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ALLEN-CAHN EQUATION WITH STRONG IRREVERSIBILITY

GORO AKAGI AND MESSOUD EFENDIEV

Abstract. This paper is concerned with a fully nonlinear variant of the Allen-
Cahn equation with strong irreversibility, where each solution is constrained to
be non-decreasing in time. Main purposes of the paper are to prove the well-
posedness, smoothing effect and comparison principle, to provide an equivalent
reformulation of the equation as a parabolic obstacle problem and to reveal long-
time behaviors of solutions. More precisely, by deriving partial energy-dissipation
estimates, a global attractor is constructed in a metric setting, and it is also
proved that each solution u(x, t) converges to a solution of an elliptic obstacle
problem as t→ +∞.
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1. Introduction

Evolution equations along with strong irreversibility often appear in Damage
Mechanics to describe a unidirectional evolution of damaging phenomena. For in-
stance, damage accumulation and crack propagation exhibit strong irreversibility,
since the degree of damage never decreases spontaneously. Therefore, to describe
such phenomena as a phase field model, one may need to take into account the
strong irreversibility (or unidirectionality) of evolution. On the other hand, (spa-
tial) propagation of damage is described in terms of diffusion (type) processes.
However, these two effects, namely unidirectionality of evolution and diffusive na-
ture, often conflict each other. Such a conflict of two different effects may produce
significant features of damaging phenomena. A few ways have been proposed to
describe damaging phenomena in view of such two effects; above all, one often em-
ploys parabolic PDEs with the positive-part function ( · )+ := max{ · , 0} ≥ 0 (or a
negative-part one). The simplest example reads,

ut = (∆u)+ in Ω × (0,∞), (1.1)

which is a classical problem (see e.g. [40]) and also still revisited by many authors
(see e.g. [36, 37] and also [4, 45]). Further physical backgrounds of such irreversible
models will be briefly reviewed in §2. From view points of mathematical analysis,
equations such as (1.1) are classified as fully nonlinear PDEs, and hence, the lack
of gradient structure gives rise to difficulties and particularly prevents us to reveal
dissipation structure driven by the diffusion term. Indeed, in view of the irreversible
feature of the equation, dissipative behaviors of solutions may be partially inhibited.
On the other hand, dissipative behaviors may also occur like a classical diffusion
equation, unless they violate the strong irreversibility (see also Remark 4.2 below).

In this paper, we are concerned with the Allen-Cahn equation with strongly
irreversibility,

ut =
(

∆u−W ′(u)
)

+
in Ω × (0,∞), (1.2)

where W ′(u) = u3 − κu (with κ > 0) is the derivative of a double-well potential
W (u) simply given by

W (u) :=
1

4
u4 − κ

2
u2 (1.3)

and where ( · )+ stands for the positive-part function and Ω is a smooth bounded
domain of R

N . In order to fix an idea, we shall use the simplest form (1.3);



3

however, the most of arguments throughout the present paper can be extended to
more general double-well potential functions (on the other hand, the dimensional
restriction in (v) of Theorem 3.2 relies on the cubic growth). Equation (1.2) is a
strongly irreversible version of the celebrated Allen-Cahn equation,

ut = ∆u−W ′(u) in Ω × (0,∞), (1.4)

which has been well studied and is known for a phase-separation model driven by
the combination of double-well potential and diffusion term. Moreover, (1.2) also
appears in a special setting of a phase field model describing crack-propagation
(see Remark 2.1).

As is already pointed out, (1.2) is classified as a fully nonlinear parabolic equa-
tion, which is formulated in a general form ut = F (D2u) with a nonlinear func-
tion F and the Hessian matrix D2u. Here we shall reformulate the equation as a
generalized gradient flow (of subdifferential type), which is fitter to distributional
frameworks and energy techniques. By applying the (multivalued) inverse mapping
α( · ) of ( · )+ to both sides, (1.2) is reduced to

α(ut) ∋ ∆u−W ′(u) in Ω × (0,∞).

The inverse mapping α of ( · )+ can be decomposed as follows:

α(s) = s+ ∂I[0,∞)(s), ∂I[0,∞)(s) =







0 if s > 0

(−∞, 0] if s = 0

∅ if s < 0

for s ∈ R, (1.5)

where ∂I[0,∞) stands for the subdifferential of the indicator function I[0,∞) over the
half-line [0,+∞). In the present paper, we shall particularly consider the Cauchy-
Dirichlet problem for (1.2), which is hereafter denoted by (P) and equivalently
given as

ut + η − ∆u+W ′(u) = 0, η ∈ ∂I[0,∞)(ut) in Ω × (0,∞), (1.6)

u = 0 on ∂Ω × (0,∞), (1.7)

u = u0 in Ω. (1.8)

Furthermore, comparing (1.6) with (1.2), one can immediately find the relation,

η = −
(

∆u−W ′(u)
)

−
, (1.9)

where ( · )− stands for the negative part function, i.e., (s)− := max{−s, 0} ≥ 0.
To be precise, such a doubly-nonlinear reformulation including the relation (1.9) is
justified in a strong formulation, e.g., under the frame over L2(Ω), where equations
hold in a pointwise sense; on the other hand, in a weaker formulation such as H−1-
framework, it is more delicate to verify the equivalence of two equations as well as
(1.9).

Behaviors and properties of solutions to (P) can be imagined from the form of
equations (1.2) and (1.6). For instance, each solution u(x, t) of (P) behaves like that
of the classical Allen-Cahn equation (1.4) at (x, t) where ∆u −W ′(u) is positive.
Otherwise, u(x, t) never evolves. Therefore one may expect that smoothing effect
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and energy-dissipation partially occur, but not everywhere. On the other hand, it is
not easy to give a proof for such conjectures. Indeed, even existence and uniqueness
of solutions have not yet been fully studied due to the severe nonlinearity of (1.2)
and (1.6). Moreover, to the best of authors’ knowledge, such partial effects of
smoothing and energy-dissipation have never been studied so far. Different from
classical Allen-Cahn equations such as (1.4), due to the defect of the (full) energy-
dissipation structure, (P) has no absorbing set, and hence, no global attractor in any
Lp-spaces. Indeed, from the non-decrease of u(x, t) in time, i.e., u(x, t) ≥ u(x, s)
a.e. in Ω if t ≥ s, one cannot expect any dissipation estimates for the Lp-norm
‖u(·, t)‖Lp(Ω), provided that u0 ≥ 0. On the other hand, due to the presence of
a gradient structure lying inside of ( · )+ in (1.2), (P) shares a common Lyapunov
energy with (1.4),

E(w) :=
1

2

∫

Ω

|∇w(x)|2 dx +

∫

Ω

W (w(x)) dx,

which decreases along the evolution of solutions u = u(x, t) to (P) as well as of
those to (1.4). So one may expect that a partial energy-dissipation occurs (more
precisely, a (quantitative) dissipative estimate for E(u(t)) holds in a proper sense)
and it enables us to construct an absorbing set and a global attractor for (P) under
a non-standard setting. However, it is unclear in which setting one can find out
a partial energy-dissipation structure of (P) and establish quantitative dissipative
estimates enough for a construction of a global attractor.

As we shall see in §5, the Cauchy-Dirichlet problem (P) (equivalently, (1.2), (1.7),
(1.8)) can be equivalently rewritten as an obstacle problem of parabolic type,

u ≥ u0, ut − ∆u+ u3 − κu ≥ 0 in Ω × (0,∞),

(u− u0)
(
ut − ∆u+ u3 − κu

)
= 0 in Ω × (0,∞),

u|∂Ω = 0, u|t=0 = u0,

whose obstacle function coincides with the initial datum. Such parabolic obstacle
problems whose obstacle functions coincide with initial data are also studied in the
context of (American) option evaluation (see [43, 24] and references therein). This
reformulation will play a key role to discuss long-time behaviors of solutions as well
as to investigate qualitative properties, e.g., comparison principle and uniqueness
(or selection principle), of solutions to (P) under milder assumptions.

The strongly irreversible evolution also exhibits a stronger dependence on ini-
tial state, compared to a classical Allen-Cahn equation. For example, solutions
of (1.1) are constrained to be not less than initial data. Such a stronger initial-
state-dependence of evolution can be found out more explicitly in the parabolic
obstacle problem above. Indeed, the evolution law (= the obstacle problem) ex-
plicitly depends on initial data. Moreover, as will be illustrated below, due to the
strong irreversibility, one cannot expect the existence of global attractors in a usual
sense for dynamical systems (DS for short) generated by such strongly irreversible
equations. Furthermore, related issues of DS (e.g., convergence to equilibria and
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Lyapunov stability of equilibria) must be also affected by such a strong depen-
dence of DS on initial states. Therefore, it would be interesting to reveal the whole
picture of such a peculiar dynamics.

Main purposes of the present paper are to prove the well-posedness of (P) in
an L2-framework and to investigate qualitative and quantitative properties (e.g.,
comparison principle, smoothing effect, energy-dissipation estimates) and long-
time behaviors of solutions. In particular, we shall focus on how to extract an
energy-dissipation structure of (1.6) beyond the obstacle arising from the strong
irreversibility, and moreover, we shall discuss in which setting (e.g., phase space)
one can construct a global attractor for the DS generated by (P).

