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Supplementary Methods 

Aβ25-35 aggregation assays 

Synthetic Aβ25-35 (Bachem) was pre-treated overnight with 1,1,1,3,3,3-Hexafluoro-2-propanol 

(HFIP) and lyophilized. Prior to the aggregation assay Aβ25-35 stock was redissolved in 

CH3CN/H2O 65:35 (v/v) and two-fold diluted in 50mM phosphate buffer pH7.4 to a final 

concentration of 500 μM. ThT fluorescence intensity was monitored at 480nm upon excitation at 

440 nm using 50 μM of Aβ25-35 in 50 mM phosphate buffer, 0.1 mM EDTA and 10 μM of ThT, at 

increasing concentrations of S100B (50-200 μM) at 37°C under quiescent conditions. 

Dot Blotting using anti-amyloid antibodies  

Aβ42 aggregates obtained at the plateau phase of each aggregation kinetic curve were diluted four 

times and dotted in triplicates onto a PVDF membrane and probed with a 1000x dilution of the anti-

amyloid fibril OC (AB9234, Merck Millipore) and A11 (AB9234, Merck Millipore) antibodies 

according to manufacturer’s instructions. 

Analysis of S100B expression in Alzheimer’s Disease animal model  

For analysis of S100B in a transgenic Alzheimer animal model, 16-weeks-old male B6.Cg-

Tg(APPSwFlLon,PSEN1*M146L*L286V)6799Vas/Mmjax (5XFAD) mice were used. These mice 

overexpress the K670N/M671L (Swedish), I716V (Florida), and V717I (London) mutations in 

human APP (695), as well as M146L and L286V mutations in human PS1. Age-matched male 

littermate control animals served as a control. After anaesthetization, mice were transcardially 

perfused with PBS and subsequently with 4% paraformaldehyde and brains were embedded in 

paraffin. Sagittal sections of 3 μm were obtained from the brains and stained by 

immunohistochemistry as described previously with minor modifications. S100B was detected with 

an anti-S100B antibody (DAKO Ltd.); the antibody was added overnight at a dilution of 1:1000. 

Staining was performed with Anti-Rabbit-HRP and chromogenic substrate DAB and counterstained 

with hematoxylin. Stained sections were analysed using a conventional microscope (Olympus BX-

61) equipped with a colour camera (Olympus DP71). Staining of S100B was quantified with 

ImageJ.  
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fig. S1. Isothermal titration calorimetry analysis of the Aβ42/S100B interaction. The upper 

panel shows raw heat of binding and the lower panel the integrated data obtained after subtracting 

the heat of dilution from the buffer.  

  



 

 

 

 

 

 

fig. S2. BLI analysis of the Aβ42/S100B interaction. Aligned sensorgram traces showing Aβ42 

association and dissociation steps to immobilized S100B at pH 7.4 by Bio-layer interferometry. The 

obtained sensorgrams evidence an increase in the saturation response with increasing Aβ42 

concentrations in the absence (A) and in the presence (B) of 5mM CaCl2. The corresponding 

interaction kinetic parameters are presented in tables below the sensorgrams. The determined 

dissociation constants (KD) for the complex average to 1.3 and 0.43 μM in the absence and in the 

presence of CaCl2. 

  

 



 

 

fig. S3. CD analysis of the Aβ42/S100B interaction in the absence of CaCl2. Far UV-CD spectra 

of 4μM apo-S100B (Black) and after overnight incubation at 4ºC, in the presence of Aβ42 at 

increasing S100B:Aβ42 ratios: 0.25 (green), 0.5 (blue), 1 (orange) and 1.9 (red). 

 

 

 

 

fig. S4. SAXS analysis of the Aβ42/S100B complex. (A) Raw SAXS scattering data of S100B and 

S100B with Aβ42 in a 1:1 molar ratio, both in the presence of calcium. (A) Comparison of the pair 

distance distribution functions. 

