeloid cell lineage differentiation16 while CEBPG function as an enhancer binding protein in IL4, IL6, IL8 and IGH, the immunoglobulin heavy chain locus17.
The majority of the remaining novel loci imply genes with a known role in the immune system. The locus at 11q23 is located near CXCR5, a plausible causal candidate supported by cis eQTL and enhancer-promotor interaction in B-cells. CXCR5 encodes a chemokine receptor that is present on B cells and in a subset of follicular T cells and is involved in B cell migration and facilitates B and T cell interactions within the lymph node18. This locus has previously been associated with autoimmune diseases19,20 and lymphoma21. The lead signal at 1q23.3 is located near FCER1G and associated with expression of FCER1G in blood and lung tissue. FCER1G encodes the gamma chain of the high affinity IgE receptor, a central component in allergic responses, and is thereby a plausible candidate conferring risk of AR at this locus. The locus at 4q24 harbors cis-eQTLs for NFKB1 in monocytes and whole blood and meQTLs in lung tissue. NFKB1 encodes a subunit of the NF-kappaB complex playing an important role for activation of multiple inflammatory pathways.22 NF-kappaB activation might also be implicated in the association signal at 10q24.32 with evidence of enhancer-promoter interaction with NFKB2, encoding another subunit of the NF-kappaB complex. Other immune related candidates include BACH2 at 6q15 with a role in antigen-induced formation of memory B cells and memory T cells2324, TYRO3 and LTK at 15q15.1 modulating TLR signaling25 and T helper 2 immunity26, respectively, VPRBP at 3p21.2 required for optimal T cell proliferation after antigen recognition and involved in V(D)J recombination during B cell development27, SPPL3 and OASL at 12q24.31 with potential roles for NK cell maturation28 and IFN-alpha signaling29 respectively, RORA at 15q22.2 involved in type 2 innate lymphoid cell development and allergic inflammation30, and TNFSF11 at 13q14.11 with a role in T cell activation by dendritic cells31.	
Finally, a number of the novel AR loci imply genes with no clear function in AR pathogenesis. These include one of the strongest associated loci in this meta-analysis at 12q24.31 with the top-signal located between CDK2AP1 and C12orf65. This locus harbors cis-eQTLs in blood and/or lung tissue for several genes (ABCB9, ARL6IP4, C12orf65, CDK2AP1, MPHOSPH9, OGFOD2, PITPNM2, RILPL2, SBNO1, SETD8, and SNRNP35) and shows evidence for enhancer-promoter interaction with DDX55 in various immune cells, but none of these genes have an obvious function related to AR. The same is the case for NEGR1 at 1p31.1, JAZF1 at 7p15.1, FOSL2 at 2p23.2, and RERE at 1p36.32, all supported by cis-eQTLs or me-QTLs in blood and/or lung tissue. No cis-eQTL was identified for the locus at 2q36.3 near DAW1. Further studies of these genes and loci might help to understand AR pathogenesis and identify novel drug targets.
Fifteen of the 20 novel loci have previously been associated with risk of autoimmune diseases in line with findings from a previous study,32 supporting a role for these novel loci in immune mechanisms. 
Assessment of enrichment of AR-associated variant burden in open chromatin as defined by DNAse hypersensitive sites from the ENCODE project showed a clear enrichment in several blood and immune cell subsets, with the largest enrichment in CD3 expressing cells (T-cells), CD19-expressing cells (B-cells, including the GM immortalized cell lines), and CD56-expressing cells (T and NK-cells) (Fig. 2, Supplementary Table 8, Supplementary Fig. 6). We also probed tissue enrichment by means of gene expression data from a wide number of sources, through the DEPICT tool. This analysis showed enrichment of genes associated with the AR genetic architecture in blood and immune cell subsets, as well as in tissues of the respiratory system (including oropharynx and respiratory and nasal mucosa) (Supplementary Table 9). 
To explore biological connections and identify new pathways associated with AR based on high confidence variance-associated genes, we combined all genes suggested from eQTL/meQTL analyses, enhancer-promoter interactions and localization within the top loci. The resultant prioritized gene set consisted of 255 genes, 164 (~64%) of which were present in one set only, 86 (~33%) which were present in two or three sets, and only 2 genes were shared between all sets (GSDMB and BACH2) (Supplementary Fig. 7). 
Overall, the full set was enriched for pathways involved in Th1 and Th2 Activation  including several genes in the HLA regions as well as FCER1G (Fig. 3), MHC signaling and antigen presentation, cytokine signaling as well as inflammatory responses (Supplementary Table 10). Markers associated with AR were significantly enriched in signaling pathways known to be important in immune function or perturbed in autoimmune diseases, and asthma (Supplementary Table 10).   