In Section 2, we briefly review several previous studies on strongly irreversible
evolution equations (such as (1.2) and (1.6)) arising from Damage Mechanics and
so on. Section 3 is devoted to discussing the well-posedness and a smoothing effect
for (P) and providing a proof for the uniqueness and continuous dependence of
solutions on initial data. In Section 4, we arrange energy inequalities which will be
used to prove a smoothing effect for (P) as well as to reveal long-time behaviors
of solutions. In this section, one may also find out energy-dissipation structures
concealed in the equation. Finally, we also give a sketch of proof for the smoothing
effect, that is, the existence of solutions to (P) for a wider class of initial data. A de-
tailed proof will be shown in Appendix A. In Section 5, we equivalently reformulate
(P) as a parabolic variational inequality of obstacle type. This fact also indicates
the lack of classical regularity of solutions to (P); indeed, it is well known that so-
lutions to (elliptic) obstacle problems are at most of class C1,1 (see, e.g., [23]). The
argument for justifying the reformulation is somewhat delicate and deeply related
to the construction of solutions to (P); so in this section, we shall give only a formal
argument, and a precise one will be given in Appendix §B. Moreover, in Section 6,
we shall discuss a comparison principle for the equation resulting from the reformu-
lation. Furthermore, we shall obtain a uniform estimate for solutions to (P), and
in particular, it will be verified that solutions of (P) enjoy a range-preserving prop-

erty, that is, if u0 takes a value within a certain range, then so does u(·, t) for any
t > 0. It is a fundamental requirement for phase-field models. Here the compari-
son principle is not directly proved for (P), since there arise some difficulties from
the double nonlinearity in the L2-framework (on the other hand, it can be directly
proved for (P) under some additional assumptions). Sections 7 and 8 are devoted
to constructing a global attractor for a DS generated by (P) in a proper sense. As
mentioned above, no global attractor exists in any Lp-spaces, because of the strong
irreversibility. Therefore, it is most crucial how to set up a phase set, which will
be given by a metric space without linear and convex structures. In Section 9, we
shall prove the convergence of each solution u(x, t) for (P) as t → ∞ and charac-
terize the limit as a solution of an elliptic variational inequality of obstacle type.
Also here, the reformulation exhibited in §5 will play a crucial role to characterize
equilibria. In Appendix §A, we particularly give a detailed proof for the existence
of solutions for (P) along with rigorous derivations of energy inequalities, which
will be derived in §4 with formal arguments. This part would be of independent
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interest in view of studies on nonlinear evolution equations as well. In particular, it
is noteworthy that a smoothing effect is proved for the doubly nonlinear evolution
equation (1.6), although there are only few results on smoothing effects for dou-
bly nonlinear evolution equations of the form A(u′) + B(u) = 0. In Appendix §B,
the reformulation of (P), which is formally discussed in §5, will be proved rigorously.

Notation. We denote by ‖ · ‖p, 1 ≤ p ≤ ∞ the Lp(Ω)-norm, that is, ‖f‖p :=
(
∫

Ω
|f(x)|p dx)1/p for p ∈ [1,∞) and ‖f‖∞ := ess supx∈Ω |f(x)|. Denote also by

(·, ·) the L2-inner product, i.e., (u, v) :=
∫

Ω
u(x)v(x) dx for u, v ∈ L2(Ω). For each

normed space X and T > 0, Cw([0, T ];X) denotes the space of weakly continuous
functions on [0, T ] with values in X . We also simply write u(t) instead of u(·, t),
which is regarded as a function from Ω to R, for each fixed t ≥ 0. Here and
henceforth, we use the same notation I[0,∞) for the indicator function over the
half-line [0,∞) as well as for that defined on L2(Ω) over the closed convex set
K := {u ∈ L2(Ω) : u ≥ 0 a.e. in Ω}, namely,

I[0,∞)(u) =

{

0 if u ∈ K,

∞ otherwise
for u ∈ L2(Ω),

if no confusion may arise. Moreover, let ∂I[0,∞) also denote the subdifferential
operator (precisely, ∂RI[0,∞)) in R (see (1.5)) as well as that (precisely, ∂L2I[0,∞)) in
L2(Ω) defined by

∂L2I[0,∞)(u) =
{
η ∈ L2(Ω) : (η, u− v) ≥ 0 for all v ∈ K

}
for u ∈ K.

Here, we note that these two notions of subdifferentials are equivalent each other
in the following sense: for u, η ∈ L2(Ω),

η ∈ ∂L2I[0,∞)(u) if and only if η(x) ∈ ∂RI[0,∞)(u(x)) a.e. in Ω

(see, e.g., [21, 22]). We denote by C a non-negative constant, which does not
depend on the elements of the corresponding space or set and may vary from line
to line.

2. Evolution equations with strong irreversibility

Evolution equations including the positive-part function such as (1.1) and (1.2)
have been studied in several papers and they play important roles particularly in
Damage Mechanics. In this section, we briefly review some of those models and
related nonlinear PDEs including the positive-part function.

2.1. Quasi-static brittle fracture models. Francfort and Marigo [34] proposed
a quasi-static evolution of brittle fractures in elastic bodies based on Griffith’s
criterion (see also [27] and [32]). Let Ω ⊂ R

3 be an elastic body and let Γn ⊂ Ω
be a crack at time tn. Then the crack Γn+1 ⊂ Ω and the displacement ~un+1 :
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Ω \ Γn+1 → R
3 at time tn+1 are obtained as a minimizer of the elastic energy,

F(~u,Γ) =

∫

Ω\Γ

µ|ε(~u)|2 + λ|tr ε(~u)|2 dx

︸ ︷︷ ︸

bulk energy

+ H2(Γ)
︸ ︷︷ ︸

surface energy

among Γ ⊂ Ω including Γn and ~u : Ω \ Γ → R
3 satisfying a boundary condition

~u|∂Ω = ~g associated with the external load ~g on (some part of) the boundary. Here
ε(~u) is the symmetric part of the gradient matrix of ~u, λ, µ > 0 and H2 denotes the
two-dimensional Hausdorff measure. Furthermore, concerning the mode III (i.e.,
anti-planar shear) crack growth, the displacement vector ~u = ~u(x) is reduced to a
scalar-valued function u = u(x) of class SBV (Ω) (see [33]). In order to perform
numerical analysis of the mode III crack propagation, F is often regularized as the
Ambrosio-Tortorelli energy (see [5, 6]),

Fε(u, z) =
µ

2

∫

Ω

(1 − z)2|∇u|2 dx+

∫

Ω

fu dx+

∫

Ω

γ(x)

( |∇z|2
2ε

+ εV (z)

)

dx,

where u and z stand for the deformation of the material and a phase parameter de-
scribing the degree of crack (e.g., z = 1 means “completely cracked” configuration),
respectively, V (·) is a potential function, ε > 0 is a relaxation parameter (which is
also related to the thickness of the diffuse interface) and µ is a positive constant and
γ(x) denotes the fracture toughness of the material. It is proved in [5, 6] that Fε

converges to the Francfort-Marigo energy in the sense of Γ-convergence as ε → 0.
Quasi-static dynamics of the approximated brittle fracture model is also studied
by introducing a constrained minimization scheme associated with Fε (see [35]).
Here we stress again that the evolution of the phase parameter z(x, t) is supposed
to be monotone (i.e., non-decreasing in time).

A couple of nonlinear evolution equations have been also proposed to describe
(or approximate) quasi-static evolution of brittle fractures. Above all, Kimura and
Takaishi [39, 48] developed a crack propagation model for numerical simulation.
Their model is derived as a double gradient flow (i.e., in both variables (u, z)) for
Fε(u, z):

α1ut = µdiv
(
(1 − z)2∇u

)
+ f(x, t) in Ω × (0,∞),

α2zt =

(

εdiv(γ(x)∇z) − γ(x)

ε
V ′(z) + µ|∇u|2(1 − z)

)

+

in Ω × (0,∞)

where α1, α2 are positive constants (related to numerical efficiency), together with
boundary and initial conditions (see also [11]). Here we remark that the second
equation of the system above includes the positive-part function in the right-hand
side, in order to reproduce the non-decreasing (in time) evolution of the phase
parameter z(x, t).

Remark 2.1. Equation (1.2) can be derived as an extreme case of the quasi-static
model for the regularized energy. More precisely, let V (·) be a double-well potential,
V (s) = s4/4 − κs2/2, to confine the phase parameter into an interval (see [49]).
Moreover, for (mathematical) simplicity, set γ(x) ≡ 1, f ≡ 0, ε = 0 and take
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α1 = 0 and α2 = 1 to the double-gradient flow model. Testing the first equation
by u and integrating by parts, we see that

(1 − z)2|∇u|2 = 0 for a.e. (x, t) ∈ Ω × (0,∞),

which means that either (1−z) or |∇u| is zero a.e. in Ω×(0,∞). Hence the system
is reduced to the single equation (1.2).

2.2. Damage accumulation models. Barenblatt and Prostokishin [15] proposed
a damage accumulation model, which derives the following fully nonlinear parabolic
PDE including the positive-part function:

ut = uα (uxx + κu)+ in (a, b) × (0,∞)

with parameters α > 1, κ > 0 to describe the evolution of damage factor, that is, an
internal variable used in the Kachanov theory [38]. In this model, the positive-part
function plays a role to impose the non-decreasing constraint on the evolution of
the damage factor, since the time derivative of u(x, t) is non-negative. Their model
was mathematically studied by Bertsch and Bisegna in [16], where the solvability
of the initial-boundary value problem is proved in a classical framework and long-
time behaviors of solutions are also investigated. In particular, it is proved that
the regional blow-up phenomena occur (i.e., the blow-up set of a solution is a
subinterval of (a, b); however, it is neither a point set nor the whole of the interval)
under suitable assumptions on λ, α and the interval (a, b) (see also [2]).

2.3. Irreversible evolution equations governed by subdifferentials. As is
explained in §1, the strongly irreversible evolution can be also described in terms of
the subdifferential operator ∂I[0,∞) of the indicator function over the half-line. In
what follows, we shall recall strongly irreversible evolution equations formulated in
such a way. Let us start with a rate-independent unidirectional flow along with the
Ambrosio-Tortorelli energy (see Knees, Rossi and Zanini [41, 42] and references
therein, e.g., [30]). In [41, 42], they discussed the existence of solutions to the
Cauchy problem for the rate-independent evolution equation,

∂R(zt) + DzFε(u, z) ∋ 0, 0 < t < T, u = arg min
v

Fε(v, z),

where Dz denotes a functional derivative (e.g., Fréchet derivative) of Fε with re-
spect to the second variable z, with a 1-positively homogeneous and unidirectional
dissipation functional R given by

R(η) =

∫

Ω

κ|η(x)| dx + I[0,∞)(η(x)) for η ∈ L1(Ω)

for some κ > 0 (more precisely, in [41], a modified Ambrosio-Tortorelli energy is
treated).

