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The human gut microbiome has been associated with many health factors but variability

between studies limits exploration of effects between them. Gut microbiota profiles are

available for >2700 members of the deeply phenotyped TwinsUK cohort, providing a uniform

platform for such comparisons. Here, we present gut microbiota association analyses for 38

common diseases and 51 medications within the cohort. We describe several novel asso-

ciations, highlight associations common across multiple diseases, and determine which dis-

eases and medications have the greatest association with the gut microbiota. These results

provide a reference for future studies of the gut microbiome and its role in human health.
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The human gut microbiome has been associated with a
diverse range of health deficits but there has been relatively
little comparison of these effects between diseases1. While a

recent meta-analysis found some gut microbiota associations are
shared across multiple diseases2, comparisons between studies are
inherently limited by the experimental and analytical variation
between them3,4. This can be overcome by investigating multiple
phenotypes in a single well-phenotyped sample, as demonstrated
by previous comparisons of the relative influence of different host
factors on the gut microbiome5,6. A similar comparative study of
human diseases requires a population with sufficient numbers of
cases for multiple diseases; in this respect the British TwinsUK
cohort is uniquely positioned7. Its members are older than other
cohorts having gut microbiome data, providing a higher pre-
valence of common disease, and subjects have been deeply phe-
notyped for a range of health factors for over 25 years.

Here we describe untargeted gut microbiota association ana-
lyses with 38 common diseases within the British TwinsUK
cohort. Given that medications can have a large influence on gut
microbiota composition8,9, we also explore gut microbiota asso-
ciations with use of 51 common prescription medications. The
results provide a reference of the relative association of different
diseases and medications with gut microbiota composition at the
population level.

Results
Gut microbiota associations with common diseases. Disease
status for individuals within the TwinsUK cohort was collated
from self-reported questionnaires, and 38 diseases (those reported
in >1% of the total cohort) were selected for consideration (Sup-
plementary Data 1). Gut microbiota profiles from 16S rRNA gene
sequencing of stool samples were available for 2737 individuals
(89% female, age= 60 ± 12, body mass index (BMI)= 26 ± 5,
mean ± SD). Within this subset, disease frequencies reflected those
expected of an older female population (Fig. 1a)—the most
common diseases included hypercholesterolaemia, respiratory
allergies, anxiety, osteoarthritis, and hypertension; and rarer dis-
eases included coeliac disease, epilepsy, and inflammatory bowel
disease (IBD). Correlation between diseases was low with the
exception of expected co-morbidities (Fig. 1b) such as within the
metabolic syndrome (hypertension, hypercholesterolaemia, type 2
diabetes (T2D), and ischaemic heart disease), and between aller-
gies, asthma, and eczema—consistent with the concept of atopy.

Microbiota data are high dimensional and inter-correlated10.
To reduce multiple testing in association analyses we used a
heuristic approach to select a minimal set of 68 taxa and diversity
measures representing wider gut microbiota composition (Sup-
plementary Data 2). Regression models were used to identify
associations between the 68 microbiota markers and the 38
common diseases, adjusting for age, BMI, and technical
confounders (Supplementary Data 3). Seventeen diseases had
significant associations (false discovery rate (FDR) < 0.05) with at
least one microbiota marker (Fig. 1c). These findings replicated
reported associations including a negative association between
T2D and Clostridia11, positive associations between Enterobac-
teriaceae and methanogens with constipation12, and a lower
abundance of Ruminococcaceae with irritable bowel syndrome13.
We also identified novel associations including negative associa-
tions between Prevotellaceae and food allergy; Mollicutes and
Cholelithiasis; Odoribacteraceae and urinary incontinence; Del-
taproteobacteria and acne; and Lentisphaeria and osteoarthritis.
Among the microbiota marker traits, diversity measures had the
most significant associations. Alpha diversity measures had
exclusively negative associations, in accord with previous reports
of reduced gut microbiome diversity in disease1.

The power to detect associations with each disease varied with
the number of cases observed. This, in combination with the
additional testing from considering multiple diseases, means that
associations with rarer diseases are likely under-represented. Indeed,
nominally significant associations were observed with all diseases
except psoriasis (Fig. 1c). These associations require validation but
provide guidance for further studies to this effect. To estimate the
relative scale of gut microbiota associations between diseases, we
visualised the number of cases relative to the number of nominal
associations observed (Fig. 1d). Conditions including IBD, T2D,
constipation, recurrent urinary tract infections (UTIs), food
allergies, and coeliac disease had a high number of associations
despite relatively few cases, suggesting these are prime candidates
for disease-specific gut microbiota studies. Conversely, few associa-
tions were observed with anxiety, respiratory allergies, and
hypercholesterolaemia even with a high number of cases. We also
observed diseases with few cases and few associations, such as
epilepsy and gout. In these instances, the disease might either have
little association with the gut microbiota or the present study is
underpowered to detect associations. These results provide a
reference for sample size requirements for future studies.