Using the 255 prioritized genes in combination with STRING to identify proteins that interact with the proteins encoded by the high priority genes, we demonstrated a high degree of interaction at the protein level between genes involved in AR risk (Fig. 3). Several of these proteins are target of approved drugs or drugs in development (Fig. 3). These include TNFSF11 (a member of the tumor necrosis factor (TNF) superfamily and target for denosumab, approved for treatment of osteoporosis and bone metastases), NDUFAF1 (an NADH-ubiquinone oxidoreductas assembling factor, which is a target for metformin hydrochloride used to treat type 2 diabetes), PD-L1 (a transmembrane protein that functions as an inhibitor of T cell activation encoded by CD274 and a target for the cancer drug atezolizumab), and IL-5 and IL-13 (cytokines involved in allergic inflammation and targets for several monoclonal antibodies, including reslizumab, mepolizumab, tralokinumab, and lebrikizumab, all approved for treatment of asthma).
In addition to AR, we also carried out a meta-GWAS on the intermediate trait of allergic sensitization (AS), defined as either elevated levels of allergen-specific IgE in blood or a positive skin reaction after puncture of the skin through a droplet of allergen extract (skin prick test, SPT) against one or more inhalant allergens. The GWAS comprised 8,040 cases and 16,441 controls from 13 studies (Supplementary Table 1), making it the largest GWAS on allergic sensitization to date, with approximately 50% more individuals than previous efforts7. A total of 10 loci reached genome-wide significance, with 9 having previously been associated with allergy or allergic sensitization, and one novel hit near the FASLG gene (rs78037977, p = 9.19e-10) (Supplementary Table 12). A variant in this locus (rs7517810, r2 to rs78037977 = 0.98) has previously been associated with inflammatory bowel disease33,34. The genetic heritability on the liability scale of AS was 17.75% (10% prevalence) or 22% (20% prevalence), which is considerable higher than the heritability of AR, and consistent with a more homogeneous nature of this phenotype. Look-up of AR top-loci in the AS GWAS demonstrated large agreement between phenotypes with 40 of the 41 AR markers showing same direction of effect for AS and 28 of them showing nominal significance (p < 0.05) (Supplementary Table 13). This suggests that AR and AS share underlying biological mechanisms.
Non-allergic rhinitis, defined as rhinitis symptoms without evidence of allergic sensitization, is a common but poorly understood disease entity.35 We performed the first GWAS on this clinically important phenotype to improve understanding of the underlying mechanisms of AR, for example local (non-systemic) effects in the respiratory epithelium. The analysis included 2,028 cases and 9,606 controls from 9 studies and did not identify any risk loci at the genome-wide significance level. Look-up of the 41 AR top-loci in the non-allergic rhinitis GWAS indicated considerable overlap of susceptibility loci with 33 of 41 loci showing consistent direction of effect and 8 AR loci showing nominal significance (p<0.05) in the non-allergic rhinitis GWAS (Supplementary Table 14). This suggests some commonality between the two phenotypes that can be due to methodological issues, e.g. that some cases of non-allergic rhinitis misdiagnosed due to sensitization not captured by the tests performed, or might have a biological explanation, e.g. the presence of local allergic mechanisms in the nose without presence of systemic allergic sensitization.
We estimated the proportion of AR in the general population that can be attributed to the 41 identified AR loci. We obtained a conservative population-attributable risk fraction (PARF) estimate for AR of 39% (95% CI 26%-50%), considering the 10% of the population with the lowest risk scores to represent an ‘unexposed’ group. Using the AR risk score to calculate the PARF for AS and non-allergic rhinitis showed PARFs of 39% (95% CI 27%-49%) and 48% (95% CI 23%-65%), respectively, supporting shared genetic origins between AR and these 2 related phenotypes.  
Finally, we investigated the genetic correlation of AR with AS, asthma36, and eczema10 by LD score regression. There was a strong correlation between AR and AS (r2 = 0.73, p<2e-34), moderate with asthma (r2 = 0.60, p<3e-14) and weaker with eczema (r2 = 0.40, p <2e-07).
In conclusion, we expanded the number of established susceptibility loci for AR from 7 to 41 and thereby greatly improved the understanding of the genetic background of the disease. Our analyses provide novel insight in the relationship between AR, non-allergic rhinitis and allergic sensitization, and highlight involvement of AR susceptibility loci in various immune responses, including diverse immune cell types and both innate mechanisms as well as adaptive IgE-related mechanisms encompassing B and T cell activation. Additionally, several of the novel loci imply genes not previously associated with allergy or related traits. Future studies of these loci and genes will further increase understanding of AR pathogenesis and might identify novel targets for treatment and prevention of this common and still poorly understood disease.  