Strongly irreversible evolution equations also appear in other topics. For in-
stance, the following irreversible phase transition model is proposed by Frémond
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and studied in [18, 19],

θt − θχt − ∆θ = χ2
t in Ω × (0,∞),

χt + ∂I[0,∞)(χt) − ∆χ + β(χ) ∋ θ − θc in Ω × (0,∞),

where θ and χ denote the absolute temperature (θc is a transition temperature) and
a phase parameter, respectively, and moreover, β is a maximal monotone graph in
R

2. Due to the presence of the subdifferential term ∂I[0,∞)(χt), the evolution of
χ is constrained to be non-decreasing. We refer the reader to [46] and references
therein for mathematical analysis of the model. Moreover, Aso and Kenmochi [9]
(see also [8]) studied the existence of solutions for a quasivariational evolution
inequality of reaction-diffusion type such as

θt − ∆θ + k(θ, w) = h(t, x) in Ω × (0,∞),

wt + ∂I[g(θ),∞)(wt) − ∆w + ℓ(θ, w) ∋ q(t, x) in Ω × (0,∞),

where k and ℓ are Lipschitz continuous functions in both variables, g is a smooth
nonnegative function and h and q are given functions in a suitable class. These
systems are also reduced to (1.2) in an isothermal setting, i.e., θ = constant (with
suitable assumptions). Furthermore, we also refer the reader to references [17, 47]
and references therein.

Equations reviewed in this section have been studied mostly in view of well-
posedness. On the other hand, qualitative and quantitative analysis on behaviors
of solutions is still left to be open, since the equations are somewhat complicated
and also have several different complexities. So the study on intrinsic phenomena
arising from the strong irreversibility have not yet been fully pursued. In the present
paper, we shall treat a simpler equation, (1.2), but investigate various properties
and behaviors of solutions as well as the well-posedness of (P) in order to find out
intrinsic features of parabolic PDEs with the positive-part function.

3. Existence of L2 solutions

The L2(Ω)-solvability of (P) (= {(1.2), (1.7), (1.8)}) can be ensured for smooth
data by applying a general theory due to Barbu [14] and Arai [7]; more precisely, for
any u0 ∈ H2(Ω)∩H1

0 (Ω)∩L6(Ω), Problem (P) possesses at least one L2(Ω)-solution
u = u(x, t) defined by

Definition 3.1. A function u ∈ C([0,∞);L2(Ω)) is said to be a solution (or an

L2(Ω)-solution) of (P), if the following conditions are all satisfied :

(i) u belongs to W 1,2(δ, T ;L2(Ω)), C([δ, T ];H1
0 (Ω) ∩ L4(Ω)), L2(δ, T ;H2(Ω))

and L6(δ, T ;L6(Ω)) for any 0 < δ < T <∞,

(ii) there exists η ∈ L∞(0,∞;L2(Ω)) such that

ut + η − ∆u+ u3 − κu = 0, η ∈ ∂I[0,∞)(ut) for a.e. (x, t) ∈ Ω × (0,∞) (3.1)

and η = −
(
∆u − u3 + κu

)

−
for a.e. (x, t) ∈ Ω × (0,∞). Hence u also

solves (1.2) a.e. in Ω × (0,∞).
(iii) u(·, 0) = u0 a.e. in Ω.
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On the other hand, the uniqueness of solutions does not follow from general
theories. Furthermore, by focusing on specific structures of the equation (1.6), we
shall improve the result above on the L2(Ω)-solvability. More precisely, we shall
prove a smoothing effect for (P), that is, even if initial data belong to a closure of
a set D (of more regular functions), corresponding solutions belong to the set D
instantly. To state more details, let us introduce a set

Dr :=
{

u ∈ H2(Ω) ∩H1
0 (Ω) ∩ L6(Ω) : ‖(∆u− u3 + κu)−‖22 ≤ r

}

for each r > 0. Here we stress that Dr is an unbounded set. Indeed, let z ∈
C2(Ω)∩C(Ω) be the negative solution of the classical elliptic Allen-Cahn equation,

− ∆z + z3 − κz = 0 in Ω, z = 0 on ∂Ω. (3.2)

Then any multiple w = cz of z satisfies ∆w−w3 +κw ≥ 0 a.e. in Ω, provided that
c ≥ 1. Then w belongs to Dr, and therefore, Dr is unbounded.

Now, let us state a theorem on the well-posedness and smoothing effect.

Theorem 3.2 (Well-posedness and smoothing effect). Let r > 0 be arbitrarily

fixed.

(i) Let u0 belong to the closure Dr
L2

of Dr in L2(Ω). Then (P) admits a

solution u = u(x, t) satisfying

u ∈ L2(0, T ;H1
0(Ω)) ∩ L4(0, T ;L4(Ω)),

t1/2ut ∈ L2(0, T ;L2(Ω)), tut ∈ L2(0, T ;H1
0(Ω)),

t1/2u ∈ L∞(0, T ;H1
0(Ω)) ∩ L2(0, T ;H2(Ω)),

t1/4u ∈ L∞(0, T ;L4(Ω)), t1/6u ∈ L6(0, T ;L6(Ω)),

t1/3u ∈ L∞(0, T ;L6(Ω)), tu ∈ L∞(0, T ;H2(Ω)),

u ∈ Cw((0, T ];H2(Ω) ∩ L6(Ω)) ∩ C((0, T ];H1
0(Ω) ∩ L4(Ω)),

u(t) ∈ Dr for all t ∈ (0, T ]

for any 0 < T <∞.

(ii) If u0 belongs to the closure Dr
H1

0
∩L4

of Dr in H
1
0 (Ω)∩L4(Ω), then it further

holds that

u ∈ W 1,2(0, T ;L2(Ω)) ∩ L2(0, T ;H2(Ω)) ∩ L6(0, T ;L6(Ω)),

u ∈ C([0, T ];H1
0(Ω) ∩ L4(Ω)), t1/2ut ∈ L2(0, T ;H1

0(Ω)),

t1/2u ∈ L∞(0, T ;H2(Ω)), t1/6u ∈ L∞(0, T ;L6(Ω))

for any 0 < T <∞.

(iii) If u0 ∈ H2(Ω) ∩ H1
0 (Ω) ∩ L6(Ω), then u ∈ Cw([0, T ];H2(Ω) ∩ L6(Ω)) and

ut ∈ L2(0, T ;H1
0(Ω)) for any 0 < T <∞.

(iv) Let T > 0 be fixed. For N ≤ 3, L2(Ω)-solutions u belonging to the class

C([0, T ];H1
0(Ω)) (3.3)
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are uniquely determined by initial data u0 ∈ H1
0 (Ω) and they continu-

ously depend on initial data u0 in the following sense: let ui be the unique

solution of (P) for the initial data u0,i ∈ H1
0 (Ω) (for i = 1, 2) and set

w := u1 − u2. Then there exists a constant C > 0 which depends only on

supt∈(0,T ) ‖∇ui(t)‖2 (i = 1, 2) such that

‖w(t)‖22 + ‖∇w(t)‖22 ≤
(
‖w(0)‖22 + ‖∇w(0)‖22

)
eCt (3.4)

for all t ∈ [0, T ].
(v) For N ≤ 4, L2(Ω)-solutions belonging to (3.3) and

L2(0, T ;H2(Ω)) ∩ L6(0, T ;L6(Ω)) (3.5)

are uniquely determined by initial data u0 ∈ H1
0 (Ω) and (3.4) holds true

with a constant C depending only on ‖ui‖L2(0,T ;H2(Ω)) and ‖ui‖L6(0,T ;L6(Ω))

(i = 1, 2).
(vi) Furthermore, for general N , L2(Ω)-solutions belonging to L∞(Ω × (0, T ))

as well as (3.3) are uniquely determined by initial data u0 ∈ H1
0 (Ω) and

they satisfy (3.4) with a constant C which depends only on uniform bounds

‖ui‖L∞(Ω×(0,T )) of solutions ui (i = 1, 2).

Remark 3.3 (Invariance of the set Dr). Thanks to (i), the set Dr (and its closures)
turns out to be invariant under the evolution generated by (P) (see also (4.6) below).
Hence Dr will play a role of a phase space in order to investigate the dynamics of
solutions to (P) (see §7 and §8).

Remark 3.4 (Difference between Dr and its closure). To observe how smoothing
effect occurs (in Theorem 3.2), let us consider the following two examples (with
N = 1, Ω = (−1, 1) and κ = 1 for simplicity):

(i) Set u0(x) = |x|−1 ∈ H1
0 (−1, 1)\H2(−1, 1). Then define u0,ε ∈ W 2,∞(−1, 1)

by

u0,ε(x) =

{

|x| − 1 if |x| > ε,
1
ε
x2

2
+ ε

2
− 1 if |x| ≤ ε

for ε > 0. Then one observes that

u′′0,ε − u30,ε + u0,ε =







−u30,ε + u0,ε < 0 if |x| > ε,
1
ε
−u30,ε + u0,ε
︸ ︷︷ ︸

close to zero

> 0 if |x| ≤ ε

for ε > 0 small enough. Therefore

‖(u′′0,ε − u30,ε + u0,ε)−‖22 =

∫

|x|>ε

(u30,ε − u0,ε)
2 dx ≤ ‖u30 − u0‖22 =: r < +∞.