Age and BMI were included as covariates as they are associated
with several diseases (Supplementary Fig. 1). Furthermore, as
obesity associations with the gut microbiota have been examined
in detail within TwinsUK we aimed to identify associations
independent of these effects14. For comparison, we repeated the
analysis without adjustment for BMI and found that obesity had
the highest number of associations (Supplementary Data 4 and
Supplementary Fig. 2). However, obesity was also one of the most
common disorders and was correlated with several other
morbidities. The results of the age- and BMI-adjusted models
were also highly correlated to the results of models when
adjusting for neither age nor BMI, or either one alone
(Supplementary Data 4 and Supplementary Fig. 3), suggesting
that these have a minimal influence on most of the disease
associations observed.

Microbiota traits with consistent associations across multiple
diseases. A recent meta-analysis by Duvallet et al.2 showed that,
together with disease-specific associations, some differences in the
gut microbiota are observed across multiple diseases, which they
term non-specific associations. Clustering the gut microbiota
markers by their disease associations (Fig. 2), we similarly found
that almost all markers had significant associations, in consistent
directions, with at least two diseases. The microbiota traits could
be classified into two distinct clusters that were, in general,
associated with either lower or higher abundance with disease
states. Several of these classifications overlap with previous stu-
dies. For example, 6 of 10 taxa identified as differentially abun-
dant in a study of paediatric Crohn’s disease patients were marker
taxa in the present analysis, and all displayed consistent directions
of association15. Conversely, Clostridiaceae and Lactobacillaceae
clustered with the disease-associated microbiota traits here, but
have previously been described as prevalent in healthy individuals
in a review of compositional patterns observed across human gut
microbiome studies1.

As we considered marker taxa at the family and class level, our
marker trait classifications could not be directly compared to the
meta-analysis of Duvallet et al.2 that defined non-specific associa-
tions at the genus level. Repeating the disease association analyses
with these non-specific genera, we found reasonable clustering of
genera based on their health and disease associations in the Duvallet
et al.2 study (Supplementary Fig. 4), although there were
discrepancies, for instance, the genus Veillonella was largely at
higher abundance in patients in the meta-analysis but clustered
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with genera generally at lower abundance with disease within the
TwinsUK data. The clustering of the non-specific genera was also
less distinct than observed with the class and family level marker
traits. However, overall, these results contribute to increasing
evidence that, at broad levels, select taxa in the gut microbiota can
have consistent associations with diverse morbidities and should
additionally be considered outside of a disease-specific context.
Further multi-disease studies across multiple cohorts are required to
identify the optimal taxa (and taxonomic levels) that define a non-

specific health-associated gut microbiota. Such taxa would be key
targets for gut microbiota-based diagnostics and therapeutics and
could provide insight into the mechanisms underlying gut
microbiota interactions with host health.

Gut microbiota associations with common medications. Several
studies have shown prescription medications can alter the com-
position of the gut microbiota8,16–18. These have typically
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Fig. 1 Gut microbiota associations with common diseases in TwinsUK. a Counts of afflicted and unafflicted individuals for common diseases within the
subset of TwinsUK individuals having gut microbiota profiles. b Correlation between the diseases when comparing those with complete data in each
pairwise comparison. Phi is equivalent to Pearson’s correlation for binary variables. Breast cancer and acne are not included as they had correlation
coefficients of <0.1 with all other diseases. Data overlap in each case can be found in Supplementary Data 6. c The number of associations observed with
gut microbiota markers for each disease. Colour represents the direction of the association and darker bars represent those significant after FDR
adjustment. d The number of afflicted individuals in the study plotted against the number of nominally significant associations observed (p < 0.05) for each
disease
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focussed on medications expected to have a large effect, such as
antibiotics18, or those highly associated with a disease of interest,
such as metformin in T2D studies17. There has yet to be a
comprehensive investigation of associations between gut micro-
biota composition and the use of common medications at the
level of the general population. To this end, we applied the
approach used for disease comparisons to examine prescription
medication use in TwinsUK.