[bookmark: _79mbauonp5jo]Methods:
[bookmark: _m8gezfepn4ww]Phenotype definition 
Allergic rhinitis (AR)
Cases were defined as individuals ever having a diagnosis or symptoms of AR dependant on available phenotype definitions in the included studies (Supplemental Table 11, cohort recruitment details in Supplemental Note). To maximize numbers and optimize statistical power, we did not require doctor-diagnosed AR or verification by allergic sensitization. This approach was confirmed by a sensitivity analysis in 23andMe based on association with known risk loci for allergic rhinitis (data not shown). Controls were defined as individuals who never had a diagnosis or symptoms of AR. 

Allergic sensitization (AS)
We considered specific IgE production against inhalant allergens without restriction by assessment method or type of inhalant allergen. Cases were defined as individuals with objectively measured sensitization against at least one of the inhalant allergens tested for in the respective studies, and controls were defined as individuals who were not sensitized against any of the allergens tested for. We included sensitization assessed by skin reaction after puncture of the skin with a droplet of allergen extract (SPT) and/or by detection of the levels of circulating allergen-specific IgE in the blood. The SPT wheal diameter cutoffs were 3 mm larger than the negative control for cases and smaller than 1 mm for controls. To optimize case specificity and the correlation between methods, we chose a high cutoff of specific IgE levels for cases (0.7 IU/ml) and a low cutoff for controls (0.35 IU/ml). 

Non-allergic rhinitis (NAR)
Case were defined as individuals with current allergic rhinitis symptoms (within the last 12 months) and no allergic sensitization (negative specific IgE (< 0.35 IU/mL) and/or negative skin prick test (< 1 mm) for all allergens and time points tested)
Controls were defined as individuals never having symptoms of allergic rhinitis and no allergic sensitization (negative specific IgE (< 0.35 IU/mL) and/or negative skin prick test (< 1 mm) for all allergens and time points tested)

For all 3 phenotypes, we combined data from children and adults but chose a lower age limit of 6 years, as allergic rhinitis and sensitization status at younger ages show poorer correlation with status later in life, both owing to transient symptoms/sensitization status and frequent development of symptoms/sensitization during late childhood.
[bookmark: _x1nhd0c7i26l]GWAS QC and cohort summary data harmonization
For AR, AS, and NAR, each cohort imputed their data separately using the 1000 Genomes Project (1KGP) phase 1, version 3 release, and conducted the genome-wide association analysis adjusted for sex and if necessary for age and principal components (Supplementary Table COHORTS). All studies included individuals of European descent, except Generation R and RAINE, comprising a mixed, multi-ethnic population. We utilized EasyQC v. 9.237 for quality control and marker harmonization for cohort-level meta-GWAS summary files. Cohort data was harmonized to genome build GRCh37 and checked against 1KGP phase 3 reference allele frequencies for processing problems. GWAS summary “karyograms” were visually inspected to catch cohorts with incomplete data. Distributions of estimate coefficients and errors, as well as “Standard error vs. sample size”- and “p value vs. z-score” plots were inspected for each cohort for systematic errors in statistical models. Ambiguous markers that were non-unique in terms of both genomic position and allele coding were removed. A minimum imputation score of 0.3 (R2) or 0.4 (proper_info) was required for markers. A minimum minor allele count of 7 was required for each marker in each cohort, as suggested by the GIANT consortium and EasyQC.