Moreover, one can check that u0,ε → u0 strongly in H1
0 (−1, 1). Hence u0

belongs to the closure of Dr in H1
0 (−1, 1). However, u0 does not belong

to Dr (⊂ H2(−1, 1)). On the other hand, by Theorem 3.2, u(x, t) belongs
to (at least) H2(−1, 1) ⊂ C1+α([−1, 1]) at any t > 0. Therefore the sharp
edge of u0(x) at x = 0 instantly vanishes.
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(ii) Set u0(x) ≡ −1 ∈ L2(−1, 1)\H1
0 (−1, 1) (hence u0 violates the homogeneous

Dirichlet condition) and define approximated data by

u0,ε(x) =

{

−1 if |x| < 1 − ε,

−1 + 1
ε2

(|x| − 1 + ε)2 if |x| ≥ 1 − ε.

Then u0,ε ∈ H2(−1, 1) ∩H1
0 (−1, 1) and u0,ε → u0 strongly in L2(−1, 1) as

ε→ 0. Moreover, we observe that

u′′0,ε − u30,ε + u0,ε =

{

0 if |x| < 1 − ε,
2
ε2
− u30,ε + u0,ε > 0 if |x| ≥ 1 − ε,

which yields ‖(u′′0,ε − u30,ε + u0,ε)−‖22 = 0. Hence u0 belongs to the closure

of Dr in L2(−1, 1) (but u0 6∈ Dr). Since the solution to (P) satisfies the
boundary condition u(±1, t) = 0 for any t > 0 by Theorem 3.2, the values
of u(±1, t) jump to 0 from −1 at t = 0.

Proof of (iv)–(vi). Before starting a proof for (iv), we remark that the uniqueness
of solutions for (P) is not ensured by the abstract results (e.g., Arai [7], Colli-
Visintin [26], Colli [25], Visintin [50]). For instance, in [26, 25], the uniqueness is
proved for (abstract) doubly nonlinear equations, A(ut) +B(u) ∋ 0, provided that
either A or B is linear.

Fix δ > 0 arbitrarily. Let ui (i = 1, 2) be two solutions for (P) belonging to (3.3)
with initial data u0,i ∈ H1

0 (Ω) (i = 1, 2) and set w := u1 − u2. Then

wt + η1 − η2 − ∆w + u31 − u32 = κw,

where ηi is a section of ∂I[0,∞)(∂tui) for i = 1, 2. Test both sides by wt and employ
the monotonicity of ∂I[0,∞) to find that

‖wt‖22+
1

2

d

dt
‖∇w‖22 ≤

κ

2

d

dt
‖w‖22−

(
u31 − u32, wt

)
≤ κ

2

d

dt
‖w‖22+C‖u31−u32‖22+

1

2
‖wt‖22

for a.e. t ∈ (δ, T ) (see Definition 3.1). Here note that, for any ε > 0, there exists a
constant Cε > 0 such that

1

2

d

dt
‖w‖22 = (wt, w) ≤ ε‖wt‖22 + Cε‖w‖22.

Therefore choosing ε > 0 small enough, one obtains

α
d

dt
‖w‖22 +

1

2

d

dt
‖∇w‖22 ≤ Cε‖w‖22 + C‖u31 − u32‖22 (3.6)

for some α > 0. In case N ≤ 3, thanks to the Mean-Value Theorem and Sobolev’s
embedding H1

0 (Ω) →֒ L6(Ω), it follows that

‖u31 − u32‖22 ≤ C
(
‖∇u1‖42 + ‖∇u2‖42

)
‖∇w‖22. (3.7)

Thus Gronwall’s inequality yields

‖w(t)‖22 + ‖∇w(t)‖22 ≤
(
‖w(δ)‖22 + ‖∇w(δ)‖22

)
eC0(t−δ) for all t ≥ δ, (3.8)

where C0 is a constant depending only on supt∈(0,T ) ‖∇ui(t)‖2. From the fact that

ui ∈ C([0, T ];H1
0(Ω)), one can pass to the limit as δ → 0+ and obtain (3.8) with
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δ = 0. If w(0) = 0, then we conclude that w ≡ 0, i.e., u1 ≡ u2. This completes a
proof of (iv).

Concerning (v), for any 3 ≤ N ≤ 5 (then H2(Ω) ⊂ L2N (Ω)), by Gagliardo-
Nirenberg’s inequality we infer that

‖u31 − u32‖22 ≤ C
(
‖u1‖42N + ‖u2‖42N

)
‖∇w‖22

≤ C
(

‖u1‖4θH2(Ω)‖u1‖
4(1−θ)
6 + ‖u2‖4θH2(Ω)‖u2‖

4(1−θ)
6

)

‖∇w‖22,
where θ is given by

1

2N
= θ

(
1

2
− 2

N

)

+
1 − θ

6
.

Furthermore, assuming N ≤ 4, one finds that

2θ +
2(1 − θ)

3
≤ 1,

which yields

‖ui‖4θH2(Ω)‖ui‖
4(1−θ)
6 ∈ L1(0, T )

for i = 1, 2. Therefore by Gronwall’s inequality, we can obtain the desired conclu-
sion.

To prove (vi), the argument above can be also generalized for general dimension
N by assuming the boundedness of solutions, i.e., ui ∈ L∞(Q) (i = 1, 2) with
Q = Ω × (0, T ), and by replacing (3.7) by

‖u31 − u32‖22 ≤ C
(
‖u1‖4∞ + ‖u2‖4∞

)
‖w‖22.

Therefore for general N , bounded solutions are uniquely determined by initial data
and a similar inequality to (3.8) holds with a constant C0 depending on ‖ui‖L∞(Q).
Thus (vi) is proved. �

Before giving a (sketch of) proof for the existence part (i)–(iii) of Theorem 3.2,
we shall (formally) derive energy estimates in the next section.

4. Energy inequalities and partial energy-dissipation estimates

In this section, we first collect key energy inequalities, which will play a crucial
role later; in particular, we shall derive partial energy-dissipation estimates and
apply them to construct a global attractor in a peculiar setting (cf. as we mentioned
in §1, due to the strong irreversibility, no absorbing set and no global attractor exist
in any Lp-spaces). In order to derive (some of) them in an intuitive way, we here
carry out formal arguments only. Secondly, we shall give a sketch of proof for the
existence part of Theorem 3.2. In Appendix A, we shall give detailed proofs for
the existence part and energy inequalities.

Energy Inequality 1. Test (1.6) by ut and employ the relation (η, ut) = 0 for
any η ∈ ∂I[0,∞)(ut) to see that

‖ut‖22 +
d

dt
E(u(t)) = 0 a.e. in (0,∞), (4.1)
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where E : H1
0 (Ω) ∩ L4(Ω) → R is an energy functional given by

E(w) :=
1

2
‖∇w‖22 +

1

4
‖w‖44 −

κ

2
‖w‖22 for w ∈ H1

0 (Ω) ∩ L4(Ω).

Since E is coercive, one can observe that
∫ T

0

‖ut‖22 dt+ sup
t∈[0,T ]

(
‖∇u‖22 + ‖u‖44

)
≤ C (E(u0) + 1) (4.2)

for any T > 0. Hence for u0 ∈ H1
0 (Ω) ∩ L4(Ω), (if a solution exists, then) one can

expect that u ∈ W 1,2(0, T ;L2(Ω))∩L∞(0, T ;H1
0(Ω)∩L4(Ω)). Multiplying (4.1) by

t, we also have

t‖ut‖22 +
d

dt

(
tE(u(t))

)
= E(u(t)) a.e. in (0,∞). (4.3)

Energy Inequality 2. The following is a formal computation. Differentiate both
sides of (1.6) in t and set v = ut. Then we have

vt + ηt − ∆v + 3u2v = κv in Ω × (0,∞), (4.4)

where η is a section of ∂I[0,∞)(v). Test both sides by v. It follows that

1

2

d

dt
‖v‖22 +

d

dt
I∗[0,∞)(η) + ‖∇v‖22 + 3

∫

Ω

u2v2 dx = κ‖v‖22,

where I∗[0,∞) stands for the convex conjugate of I[0,∞), i.e.,

I∗[0,∞)(σ) = sup
s∈R

(
sσ − I[0,∞)(s)

)
= sup

s≥0
sσ = I(−∞,0](σ).

Here we used the fact (ηt, v) = (d/dt)I∗[0,∞)(η) by the relation v ∈ ∂I∗[0,∞)(η).

Moreover, we note that I∗[0,∞)(η) = 0.

Now, for each potential function V = V (x), let us denote by λΩ(V ) the first
eigenvalue of the Schrödinger operator −∆ + V (x) over Ω equipped with the ho-
mogeneous Dirichlet boundary condition. If u0 ≥ 0, then one observes that

‖∇v‖22 + 3

∫

Ω

u2v2 dx ≥ ‖∇v‖22 + 3

∫

Ω

u20v
2 dx ≥ λΩ(3u20)‖v‖22.

Hence
1

2

d

dt
‖v‖22 +

(
λΩ(3u20) − κ

)
‖v‖22 ≤ 0.

In addition, assuming λΩ(3u20) > κ, one can obtain the exponential decay estimate
for v = ut,

‖v(t)‖22 ≤ ‖v0‖22 exp
(
−2(λΩ(3u20) − κ)t

)
(4.5)

for all t > 0. Here we note that v0 corresponds to (∆u0 − u30 + κu0)+. Exponential
decay estimate (4.5) will be used in Corollary 9.3 (see also Remark 9.4 in §9).
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Energy Inequality 3. The following argument will play a key role to overcome
difficulties arsing from the doubly nonlinearity of (1.6) and enable us to establish
partial energy-dissipation estimates. Formally test (4.4) by η to find that

d

dt
I[0,∞)(v) +

1

2

d

dt
‖η‖22 + (−∆v, η) + 3

∫

Ω

u2vη dx = κ(v, η).