Self-reported use of 51 prescription medications was scored
from a questionnaire completed by 1724 of the individuals
considered in the disease comparisons (Supplementary Data 1).
Additionally, antibiotic use within the month prior to faecal
sample collection was recorded separately for 2030 individuals.
The most commonly used medications were statins, proton
pump inhibitors (PPIs), cholecalciferol, and calcium (Fig. 3a).
This reflects the age and sex of the sample and that the
conditions hypercholesterolaemia and osteoarthritis were
among the most prevalent. There was little correlation between
the use of medications except for common known co-
prescriptions such as cholecalciferol and calcium, and folic

acid and methotrexate (Fig. 3b). There was also high correlation
between the usage of different inhaled medications for asthma/
COPD.

Regression models were used to identify associations between
prescription medications and the gut microbiota markers as for
diseases (Supplementary Data 5). Significant associations (FDR <
0.05) were observed with 19 of the 52 medications (Fig. 3c). These
replicated previous observations such as higher Streptococcaceae
and Micrococcaceae abundance in PPI users8,16, and lower alpha
diversity associated with both antibiotic use measures18. We
observed several novel associations, in particular: paracetamol
and opioids—both were associated with a higher abundance of
Streptococcaceae and could have confounding effects in many
studies given their wide usage and metabolic influences; selective
serotonin reuptake inhibitors (SSRIs)—these were negatively
associated with Turicibacteraceae abundance and should be
explored further given the proposed association between the gut
microbiota and depression19; and inhaled anticholinergic inhaled
medications—these were negatively associated with Ruminococ-
caceae and Peptococcaceae abundance and alpha diversity,
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suggesting that non-oral drug administration might indirectly
influence the gut microbiota.

Similar to the disease comparisons, our power to detect
associations varied by the number of medication users.

Comparing the number of nominal associations relative to the
number of users of each medication, we found, reassuringly, that
drugs previously associated with gut microbiota composition,
notably PPIs and antibiotics, had the greatest number of
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Fig. 3 Gut microbiota associations with common prescription medications in TwinsUK. a Counts of users and non-users of medications within the subset of
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shown. Data overlap in each case can be found in Supplementary Data 6. c The number of associations observed with gut microbiota markers for each
medication class. Colour represents the direction of the association and darker bars represent those significant after FDR adjustment. d The number of
users of each medication in the study plotted against the number of nominally significant associations observed (p < 0.05) for each
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associations (Fig. 3d). Other medications having a high number
of associations relative to the number of users were antic-
holinergic inhalers, paracetamol, SSRIs, and opioids.

Clustering microbiota traits and medications based on their
associations, we observed groups of diverse medications that
shared similar associations across multiple microbiota traits
(Supplementary Fig. 5). This likely reflects the common
microbiota associations shared across diseases. However, action
of the medications on microbial abundances cannot be
discounted. A recent study showed that a range of common
medications have a direct influence on the growth of human gut
commensals in vitro20. Further targeted research is warranted to
examine mechanisms driving the associations with these
medications and their subsequent consequences on host health.
Importantly, these medications should also be considered as
covariates or in screening of participants in future gut micro-
biome studies.

Overlap of disease and medication associations. There was high
correlation between diseases and their associated treatments, as
might be expected (Fig. 4a). For example, hypothyroidism with
levothyroxine and thyroxine, T2D with metformin, and atrial
fibrillation with coumarins. More widely, significant correlations
were observed between numerous disease–treatment pairings,
with several diseases correlating with multiple drugs and vice
versa. This reflects the complex network of co-morbidities and
co-prescriptions that complicates the identification of disease/
medication-specific associations.

To estimate the contribution of diseases and medications to
previously described observations, we explored the overlap of
gut microbiota associations between correlated disease–treatment
pairings (Fig. 4b and Supplementary Fig. 6). No disease–medication
pairing had a complete concordance of gut microbiota associations.

Metformin and T2D had both the highest correlation and overlap
in gut microbiota associations from the pairs considered, reflecting
the inability to delineate effects when treatment is uniform across
almost all cases. We also observed medication–disease pairs that
were less correlated but had a high overlap of gut microbiota
associations; these included antibiotic use and recurrent UTIs and
opioids with several diseases (T2D, recurrent UTIs, food allergies,
and osteoarthritis). In these instances of overlap with non-specific
treatments, medication use could be responsible for a large
proportion of the disease–microbiota associations. Conversely, we
also observed more highly correlated disease–medication pairings
that shared few gut microbiota associations; for instance, use of
steroid inhalers and asthma, and anticholinergic inhaler use and
chronic obstructive pulmonary disease. In these cases, separate
disease and medication effects might be more prevalent. Overall,
these results suggest that a complex mixture of disease- and
medication-specific effects are responsible for the observed gut
microbiota associations. Given the widespread use of several of the
medications classes considered and the high intercorrelation of both
diseases and medications, it will be important to consider non-
obvious disease–medication interactions in the interpretation and
design of future studies.