[bookmark: _z6jt0uidbfjx]Meta-Analysis
For AR, AS, and NAR, meta-analysis for the discovery phase was conducted using GWAMA38 with an inverse variance weighted fixed-effect model with genomic control correction of the individual studies. Each locus is represented by the variant showing the strongest evidence within a 1Mb buffer. Loci were inspected visually by plotting genomic neighbourhood and coloring for 1KGP r2 values. From the pool of genomewide significant markers in the discovery, one locus with index marker rs193243426 without a credible LD structure was removed from further analysis (Supplemental Fig. 8). Heterogeneity was assessed with Cochran’s Q test.
Meta-analysis of replication candidates from the AR discovery phase was carried out using R version 3.4.0, and the meta package version 4.8-2 with an inverse variance weighted fixed-effect model. For a subset of markers, cohorts reported suitable proxies (r2>0.85), where followed-up markers were not present or had insufficient imputation or genotyping quality (Supplemental Table 15). 
[bookmark: _3dyhnlzbwbnm]Gene set overrepresentation analysis, discovery phase
To facilitate selection of biologically relevant discovery candidates in the sub-genomewide significant stratum (5e-8 < p < 1e-6), we employed a custom gene set overrepresentation analysis algorithm implemented in R, with a scoring and permutation regime modelled after MAGENTA.39 Genes with lengths less than 200bp, with copies on multiple chromosomes, and with multiple copies on the same chromosome more than 1Mb apart were removed from analysis. Gene models (GENCODE v 19) were downloaded from the UCSC Table Browser,40 and expanded 110 kb upstream, and 40 kb downstream, similar to MAGENTA. The HLA region was excluded from analysis (chromosome 6: 29,691,116-33,054,976). Similar to MAGENTA, gene scores were adjusted for number of markers per gene, gene width, recombination hotspots, genetic distance, and number of independent markers per gene, all with updated data from UCSC Table Browser. For the gene set overrepresentation permutation calculation, gene sets from the MSigDB collections c2, c3, c5, c7, and hallmark, were included.41 A MAGENTA-style enrichment cutoff at 95% was used. Gene sets with FDR<0.05 were considered.
[bookmark: _nhq39f8bub8x]Conditional analyses
To identify additional independent markers at each discovery genomic region, we used Genome-wide Complex Trait Analysis (GCTA) v. 1.26.0.42 Within a window of +/- 1Mb of each discovery phase index marker, all markers were conditioned on the index using the --cojo-cond feature of GCTA with default parameters. Plink v. v1.90b3.4243 was used to calculate r2 for GCTA with the UK10K full genotype panel44 as reference. A total of 42 of 52 markers from the full discovery phase were present in UK10K. As a MAF-dependent inflation of conditional p-values was observed (data not shown), only conditional markers with MAF >= 10% were selected.
[bookmark: _gsvcdzajczau]Locus definition and credible sets for VEP annotation
Discovery loci were defined as index markers extended with markers in LD (r2 >= 0.5), based on the 1KGP phase 3. Protein coding gene transcript models (GENCODE V24) were downloaded from the UCSC Table Browser, and nearest upstream, downstream, as well as all genes within the extended loci were annotated.
Credible sets for each locus were calculated using the method of Morris, A.P45.
LD was calculated for each discovery index variant within +/- 500 kb, and markers with r2<0.1 were excluded. For the remaining markers, the Bayesian Factor (ABF) values and the posterior probabilities (PostProb) were calculated, and cumulative posterior probability values were generated based ranking markers on ABF. Finally, variants were included in the 99% credible set until the cumulative posterior probability was greater or equal than 0.99.
Credible sets for each loci was annotated with information on mutation impact in coding regions using the Variant effect Prediction (VeP) REST API46, exporting only the nonsynonymous substitutions.
[bookmark: _kojda4h216oo]GWAS catalogue lookup
For annotation of markers with identification in previous GWA studies, the GWAS catalog was downloaded from NHGRI-EBI (v.1.0.1, 2016-11-28). For this analysis, AR loci were lifted from genomic build GRCh37 to GRCh38, and extended with +/- 1Mb in each direction before being overlapped with GWAS catalog annotations. Relevant GWAS catalog overlap traits were binned into trait groups “Allergic Rhinitis”, “Asthma”, “Autoimmune”, “Eczema”, “Infectious Diseases”, “Lung-related Traits”, and “Other allergy”. A million random genomic intervals of the same length (2Mb) were obtained to generate a background overlap distribution, and p-values were calculated from this background.
[bookmark: _yxl91axwklzr]Genetic heritability and genetic correlation
For calculating genetic heritability and genetic correlation between AR and AS, as well as between clinical cohorts and 23andMe within AR, we utilized the LD score regression based method as implemented by LDSC v.1.0.46,47 Population prevalence was set to 10% for AR and AS. Genetic correlation analysis between AR, AS and published GWAS studies was carried out using the LDHUB platform v1.3.148 against all traits, but excluding Metabolites49.   
[bookmark: _461w5oj4w5x3]eQTL sources and analysis