Note that vη ≡ 0, I[0,∞)(v) = 0 a.e. in Ω× (0,∞) and (−∆v, η) ≥ 0. It follows that

1

2

d

dt
‖η‖22 ≤ 0,

which implies that

‖η(t)‖22 ≤ ‖η(s)‖22 for a.e. 0 ≤ s ≤ t <∞. (4.6)

Here we recall that η(0) = η0 := −(∆u0 − u30 + κu0)−. Likewise, multiplying (4.4)
by |η|p−2η ∈ ∂I[0,∞)(v), one can also derive

‖η(t)‖p ≤ ‖η(s)‖p for a.e. 0 ≤ s ≤ t <∞,

when η(0) ∈ Lp(Ω), for any p ∈ (1,∞), and hence,

‖η(t)‖∞ ≤ ‖η(s)‖∞ for a.e. 0 ≤ s ≤ t <∞,

provided that η(0) ∈ L∞(Ω).

Energy Inequality 4. Testing (1.6) by u, we have

1

2

d

dt
‖u‖22 + ‖∇u‖22 + ‖u‖44 = κ‖u‖22 − (η, u) ≤ κ‖u‖22 + ‖η‖2‖u‖2.

By Hölder and Young inequalities and (4.6) with s = 0 and η(0) = η0, we further
derive that

1

2

d

dt
‖u‖22 + ‖∇u‖22 +

1

2
‖u‖44 ≤ C1(1 + ‖η0‖4/32 ) (4.7)

for some constant C1 > 0 depending only on |Ω| and κ. Integration of both sides
over (0, T ) yields

1

2
‖u(T )‖22 +

∫ T

0

(

‖∇u‖22 +
1

2
‖u‖44

)

dt ≤ C1T (1 + ‖η0‖4/32 ) +
1

2
‖u0‖22 (4.8)

for any T > 0. Thus one expects that u ∈ L2(0, T ;H1
0(Ω)) ∩ L4(0, T ;L4(Ω)) for

u0 ∈ Dr
L2

(then ‖η0‖2 ≤ r <∞). Moreover, it follows from (4.3) and (4.8) that
∫ T

0

t‖ut‖22 dt + TE(u(T )) ≤ C1

2
T
(

1 + ‖η0‖4/32

)

+
1

4
‖u0‖22 (4.9)

for any T > 0. It also implies that t1/2ut ∈ L2(0, T ;L2(Ω)), t1/2u ∈ L∞(0, T ;H1
0(Ω))

and t1/4u ∈ L∞(0, T ;L4(Ω)) whenever u0 ∈ Dr
L2

.

We next derive a partial energy-dissipation estimate. Assume that ‖η0‖22 ≤ r for
some r > 0. Then combining (4.7) with (4.1), one finds that

‖ut‖22 +
d

dt
φ(t) + 2κφ(t) ≤ κC1(1 + r2/3) =: Cr, (4.10)
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where φ : H1
0 (Ω) ∩ L4(Ω) → R is a functional given by

φ(t) :=
1

2
‖∇u(t)‖22 +

1

4
‖u(t)‖44.

Therefore we conclude that

φ(t) ≤ Cr

2κ
+ e−2κt

[

φ(0) − Cr

2κ

]

for all t ≥ 0, (4.11)

which will play an important role to construct an absorbing set in §7. Here it

is noteworthy that Cr is independent of u0 belonging to Dr
H1

0∩L
4

; however, Cr

cannot be chosen uniformly for all r > 0. Hence (4.11) can be regarded as a partial

energy-dissipation estimate.

Energy Inequality 5. Test (1.6) by −∆u + u3 − κu to get

d

dt
E(u(t)) − ‖η‖22 + ‖ − ∆u+ u3 − κu‖22 = 0.

Here we used the fact that η = −(∆u−u3+κu)−. Combining this with (4.6) where
s = 0 and η(0) = η0, one has

d

dt
E(u(t)) + ‖ − ∆u+ u3 − κu‖22 ≤ ‖η0‖22 a.e. in (0,∞), (4.12)

which implies

E(u(T )) +

∫ T

0

‖ − ∆u+ u3 − κu‖22 dt ≤ T‖η0‖22 + E(u0) (4.13)

for any T > 0. Thus we infer that u ∈ L2(0, T ;H2(Ω)) ∩ L6(0, T ;L6(Ω)), provided

that u0 ∈ Dr
H1

0
∩L4

. Furthermore, it also follows from (4.12) that

TE(u(T )) +

∫ T

0

t‖ − ∆u+ u3 − κu‖22 dt ≤
∫ T

0

E(u(t)) dt +
T 2

2
‖η0‖22, (4.14)

which along with (4.8) implies t1/2u ∈ L2(0, T ;H2(Ω)) and t1/6u ∈ L6(0, T ;L6(Ω))

if u0 ∈ Dr
L2

.

Energy Inequality 6. The following argument is also formal; indeed, the differ-
entiability (in t) of −∆u+ u3 − κu is not supposed in Definition 3.1. Test (1.6) by
(−∆u+ u3 − κu)t. Then we observe that

(
ut, (−∆u+ u3 − κu)t

)
= ‖∇ut‖22 + 3

∫

Ω

u2u2t dx− κ‖ut‖22

and
(
η, (−∆u+ u3 − κu)t

)
≥ 0.

Here we used that fact that (η,−∆ut) ≥ 0 and ηut ≡ 0 a.e. in Ω×(0,∞). Therefore

‖∇ut‖22 + 3

∫

Ω

u2u2t dx +
1

2

d

dt
‖∆u− u3 + κu‖22 ≤ κ‖ut‖22.
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Furthermore, by (4.1),

‖∇ut‖22 + 3

∫

Ω

u2u2t dx+
1

2

d

dt
‖∆u− u3 + κu‖22 ≤ κ‖ut‖22 = −κ d

dt
E(u(t)),

which can be rewritten as

‖∇ut‖22 + 3

∫

Ω

u2u2t dx+
d

dt

[
1

2
‖∆u− u3 + κu‖22 + κE(u(t))

]

≤ 0 (4.15)

for a.e. t > 0. In particular,

∫ T

0

‖∇ut‖22 dt+ 3

∫ T

0

∫

Ω

u2u2t dx dt+
1

2
‖∆u(T ) − u3(T ) + κu(T )‖22

+κE(u(T )) ≤ 1

2
‖∆u0 − u30 + κu0‖22 + κE(u0) (4.16)

for all T > 0. Hence u ∈ L∞(0, T ;H2(Ω) ∩ L6(Ω)) and ut ∈ L2(0, T ;H1(Ω)) if
u0 ∈ H2(Ω) ∩H1

0 (Ω) ∩ L6(Ω).

On the other hand, multiply (4.15) by t and compute as follows:

t‖∇ut‖22 + 3t

∫

Ω

u2u2t dx +
d

dt

(

t

[
1

2
‖∆u− u3 + κu‖22 + κE(u(t))

])

≤ 1

2
‖∆u− u3 + κu‖22 + κE(u(t)). (4.17)

Integrating both sides over (0, T ), we conclude that

∫ T

0

t‖∇ut‖22 dt+ 3

∫ T

0

t

(∫

Ω

u2u2t dx

)

dt

+ T

[
1

2
‖∆u(T ) − u3(T ) + κu(T )‖22 + κE(u(T ))

]

≤ 1

2

∫ T

0

‖∆u− u3 + κu‖22 dt+ κ

∫ T

0

E(u(t)) dt

for all T > 0. Combining it with (4.13), one can obtain an estimate exhibiting a
smoothing effect,

∫ T

0

t‖∇ut‖22 dt + 3

∫ T

0

t

(∫

Ω

u2u2t dx

)

dt

+ T

[
1

2
‖∆u(T ) − u3(T ) + κu(T )‖22 + κE(u(T ))

]

≤ 1

2

(
T‖η0‖22 + E(u0) − E(u(T ))

)
+ κ

∫ T

0

E(u(t)) dt (4.18)

for all T > 0. Hence one expects that t1/2ut ∈ L2(0, T ;H1(Ω)), t1/2u ∈ L∞(0, T ;H2(Ω))

and t1/6u ∈ L∞(0, T ;L6(Ω)) for u0 ∈ Dr
H1

0∩L
4

. Moreover, multiply (4.17) by t
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again. Then

t2‖∇ut‖22 + 3t2
∫

Ω

u2u2t dx+
d

dt

(

t2
[

1

2
‖∆u− u3 + κu‖22 + κE(u(t))

])

≤ 2t

(
1

2
‖∆u− u3 + κu‖22 + κE(u(t))

)

.

Integrate both sides over (0, T ). Then it follows that
∫ T

0

t2‖∇ut‖22 dt + 3

∫ T

0

t2
(∫

Ω

u2u2t dx

)

dt

+ T 2

[
1

2
‖∆u(T ) − u3(T ) + κu(T )‖22 + κE(u(T ))

]

≤ 2

∫ T

0

t

(
1

2
‖∆u− u3 + κu‖22 + κE(u(t))

)

dt

(4.14)

≤
∫ T

0

E(u(t)) dt+ 2κ

∫ T

0

tE(u(t)) dt +
T 2

2
‖η0‖22 +

κT

2
‖u(T )‖22. (4.19)

By virtue of (4.8), we may obtain tut ∈ L2(0, T ;H1(Ω)), tu ∈ L∞(0, T ;H2(Ω)) and

t1/3u ∈ L∞(0, T ;L6(Ω)) for u0 ∈ Dr
L2

.