Discussion
The cross-sectional and multifaceted nature of this study inher-
ently limits our ability to delineate fully the observed associations
between diseases and their associated treatments. The use of self-
reported non-time-matched questionnaires for both the diseases
and medications also introduces additional noise to the dataset.
Hence, these results likely underestimate true effects. Further
exploration of specific associations presented here will require the
use of more targeted disease-specific, ideally longitudinal, studies
to minimise this error and maximise the power to detect effects.
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Fig. 4 Overlap of disease and treatment associations in the gut microbiota. a Heatmap of the correlation between disease status and medication use status
across the cohort. All non-significant correlations (FDR < 0.05) are coloured white. Rows and columns are ordered by hierarchical clustering of correlation
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These would also provide the ability to control for other covari-
ates that could influence both host health and the gut microbiota
such as diet21. Intervention studies or those using treatment-naive
controls will also be required to determine the specificity of
associations to diseases and/or treatments. These results must also
be considered within the context of a twin study. Host genetics
can influence the gut microbiota and concordance rates varied
across the diseases and medications considered (Supplementary
Data 1)22. However, we expect this effect to be minimal. A recent
study showed that host genetics have little influence on the gut
microbiota relative to other host factors23, and such effects would
be limited to specific taxa and diseases.

Despite the limitations of the present study, we were able to
identify gut microbiota associations that were applicable across
multiple diseases; described novel associations with several dis-
eases and medications; demonstrated a complex interconnectivity
of morbidities, medication use, and gut microbiota associations;
and described the relative association of different diseases and
prescription medications with the gut microbiota at the popula-
tion level. These results provide a valuable reference for future
studies of the role of gut microbiota in human health.

Methods
Disease and medication data. Self-reported disease data were collated from six
questionnaires completed by TwinsUK participants at various times between 2002
and 2015. Most diseases were scored from the BCQ and Q11A questionnaires,
which most twins had answered within 2 years of the faecal samples used to assess
the gut microbiota (Supplementary Data 1 and Supplementary Fig. 7). All ques-
tions asked if a doctor or health professional had ever diagnosed the individual
with the condition. Individuals were scored positive for a disease if they replied yes
to any questionnaire, negative if they only replied no, and unknown if data were
unavailable across all questionnaires. For constipation and cystitis, responses were
scored as (0) no, (1) rarely, (2) sometimes, (3) frequently, and (4) always; in these
two cases, 0–2 was considered negative and 3–4 positive. Hearing loss was classified
by either doctor diagnosis, self-diagnosis, or hearing aid usage. Diseases found in at
least 1% of the wider cohort were considered common and retained in analyses
(Supplementary Data 1). Correlation between diseases was assessed using the Phi
coefficient, the equivalent to Pearson’s for binary variables.

Self-reported prescription medication use was scored from a single
questionnaire. These data were cleaned to resolve spelling errors, followed by
manual classification of entries into drug classes and sub-classes by a health
professional. Individuals were assumed not to be taking a medication if they had
completed the questionnaire without listing it. Medications used by at least 1% of
the total cohort were considered for further analysis (Supplementary Data 1).
Correlation between the use of different medications was determined as for
diseases.

Ethics approval for the TwinsUK study was given by the NRES Committee
London-Westminster (REC Reference No.: EC04/015) and all participants
provided informed consent.

Gut microbiota profiling. This study used a larger set of gut microbiota profiles
that were generated alongside those described in a recent study by Goodrich
et al.24, which reported a smaller sample as it considered only complete twin
pairs. The processing of faecal samples has been described previously22. Briefly,
samples were collected by the individual at home and either bought to a clinical
visit or posted on ice to the clinical research department on ice where it was stored
at −80 °C. Frozen samples were shipped to Cornell University where DNA was
extracted, the V4 region of the 16S rRNA genes amplified, and amplicons
sequenced using a multiplexed approach on the Illumina MiSeq platform. Sample
reads were demultiplexed and paired-ends merged using a 200nt minimum
overlap.

De novo chimera removal was carried out on the 16S rRNA gene sequencing
per sample using UCHIME25. Remaining reads were collapsed to de novo
operational taxonomic units (OTUs) at 97% identity using SUMACLUST within
QIIME version 1.9.026,27. OTU taxonomy was assigned by aligning representative
sequences to the Greengenes v13_8 database using UCLUST in QIIME. Analyses
were adjusted for sequencing depth throughout by using sample read count as a
covariate. Taxonomic abundances were generated by collapsing OTU counts at
appropriate levels, followed by conversion to log-transformed relative abundances.
Three alpha diversity metrics, namely the Shannon index, phylogenetic diversity,
and raw OTU counts, were calculated using QIIME. Beta diversity was calculated
as both weighted and unweighted UniFrac metrics, and principal coordinate
analysis of the beta distances was carried out using the vegan package28. The first
six axes were chosen to represent beta diversity (Supplementary Fig. 8).