 



 

fig. S5. Effect of apo-S100B over Aβ42 aggregation in a fragmentation-dominated regime. For 

these experiments Aβ42 aggregation proceeded in 50 mM HEPES pH 7.4, 0.5 mM EDTA, 5 mM 

TCEP at 37ºC, with 20s agitation at 86 rpm every 400s. (A) Aggregation of 5 µM Aβ42 (Black) 

proceeded at increasing concentrations of apo-S100B: 1µM (purple), 5µM (dark blue), 10 μM (dark 

green), 15 μM (red), 20 μM (orange), 25 μM (Light green), 50 μM (light orange), 100 μM (light 

blue ) and 150 μM (light purple). Plots represent averaged curves obtained from 3 independent 

replicates (n=3) for each of the tested conditions. (B) Plot of the Aβ42 aggregation half-times in the 

presence of 0.5 mM EDTA as a function of S100B. (C) Plot of the ThT intensity at the end-points 

of the aggregation of 5 µM Aβ42 in the presence of 0.5 mM EDTA at increasing concentrations of 

apo-S100B. (D) Log-Log plot of the half-time of the Aβ42 aggregation reaction as a function of 

initial Aβ42 monomer concentration in the absence and in the presence of excess S100B (15:1). 



 

fig. S6. Effect of Ca
2+

-S100B over Aβ42 aggregation in a fragmentation-dominated regime. For 

these experiments Aβ42 aggregation proceeded in 50 mM HEPES pH 7.4, 5 mM TCEP and 1.1 

mM CaCl2 at 37ºC, with 20s agitation at 86 rpm every 400s. (A) Aggregation of 10 µM Aβ42 

(Black) proceeded at increasing concentrations of apo-S100B: 2.5 µM (dark blue), 5 μM (dark 

green), 10 μM (red), 20 μM (orange), 30 μM (Light green), 40 μM (light blue), 50µM (gray); 60µM 

(light orange), 70 μM (light pink) and 80 µM (brown). Plots represent averaged curves obtained 

from 3 independent replicates (n=3) for each of the tested conditions. (B) Plot of the ThT intensity 

at the end-points of the aggregation of 10 µM Aβ42 in the in the presence of calcium at increasing 

concentrations of Ca2+-S100B. (C) Plot of the Aβ42 aggregation half-times in the presence of 

calcium as a function of Ca2+-S100B. Triangles represent averaged values obtained from 3 

independent replicates (n=3) for each of the tested conditions. 



 

fig. S7. S100B inhibits Aβ25–35 aggregation. Aggregation of 25 µM Aβ25-35 proceeded in 50 

mM HEPES pH 7.4 at 37ºC under quiescent conditions in the presence of increasing S100B: 25 µM 

(blue), 50 μM (yellow) and 100 μM (green). Plots represent averaged curves obtained from 3 

independent replicates (n=3) for each of the tested conditions.  

 

 

 

fig. S8. Dot blot analysis of Aβ42 aggregates formed in the presence of S100B. The 

conformational anti-amyloid fibril antibody (OC) was employed and the experiments were done in 

triplicate. 

  



 

 

fig. S9. TEM images of Aβ aggregates formed in the presence and absence of S100B. Samples 

were taken from end-points of the ThT aggregation kinetics plots. (A) 150 μM S100B with 1.1 mM 

CaCl2; (B) 10 μM Aβ42 with 1.1 mM CaCl2; and (C) 10 μM Aβ42 + 150 μM S100B and 1.1 mM 

CaCl2 .  

  



 

 

 

 

fig. S10. S100B accumulates at high levels around plaques in AD mice brains. Amyloid 

deposits form mainly in the cortex and hippocampus and the highest amyloid plaques load is 

observed in subfields of the latter brain area. Therefore we focused the analysis of expression and 

localization of S100B on the hippocampus. (A,B) The area around the granule cell layer at the 

dentate gyrus of the hippocampus is shown. In wild-type animals S100B levels are in general low. 

In several S100B+ cells are observed, which exhibit high levels of intracellular S100B. In contrast, 

5XFAD mice show massive staining for S100B right below the granule cell layer (GCL) around 

amyloid plaques, which appear as bright areas due to their strong refraction of light. The staining 

for S100B is not limited to cell bodies; rather covers large areas and indicates a diffuse distribution 

of S100B but also very high levels of the protein around the plaques. This staining pattern clearly 

shows that S100B is present at high concentrations in the tissue and suggests high levels of 

extracellular S100B. The most intensive staining for S100B is observed at the plaque border and 

some intensive patches are detected within the amyloid plaques (C). Quantification of the staining 

revealed that the area stained for S100B is about 30-fold larger in brain sections of 5XFAD animals 

compared to age-matched wild type animals (D).  
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