From GTEx V6p50, all significant variant-gene cis eQTL pairs for whole blood, lung, and EBV-transformed lymphocytes were downloaded from https://gtexportal.org, and carried forward in analysis. From Westra et al.51, both cis and trans eQTLs in whole blood were downloaded, and variant-gene pairs with FDR < 0.1 were carried forward in analysis. From Fairfax et al.52, cis eQTLs from monocytes and B cells were downloaded, and variant-gene pairs with FDR < 0.1 were carried forward in analyses. From Bonder et al.52, meQTLs from whole blood were downloaded, and variant-probe pairs with FDR < 0.05 were carried forward in analyses. From Nicodemus-Johnson et al.53, cis eQTLs and meQTLs from lung were downloaded, and variant-gene pairs with FDR < 0.1 were carried forward in analyses. From Momozawa et al. [in press, personal correspondence], cis eQTLs from blood cell types CD14, CD15, CD19, CD4, and CD8 were downloaded, and variant-gene pairs with a weighted correlation of >= 0.6 were carried forward to analysis. For table 2 priority genes, protein coding information was downloaded from the UCSC Table Browser, using the “transcriptClass” field from the “wgEncodeGencodeAttrsV24lift37” table.
[bookmark: _4bjr52hu9pe2]Promoter Capture Hi-C Gene Prioritisation
To assess spatial promoter interactions in the discovery set, we performed a Capture Hi-C Gene Prioritisation (CHIGP) as described in Javierre et al.54 and https://github.com/ollyburren/CHIGP using recommended settings and data sources: 0.1cM recombination blocks, 1KGP EUR reference population, coding markers from the GRCh37 Ensembl assembly and the CHICAGO-generated55 Promoter Capture Hi-C peak matrix data from 17 human primary blood cell types supplied in the original paper. The resulting protein-coding prioritized genes (gene score > 0.5) were used in the downstream network analysis, from cell types "Fetal thymus", "Total CD4 T cells", "Activated total CD4 T cells", "Non-activated total CD4 T cells", "Naive CD4 T cells", "Total CD8 T cells", "Naive CD8 T cells", "Total B cells", "Naive B cells", "Endothelial precursors", "Macrophages M0", "Macrophages M1", "Macrophages M2", "Monocytes", and "Neutrophils".
[bookmark: _m0by0fmqn1j1]Gene set overrepresentation analysis of known and replicating novel loci
All high-confidence gene symbols from eQTL and meQTL sources, PCHiC, as well as genes (models extended 110kb upstream, and 40kb downstream) within each r2-based loci definition  from known and replicating novel loci were input into the pathway-based set over-representation analysis module of ConsensusPathDB (CPDB) database and tools56 with 229 of 277 gene identifiers translated. In addition, these same symbols were used for Ingenuity pathway analysis (IPA; www.ingenuity.com; a curated database of the relationships between genes obtained from published articles, and genetic and expression data repositories) to identify biological pathways common to genes. IPA determines whether the associated genes are significantly enriched in a specific biological function or network by assessing direct interactions. We assigned significance if right-tailed Fisher’s exact test p-value < 0.05.
eQTL/meQTL, PCHiC and locus gene intersections were visualized using the UpSetR package57.
[bookmark: _b2h62kptyzj8]Tissue overrepresentation
To assay the enrichment of variants associated with AR in tissue specific gene expression sets, we utilized the DEPICT enrichment method58, using a p-value threshold of 1e-5, and standard settings.   
[bookmark: _1bg73z2wubmp]Enrichment of regulatory regions
To assay the enrichment of variants associated with AR in regions of open chromatin and specific histone marks, we utilized the GWAS Analysis of Regulatory or Functional Information Enrichment with LD correction (GARFIELD) method59. In essence, GARFIELD performs greedy pruning of GWAS markers (LD r2 > 0.1) and then annotates them based on functional information overlap. Next, it quantifies Fold Enrichment (FE) at various GWAS significance cutoffs and assesses them by permutation testing, while adjusting for minor allele frequency, distance to nearest transcription start site and number of LD proxies (r2 > 0.8). GARFIELD was run with 10,000,000 permutations, and otherwise default settings.
[bookmark: _q3sg7sk3i9l2]PARF
Population-attributable risk fractions (PARFs) were estimated from B58C, a general-population sample with participant ages 44-45 years also contributing to the discovery stage. The genetic risk score was calculated by applying the pooled per-allele coefficients (ln(OR) values) from the AR discovery set to the number of higher-risk alleles of each of the 41 established (known genome-wide significant and novel replicated loci), one SNP per locus. Because there were no individuals observed with zero higher-risk alleles, the prevalence of sensitization for individuals in the lowest decile of the genetic risk score distribution was used to derive PARF estimates on the assumption that this 10% of the population was unexposed. This method has the advantage that it does not predict beyond the bounds of the data, but its results are conservative. The PARF was then derived (with 95% confidence interval) by expressing the difference between the observed prevalence and the predicted (unexposed) prevalence as a percentage of the observed prevalence. PARFs were estimated using the 41 AR loci in relation to AR, AS and NAR, respectively.
[bookmark: _m23ichk0a9c1]Protein network and drug interactions
In order to analyse protein-protein-drug interaction networks, STRING (V10)60 was used. Protein network data (9606.protein.links.v10.txt.gz) and protein alias data (9606.protein.aliases.v10.txt) files were downloaded from the string db website [http://string-db.org/]. GWAS hits stratified on ‘all’, ‘blood’ and ‘lung’ were converted to Ensembl protein ids using the protein alias data. The interactors were subsequently identified using the link data at a ‘high confidence cutoff of >0.7’ as described in the STRING FAQ. The interactor Ensembl protein ids were then converted to UniProt gene names and both hits and interactors were then analyzed for interactions with FDA approved drugs using the ChEMBL Database61 API via Python (v2.7.12). Lastly, stratified networks consisting of GWAS hits connected to interactors and drugs connected to both GWAS hits and interactors were visualised using GGraph (v1.0.0), iGraph (v1.0.1), TidyVerse (v1.1.1) under R (v3.3.2).