Heuristic selection of microbiota marker traits. Prior to analyses, we designed
an approach to select a minimal set of microbiota marker traits for consideration.
We focussed on a limited, pre-selected, set of taxonomic and diversity measures
and then further reduced the redundancy of these traits based on their inter-
correlation. We first restricted analyses to only consider 3 alpha diversity measures
and 12 beta diversity PCoA axes, as detailed above, and all collapsed bacterial
classes and families with complete taxonomic assignment. This produced an initial
set of 206 gut microbiota marker traits. Spearman's correlations were calculated
pairwise between these, and the correlations used to generate an adjacency matrix
where correlations of >0.8 represented an edge between traits. A graphical repre-
sentation of this matrix was then used for greedy selection of representative
markers. Nodes (microbiota traits) were sorted by degree and the one with highest
degree was then chosen as a final marker (selecting at random in the case of a tie).
The marker and all connected nodes were then removed from the network and the
process repeated until a final set of 68 marker traits were found such that each of
the discarded traits was correlated with at least one marker.

Disease and medication associations with gut microbiota markers. Gut
microbiota marker traits were modelled as responses in mixed effects models with
technical and biological confounders including: who extracted the DNA, how the
sample was collected, sequencing run, gender and family structure as random
effects, and sequencing depth, age, and BMI as fixed effects. The residuals of these
models were then used in disease association analyses. Individual logistic regres-
sions were carried out with disease status as the dependent variable and residuals of
microbial marker traits as independent variables. This was performed for all
combinations of disease and microbiota marker traits and p values were FDR
adjusted to account for multiple testing using the p.adjust command in R. This was
repeated for medication use.

Further analyses were carried out to identify disease associations using residuals
that were generated without including BMI, without including age, and without
including either as covariates to assess the influence of the covariates on results. We
did not consider antibiotic usage as a covariate as we chose to consider it alongside
the other common medications to provide an unbiased overview of disease and
medication associations across the cohort.

Clustering of microbiota marker traits by disease associations. Beta coeffi-
cients of associations between the diseases and microbiota traits were filtered to
retain only those from nominally significant associations (non-significant coeffi-
cients were considered 0). Microbiota markers and diseases without significant
associations were removed. Nominal association results were used as this was a
descriptive comparative analysis that did not describe association discovery (only
FDR significant associations are reported as novel individual associations) and
enabled clustering of the microbiota traits with less bias towards the more common
diseases while providing a more conservative approach than clustering based on all
beta coefficients regardless of association significance. Distance matrices between
diseases and between microbiota traits were derived from the beta coefficient
matrix using cosine similarity, a measure less influenced by the sparsity resulting
from the zeroes of non-significant associations. Complete-linkage hierarchical
clustering was used to cluster the diseases and microbiota marker traits from the
cosine distance matrices using the hclust function in R, and the results visualised as
a heatmap. For visualisation only, the beta coefficients were arcsine transformed to
increase the visual contrast between the small coefficients and zero values. The
significance of the microbiota marker clusters (p < 0.05) was determined by mul-
tiscale bootstrap clustering with 10,000 iterations using the pvclust package in R29.

Replication of non-specific genera. Genera defined as having non-specific
associations across multiple diseases (at least two) in the meta-analysis study by
Duvallet et al.2 were extracted from supplementary figure 3 of the manuscript for
replication across diseases in the present study. Abundances for non-specific genera
that were also observed in the TwinsUK data were adjusted for covariates including
age and BMI, and the residuals used in association analyses with all diseases as
previously described. Clustering of the genera and diseases and production of an
associated heatmap was then carried out as for the main analyses considering all
nominally significant associations.

Correlation between disease states and medication use. Correlation between
disease states and medication use was assessed pairwise using the Phi coefficient
with correlation p values adjusted for multiple testing using the FDR method.
Significant correlations (FDR < 0.05) were visualised as a heatmap with diseases
and medications ordered by hierarchical clustering of the correlation matrix. The
overlap of nominally significant (p < 0.05) gut microbiota associations between
pairs of disease states and medications was assessed using the Jaccard index.
Overlaps were compared only where diseases and medications were significantly
correlated and each had at least 10 nominally significant gut microbiota
associations.

Data availability. TwinsUK 16S rRNA gene sequencing data are available from the
BioProject database under accession code PRJEB13747.
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