Let us also derive another partial energy-dissipation estimate. Inequality (4.18)
yields

1

2
‖∆u(T ) − u3(T ) + κu(T )‖22 + κE(u(T ))

≤ 1

2

(

‖η0‖22 +
1

T
E(u0) −

1

T
E(u(T ))

)

+
κ

T

∫ T

0

E(u(t)) dt (4.20)

for any T > 0. Due to the decrease of the energy t 7→ E(u(t)) and the fact that
E(·) ≥ −M0 := infw∈H1

0
(Ω)E(w) ≤ 0, it follows that

1

2
‖∆u(t) − u3(t) + κu(t)‖22

≤ κM0 +
1

2

(

‖η0‖22 +
1

t
E(u0) +

1

t
M0

)

+
κ

t

∫ t

0

φ(u(τ)) dτ

(4.11)

≤ κM0 +
1

2

(

r +
1

t
E(u0) +

1

t
M0

)

+
Cr

2
+
φ(0)

2t
for all t > 0, (4.21)

which will be used to construct an absorbing set in §7. On the other hand, one can
also exhibit a dissipation structure in a more quantitative way. Since t 7→ E(u(t))
is non-increasing and E(·) is bounded from below, we deduce that

E∞ := lim
t→∞

E(u(t)) ≥ −M0,

and therefore,
1

T

∫ T

0

E(u(t)) dtց E∞ as T → ∞.

Consequently, by (4.20), one has
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Corollary 4.1. In case u0 ∈ H2(Ω) ∩ H1
0 (Ω) ∩ L6(Ω), for any ε > 0, one can

take Tε > 0 (possibly depending on each solution u) such that, for all T ≥ Tε,

‖∆u(T ) − u3(T ) + κu(T )‖22 ≤
∥
∥(∆u0 − u30 + κu0)−

∥
∥
2

2
+ ε. (4.22)

In case u0 ∈ Dr
H1

0
∩L4

, for any ε > 0, one can take Tε > 0 such that, for all T ≥ Tε,

‖∆u(T ) − u3(T ) + κu(T )‖22 ≤ r + ε.

Remark 4.2. Due to the non-decreasing constraint on solutions, energy-dissipation
cannot be observed in a usual way. Indeed, since u(·, t) ≥ u0 a.e. in Ω for all t ≥ 0,
it follows that

‖u(t)‖p ≥ ‖u0‖p for any p ∈ [1,∞],

provided that u0 ≥ 0. Hence the Lp norm of u(t) never decays and no absorbing
set in Lp(Ω) exists. Moreover, let z be the positive solution of the classical elliptic
Allen-Cahn equation (3.2). Then any multiple w = cz for c ≥ 1 turns out to be
an equilibrium for (P), since it holds that ∆w − w3 + κw ≤ 0 a.e. in Ω. Therefore
the set of equilibria is unbounded in any (linear) space including z. On the other
hand, for any initial data u0 ∈ Dr, one can observe partial energy-dissipation in
(4.11), (4.21) and (4.22). Indeed, the set Dr excludes a part of the unbounded
set of equilibria (still, we emphasize again that Dr itself is unbounded). Hence,
there arises a question: whether or not one can construct an “attractor” for the
DS generated by (P) over the set Dr. An answer to this question will be provided
in §7 and §8.

We close this section by giving a sketch of proof for the existence part of Theorem
3.2 and by exhibiting an idea to justify the formal arguments given so far.

A sketch of proof for the existence part of Theorem 3.2. Set H = L2(Ω) and define
a functional ψ : H → [0,∞] by

ψ(u) :=

{

φ(u) if u ∈ H1
0 (Ω) ∩ L4(Ω),

∞ otherwise.
(4.23)

Then the subdifferential ∂ψ of ψ has the representation, ∂ψ(v) = −∆v + v3 for
v ∈ D(∂ψ) = H2(Ω)∩H1

0 (Ω)∩L6(Ω). Hence (P) is reduced to an abstract Cauchy
problem in the Hilbert space H ,

ut + ∂I[0,∞)(ut) + ∂ψ(u) ∋ κu in H, 0 < t < T, u(0) = u0, (4.24)

whose solvability (i.e., existence of solutions) has been studied by [14] and [7] for
u0 ∈ D(∂ψ). Then (iii) can be proved by checking some structure conditions
proposed in [7] (see Appendix §A for more details). For later use, let us briefly
recall a strategy (similar to [7]) to construct a solution of (4.24): We construct
approximate solutions for (P) and denote by uλ the (unique) solution of

ut + ∂I[0,∞)(ut) + ∂ψλ(u) ∋ κu in H, 0 < t < T, u(0) = u0 ∈ D(∂ψ), (4.25)
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where ∂ψλ is the subdifferential operator of the Moreau-Yosida regularization ψλ

of ψ (equivalently, the Yosida approximation of ∂ψ) (see, e.g., [21]). Here, one can
write

∂ψλ(v) = ∂ψ(Jλv) = −∆(Jλv) + (Jλv)3 for all v ∈ H, (4.26)

where Jλ : H → D(∂ψ) = H2(Ω) ∩H1
0 (Ω) ∩ L6(Ω) stands for the resolvent of ∂ψ,

i.e., Jλ := (I + λ∂ψ)−1 (see [21]). Indeed, Equation (4.25) can be also rewritten as
an evolution equation with a Lipschitz continuous operator in H , that is,

ut =
(
I + ∂I[0,∞)

)−1
(−∂ψλ(u) + κu) in H, 0 < t < T, u(0) = u0,

since ∂ψλ and
(
I + ∂I[0,∞)

)−1
are Lipschitz continuous in H . Therefore the solu-

tion uλ of (4.25) is uniquely determined (by u0) and uλ is of class C1,1 in time.
Furthermore, the section ηλ of ∂I[0,∞)(∂tuλ) as in (3.1) belongs to C0,1([0, T ];H) by
means of the relation ηλ = κuλ−∂ψλ(uλ)−∂tuλ. Moreover, (4.25) is also equivalent
to

ut = (−∂ψλ(u) + κu)+ in H, 0 < t < T.

As in the formal computations given above, one can derive corresponding energy
inequalities for uλ with η0 replaced by −(κu0−∂ψλ(u0))−. Therefore passing to the
limit as λ→ 0+ (see [7]), one can construct an L2-solution u of (P) (for u0 ∈ D(∂ψ))
and reproduce all the energy inequalities obtained so far. Moreover, in order to

prove smoothing effects (e.g., (ii)), we approximate initial data u0 ∈ Dr
H1

0
∩L4

by
u0,n ∈ Dr satisfying

u0,n → u0 strongly in H1
0 (Ω) ∩ L4(Ω) as n→ ∞

and particularly employ the fact ‖(∆u0,n − u30,n + κu0,n)−‖22 ≤ r (by u0,n ∈ Dr) to
reproduce the energy inequalities. For more precise arguments as well as a proof
for (i), we refer the reader to Appendix §A. �

5. Reformulation of (P) as an obstacle problem

In this section we shall verify that (1.6) is equivalently rewritten as a parabolic
variational inequality of obstacle type. Such a reformulation will not only shed
light on a characteristic behavior of solutions but also play an important role to
reveal the long-time behavior of each solution (see §9). Moreover, it will be also
employed to discuss the uniqueness of solutions and a comparison principle for (P)
(see §6) as well as to investigate Lyapunov stability of equilibria in a forthcoming
paper (see [3]).

Our result of this section is stated in the following:

Theorem 5.1 (Reformulation of (P) as an obstacle problem). For u0 ∈ Dr
L2

, the

Cauchy-Dirichlet problem (P) admits a solution u = u(x, t) which also solves

ut + ∂I[u0(x),∞)(u) − ∆u+ u3 − κu ∋ 0 in Ω × (0,∞), (5.1)

u = 0 on ∂Ω × (0,∞), (5.2)

u = u0 in Ω, (5.3)
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where ∂I[u0(x),∞) is the subdifferential operator of the indicator function I[u0(x),∞)

over [u0(x),∞). Hence the section η of ∂I[0,∞)(ut) as in (3.1) also belongs to

∂I[u0(x),∞)(u) for a.e. in Ω × (0,∞). Such a solution to (P) is uniquely determined

by the initial datum u0. Furthermore, (P) is equivalently rewritten as (5.1)–(5.3),
provided that the solution of (P) is unique.

Remark 5.2. (i) In this paper, it is not proved that all solutions to (P) solve
(5.1)–(5.3), unless solutions to (P) are uniquely determined by initial data.
Since Theorem 5.1 will be proved through the approximation (4.25) of (1.6)
in Appendix §B, the equivalence of two problems will be ensured only
for the solutions constructed by the approximation as in §4 (and also in
Appendix §A). We also refer the reader to the following formal arguments
and Remark 5.5.

(ii) The theorem stated above also provides a selection principle for (P). In-

deed, for u0 ∈ Dr
L2

, the uniqueness of solutions is not generally ensured.
However, according to Theorem 5.1, (P) always possesses one and only
one solution which also solves (5.1)–(5.3). Moreover, as will be discussed
in Appendix §A, selected solutions fulfill energy inequalities derived in §4.
Such a selection principle will be used to consider the dynamical system
generated by (P) and to prove the convergence of solutions as t→ +∞.

(iii) It is noteworthy that the fully nonlinear problem (1.2) is now converted to
a semilinear obstacle problem (5.1). However, such a semilinear problem
would have another difficulty, since the obstacle function u0 is supposed to
lie on the L2 closure of Dr and the problem is posed on the L2 (i.e., strong)
framework. On the other hand, it is also known (see [29]) that uniformly
elliptic fully nonlinear equations of the form f(D2u) = 0 can be reduced
to a quasilinear one, provided that f is smooth enough (e.g., of class C3,α).
However, it is not applicable to (1.2), for the corresponding f is not so
smooth and not uniformly elliptic.