[bookmark: _ov6wl7mzl9b6]Table captions
Table 1
Association results of index markers (variant with lowest p-value for each locus) from the discovery phase. Column “Nearest gene” denotes nearest up- and downstream gene (for intergenic variants with two genes listed), or surrounding gene (for intronic variants with one gene listed), with the exception of rs5743618, an exonic missense variant within TLR1; and rs1504215, an exonic synonymous variant within BACH2. Replication and combined p values are for a one-sided test. 

Table 2
Functional description of known and novel replicating loci. ‘Locus genes’ column denotes genes overlapping with R2-extended loci (See Methods). ‘Missense variant’ column denotes variants with a predicted missense coding consequences. ‘e/meQTL priority genes’ denotes genes prioritized from the combined e/meQTL analysis. ‘PCHiC priority genes’ denotes genes prioritized from the PCHiC chromatin capture analysis.      
a) Overlap for rs35350651 with group “other allergy” is “eosinophil count”, b) rs11671925 = eosinophilic esophagitis. 
 
[bookmark: _53sewrq3p2e]

[bookmark: _ksbqwhn7c63i]Figure captions
Figure 1: Manhattan plot of the meta-GWAS discovery phase
Circular plot of p-values of genetic marker association to allergic rhinitis from the discovery phase. Only markers with p < 1e-3 are shown. Labels indicate nearest gene name for index marker in locus (marker with lowest p-value). Green labels indicate loci previously associated with allergy; blue labels indicate novel AR loci; grey labels indicate novel loci that were not carried forward to the replication phase. Green line indicates level of genome wide significance (p = 5e-8).    

Figure 2: Enrichment of allergic rhinitis-associated variants in tissue-specific open chromatin
Enrichment of variants associated with allergic rhinitis (at p < 1e-08 as threshold for marker association) in 189 cell types from ENCODE and Roadmap epigenomics data. Enrichment and p-value was calculated empirically against a permuted genomic background using the GARFIELD tool. Red labels indicate blood and blood-related cell-types, grey labels indicate other cell types. Due to number of permutations = 1e7, empirical p-values reached a minimum ceiling of 1/1e7. FDR threshold = 0.00026.    

Figure 3: Interaction network between drugs and proteins from genes associated with allergic rhinitis
Grey nodes represent locus genes as well as genes prioritized from e/meQTL and PCHiC sources. Blue nodes represent drugs from the ChEMBL drug database. Edges represent very-high confidence interactions from the STRING database (for locus-locus interactions) and drug target evidence (for drug-locus interactions). Red borders indicate genes with protein products that were significantly enriched in the “Th1 and Th2 Activation” pathway (-log[p-value] >19.1) from the IPA pathway analysis.
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