Remark 5.3 (Parabolic obstacle problem). Problem (5.1)–(5.3) can be equiva-
lently rewritten as follows:

u ≥ u0, ut − ∆u+ u3 − κu ≥ 0 in Ω × (0,∞),

(u− u0)
(
ut − ∆u+ u3 − κu

)
= 0 in Ω × (0,∞),

u|∂Ω = 0, u|t=0 = u0,

which is an obstacle problem of parabolic type and where the initial datum u0 also
plays a role of the obstacle function from below (see [43, 24]). One may no longer
expect classical regularity of solutions to (P). Indeed, let us consider a simpler
elliptic obstacle problem, e.g.,

−∆φ(x) ≥ f(x), φ(x) ≥ g(x), (−∆φ(x) − f(x)) (φ(x) − g(x)) = 0 in Ω

along with the homogeneous Dirichlet condition. It is well known that the optimal
regularity of solution is C1,1(Ω) (unless the contact set is non-empty), even though
the obstacle function g is sufficiently smooth (e.g., g ∈ C∞(Ω)) (see [23]).
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In the rest of this section, we shall give only a formal argument to explain an
idea of proof in an intuitive way. A rigorous proof for the theorem above will be
provided in §B of Appendix (see also Remark 5.5). Let us start with the following
observation:

Lemma 5.4. Let u be a solution of (P) (which is constructed as in the proof of

Theorem 3.2) and let η be the section of ∂I[0,∞)(ut) as in (3.1). Then η(x, t) is

non-decreasing in t for a.e. x ∈ Ω.

Formal proof of Lemma 5.4. Let ζ ∈ C∞
0 (Ω) be such that ζ ≥ 0 in Ω and formally

test (4.4) by ζη. Then we find that

d

dt

∫

Ω

ζI[0,∞)(ut) dx +
1

2

d

dt

∫

Ω

ζη2 dx+ (−∆ut, ζη)

+3

∫

Ω

u2utηζ dx = κ

∫

Ω

utηζ dx.

Here we notice that ζη also belongs to ∂I[0,∞)(ut) by ζ ≥ 0 and η ∈ ∂I[0,∞)(ut),
and therefore,

(−∆ut, ζη) ≥ 0.

Then integrate both sides over (s, t) and employ the facts that utη = 0 and
I[0,∞)(ut) = 0 a.e. in Ω × (0,∞) to obtain

∫

Ω

ζη2(t) dx ≤
∫

Ω

ζη2(s) dx for t ≥ s ≥ 0.

Likewise, noting |η|r−2η ∈ ∂I[0,∞)(ut) for any r ∈ (1,∞), one can also obtain
∫

Ω

ζ |η(t)|r dx ≤
∫

Ω

ζ |η(s)|r dx for t ≥ s ≥ 0 and 1 < r <∞ (5.4)

for any ζ ∈ C∞
0 (Ω) satisfying ζ ≥ 0. In particular, let r > 1 be less than 2 and

let q ∈ (1,∞) and ζ ∈ Lq(Ω) be such that ζ ≥ 0 and 1/q + r/2 = 1. Then one
can take ζn ∈ C∞

0 (Ω) such that ζn ≥ 0 and ζn → ζ strongly in Lq(Ω). Moreover,
passing to the limit in (5.4) with 1 < r < 2 and ζ replaced by ζn as n → ∞, we
deduce that

∫

Ω

ζ |η(t)|r dx ≤
∫

Ω

ζ |η(s)|r dx for t ≥ s ≥ 0 and 1 < r < 2 (5.5)

for any ζ ∈ Lq(Ω), ζ ≥ 0, 1/q + r/2 = 1. Then by (5.5), we assure that |η(x, t)| is
non-increasing in t for a.e. x ∈ Ω. Indeed, suppose on the contrary that |η(x, t)| >
|η(x, s)| for all x ∈ Ω0 and for some t > s and Ω0 ⊂ Ω satisfying |Ω0| > 0.
Substitute ζ = χΩ0

, which is the characteristics function over Ω0, into (5.5) to
obtain

∫

Ω0

|η(t)|r dx ≤
∫

Ω0

|η(s)|r dx.

However, this fact contradicts the assumption. �
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Formal proof of Theorem 5.1. Let Q0 ⊂ Ω×(0, T ) be such that (1.6) holds and the
section η ∈ ∂I[0,∞)(ut) is non-decreasing (in time) in Q0 (more precisely, η(x, t) ≥
η(x, s) for any (x, t), (x, s) ∈ Q0 satisfying t ≥ s) and suppose that Q0 is well-
defined and the compliment of Q0 in Ω × (0, T ) has Lebesgue measure zero. Let
(x0, t0) ∈ Q0 be fixed. In case u(x0, t0) = u0(x0), it is obvious that η(x0, t0) belongs
to ∂I[u0(x),∞)(u(x0, t0)) = (−∞, 0]. Hence (5.1) is satisfied at (x0, t0). In case
u(x0, t0) > u0(x0), suppose that there is a set I ⊂ (0, t0) with |I| > 0 such that
ut(x0, t) > 0 for all t ∈ I. Therefore η(x0, t) = 0 for t ∈ I satisfying (x0, t) ∈ Q0.
From the non-decrease of η, we derive that η(x0, t0) = 0. Thus (5.1) holds true
at (x0, t0). Consequently, the solution u of (P) solves (5.1)–(5.3), and moreover, η
belongs to ∂I[u0(x),∞)(u).

One can prove in a standard way that the solution of (5.1)–(5.3) is uniquely
determined by the initial datum u0 (cf. Theorem 6.2). Hence, it turns out that
(P) and (5.1)–(5.3) are equivalent each other, provided that the solution to (P) is
unique. �

Remark 5.5 (Ambiguity of the formal arguments above). In the present paper,
we are working on Lebesgue space settings, instead of continuous function spaces.
In particular, the section η of ∂I[0,∞)(ut) is not supposed to be continuous in space.
It seems natural in view of obstacle problems, since u(x, t) may loose classical
regularity and η = −(∆u− u3 + κu)− (see Remark 5.3).

Let us also point out an obscure point of the formal arguments above. The
conclusion of Lemma 5.4 is the following: for each t > s ≥ 0, one can take a subset
Ωt,s of Ω such that η(x, t) ≥ η(x, s) for all x ∈ Ωt,s and |Ω \ Ωt,s| = 0. Indeed,
as η(x, t) may not be continuous in (x, t) and it is defined only for a.e. (x, t) ∈
Ω × (0, T ), we have not proved a pointwise monotonicity of η(x, t) at each t. This
fact prevents us to apply the argument above to prove Theorem 5.1. Indeed,
it is not obvious whether the set Q0 is well-defined. In Appendix §B, we shall
approximate η by a differentiable (in t) function ηλ ∈ C0,1([0, T ];L2(Ω)) and prove
the pointwise decrease of ηλ in t. Even so, we still face a delicate issue whether
a set corresponding to Q0 has full Lebesgue measure or not, for ηλ(·, t) is defined
only for a.e. x ∈ Ω at each t ≥ 0. Moreover, when we fix a point x0 ∈ Ω, the
existence of the set I where ut(x0, ·) > 0 and whose measure is positive is also
obscure. However, these difficulties will be overcome by carefully carrying out a
measure theoretic argument in Appendix B.

6. Comparison principle

This section is devoted to proving a comparison principle for the obstacle problem
(5.1) as well as the strongly irreversible Allen-Cahn equation (1.2) (or equivalently,
(1.6)). Let us begin with the definition of L2 sub- and supersolutions of (5.1) (and
(1.6)).

Definition 6.1. Let T ∈ (0,∞) be fixed. A function u ∈ C([0, T ];L2(Ω)) is said

to be an L2 subsolution (or sub L2 solution) of (5.1) on QT = Ω × (0, T ), if the
following conditions are all satisfied :
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(i) u belongs to the same class as in (i) of Definition 3.1,

(ii) there exists η ∈ L∞(0, T ;L2(Ω)) such that

ut + η− ∆u+ u3 − κu ≤ 0, η ∈ ∂I[u0(x),∞)(u) for a.e. (x, t) ∈ Ω × (0, T ). (6.1)

A function u ∈ C([0, T ];L2(Ω)) is said to be an L2 supersolution (super L2 solution)
of (5.1) on QT = Ω × (0, T ), if (i) and (ii) above are satisfied with the inverse

inequality of (6.1). Furthermore, a sub- and a super L2 solution of (1.6) are also

defined as above by replacing the inclusion of (6.1) with η ∈ ∂I[0,∞)(ut).

Our result reads,

Theorem 6.2 (Comparison principle for (5.1)). Let u and v be a sub- and a super

L2 solution for (5.1) with the obstacle function replaced by u0 = u(0) and v0 = v(0),
respectively, in QT = Ω × (0, T ) for some T > 0. Suppose that u ≤ v a.e. on the

parabolic boundary ∂pQT = (Ω × {0}) ∪ (∂Ω × [0, T )). Then it holds that

u ≤ v a.e. in QT .

In particular, the solution of (5.1)–(5.3) is unique.

Proof. By subtracting inequalities (see (6.1)) and by setting w := u − v, we see
that

wt − ∆w + u3 − v3 ≤ κw + ν − µ in QT ,

where µ and ν are sections of ∂I[u0(x),∞)(u) and ∂I[v0(x),∞)(v), respectively. Test
both sides by w+. Then we have:

1

2

d

dt
‖w+‖22 ≤ κ‖w+‖22 +

∫

Ω

(ν − µ)w+ dx for a.e. 0 < t < T.

Here we observe by ν ≤ 0 and µ ∈ ∂I[u0(x),∞)(u) that
∫

Ω

(ν − µ)w+ dx =

∫

Ω

νw+ dx−
∫

Ω

µw+ dx

≤ −
∫

{u=u0}∩{u≥v}

µw dx.

Due to the fact that v ≥ v0 ≥ u0 a.e. in Ω, one of the following (i) and (ii)
holds: (i) the set {u = u0} ∩ {u ≥ v} has Lebesgue measure zero; (ii) w = 0 for
a.e. x ∈ {u = u0} ∩ {u ≥ v}. Hence it follows that

∫

{u=u0}∩{u≥v}

µw dx = 0.

Combining all these facts, we deduce that
∫

Ω

(ν − µ)w+ dx ≤ 0.

Therefore one obtains
1

2

d

dt
‖w+‖22 ≤ κ‖w+‖22 for a.e. 0 < t < T,

and hence, applying Gronwall’s inequality, we conclude that w+ ≡ 0 a.e. in QT ,
which completes the proof. �
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Now, we exhibit a range-preserving property of solutions to (P) in the following:

Corollary 6.3. Let u be the unique solution of (P) such that u also solves (5.1)–
(1.8) (see Theorem 5.1). Assume u0 ∈ L∞(Ω). Then it holds that

u0(x) ≤ u(x, t) ≤ max
{√

κ, ‖u0‖L∞(Ω)

}
a.e. in Ω × (0,∞),

and hence, u ∈ L∞(Ω × (0,∞)).

Proof. Due to the non-decrease of u(x, t), it follows immediately that

u0(x) ≤ u(x, t) a.e. in Ω × (0,∞).

On the other hand, by assumption, u is also a solution of (5.1). Moreover, the
constant function U(x, t) ≡ max

{√
κ, ‖u0‖L∞(Ω)

}
≥ √

κ turns out to be a super-
solution of (5.1), and furthermore, one can observe that

u(x, t) ≤ U(x, t) a.e. on ∂pQT for any T > 0.

Thus by Theorem 6.2, we deduce that u(x, t) ≤ max
{√

κ, ‖u0‖L∞(Ω)

}
a.e. in QT

for any T > 0. �

As for (1.2) (or equivalently (1.6)), we shall exhibit two comparison principles
under different additional assumptions. The following theorem provides a compar-
ison principle for classical solutions of (1.2):

Theorem 6.4 (Comparison principle for classical solutions to (1.2)). Let u and

v be a sub- and a super C2,1-solution for (1.2) in QT = Ω × (0, T ) for some

T > 0, respectively. Suppose that u ≤ v a.e. on the parabolic boundary ∂pQT =
Ω × {0} ∪ ∂Ω × [0, T ). Then it holds that

u ≤ v a.e. in QT .

Proof. Let u and v be a sub- and a supersolution for (P), respectively. Then, it
holds that

∂t(u− v) ≤
(
∆u− u3 + κu

)

+
−
(
∆v − v3 + κv

)

+

≤
(
∆w − u3 + v3 + κw

)

+
,

where we set w := u − v. Let α > 0 be fixed so that r 7→ κr+ − αr is strictly
decreasing (e.g., α > κ). Subtracting αw from both sides, one has

wt − αw ≤
(
∆w − u3 + v3 + κw

)

+
− αw.

Multiply both sides by e−αt and set z := e−αtw. It then follows that

zt ≤
(
∆z − e−αt(u3 − v3) + κz

)

+
− αz.

We claim that
z ≤ 0 in Q := Ω × (0, T ],

which also implies
u ≤ v in Q.

Indeed, assume on the contrary that

z(x0, t0) > 0
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at some (x0, t0) ∈ Q. Then
sup

(x,t)∈Q

z(x, t) > 0,

where the supremum is achieved by some (x1, t1) ∈ Ω × (0, T ]. Then by Taylor’s
expansion,

zt ≥ 0, ∇z = 0, ∆z ≤ 0 at (x1, t1).

Hence

0 ≤ zt ≤
(
∆z − e−αt(u3 − v3) + κz

)

+
− αz ≤ κz+ − αz < 0 at (x1, t1).

This yields a contradiction. Thus z ≥ 0 on Q. �

One can also prove a comparison principle for strictly increasing L2-subsolutions
for (1.6).

Proposition 6.5. Let u be an L2-subsolution of (1.6) in QT satisfying ut > 0 and

let v be an L2-supersolution of (1.6) in QT . Suppose that u ≤ v a.e. on ∂pQT .

Then it holds that

u ≤ v a.e. in QT .

Proof. By assumption, we find that ∂I[0,∞)(ut) = {0}, and therefore, (1.6) holds
with η ≡ 0. Subtract inequalities to see that

wt − ν − ∆w + u3 − v3 ≤ κw in QT ,

where w := u− v and ν is a section of ∂I[0,∞)(vt). The multiplication of the both
sides and w+ yields

d

dt
‖w+‖22 −

∫

Ω

νw+ dx + ‖∇w+‖22 ≤ κ‖w+‖22.

Here recall that ν ≤ 0, and therefore, by Gronwall’s inequality, we conclude that
w+ ≡ 0, that is, u ≤ v in QT . �

7. Phase set, semigroup and compact absorbing set

The following two sections are devoted to constructing a global attractor of the
Dynamical System (DS for short) generated by (P) as well as (5.1)–(5.3). We
emphasize again that due to the strong irreversibility, global attractor does not
exist in any Lp-spaces. So we need a peculiar setting to extract energy-dissipation
structures of the equation and to construct a global attractor. We start with setting
up a (nonlinear) phase set and a metric on it.

Let r > 0 be arbitrarily fixed and set a phase set D = Dr (see §3 for the definition
of Dr). Thanks to Theorem 3.2, we see that D is invariant under the evolution of
solutions to (P). Furthermore, let us define a metric d(·, ·) over the set D by

d(u, v) := ‖u− v‖H1
0
(Ω) + ‖u− v‖L4(Ω) for u, v ∈ D.

Moreover, denote by St : D → D the semigroup associated with (P) and (5.1)–
(5.3), that is,

Stu0 := u(t) for t ≥ 0, u0 ∈ D,
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where u is the (unique) solution of (P) which also solves (5.1)–(5.3) and whose
initial datum is u0. By Theorems 3.2 and 5.1, one can assure that St is a continuous
semigroup.

We next set a subset of D by

B0 :=
{

u ∈ D : ‖∆u− u3 + κu‖22 ≤ cr + 1, φ(u) ≤ Cr + 1
}

with cr = 2κM0+r+Cr and Cr := Cr/(2κ) (see (4.11) and (4.21)). Then the partial
energy-dissipation estimates (4.11) and (4.21) immediately ensure the following:

Lemma 7.1. The set B0 is D-absorbing, that is, for any bounded subsets B of

(D, d), one can take τB ≥ 0 such that StB ⊂ B0 for all t ≥ τB.

We next prove the compactness of B0 in (D, d).

Lemma 7.2. The set B0 is compact in (D, d).

Proof. To prove this lemma, let us define a functional C : L2(Ω) → [0,∞) by

C(f) :=

∫

Ω

(
f(x)

)2

−
dx for f ∈ L2(Ω).

We then observe that C(·) is (strongly) continuous in L2(Ω) and convex. Hence
C(·) is also weakly lower semicontinuous in L2(Ω) by the convexity.

Let (un) be a sequence in B0. Then obviously, (un) is bounded in H1
0 (Ω)∩L4(Ω),

and moreover,
‖ − ∆un + u3n‖2 ≤

√
cr + 1 + κ‖un‖2 ≤ C.

Noting that

‖ − ∆v‖22 + ‖v3‖22 ≤ ‖ − ∆v + v3‖22 for all v ∈ H2(Ω) ∩ L6(Ω),

we deduce that (un) is bounded in H2(Ω) ∩ L6(Ω). Then

un → u weakly in H2(Ω) ∩ L6(Ω)

for some u ∈ H2(Ω) ∩ L6(Ω). Moreover, by the compact embedding H2(Ω) ∩
L6(Ω) →֒ H1

0 (Ω) ∩ L4(Ω), one can take a subsequence of (n) without relabeling
such that

un → u in (D, d), i.e., strongly in H1
0 (Ω) ∩ L4(Ω),

which also yields

∆un → ∆u strongly in H−1(Ω) and weakly in L2(Ω),

u3n → u3 strongly in Lq(Ω) and weakly in L2(Ω), 1 ≤ q < 2.

Hence we see that

∆un − u3n + κun → ∆u− u3 + κu weakly in L2(Ω).

Since C(·) is weakly lower semicontinuous in L2(Ω) and un ∈ D, it follows that

C(∆u− u3 + κu) ≤ lim inf
n→∞

C(∆un − u3n + κun) ≤ r,

which implies u ∈ D. Moreover, the weak lower semicontinuity of ‖ · ‖2 and φ leads
us to obtain u ∈ B0. �
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Remark 7.3 (Set up of the phase set). (i) The phase space D assigned here
is nonlinear and non-convex (cf. see also Proposition 8.5 below). Further-
more, we stress that D is unbounded. The metric d is chosen such that B0

becomes compact in (D, d).
(ii) One may replace the phase set D by its closure in H1

0 (Ω) ∩ L4(Ω). Then
the compactness of B0 follows in a simpler way; indeed, it suffices to prove
the precompactness of B0 in (D, d). However, we address ourselves to the
phase set D instead of its closure.

8. Construction of a (D, d)-global attractor

In this section, we shall construct a global attractor defined in the following sense
for the DS generated by (P) on the phase set (D, d):

Definition 8.1 ((D, d)-global attractor). A subset U of D is called a (D, d)-global
attractor associated with the DS (St, (D, d)) if the following conditions hold true:

(i) U is compact in (D, d).
(ii) U satisfies an attraction property in (D, d), that is, let B ⊂ D be a d-

bounded subset of D (i.e., the diameter diam(B) := sup{d(u, v) : u, v ∈ B}
is finite). Then for any neighborhood O of U in (D, d), there exists τO ≥ 0
such that StB ⊂ O for all t ≥ τO.

(iii) U is strictly invariant, i.e., for any t ≥ 0, it holds that St U = U .
Our result reads,

Theorem 8.2 (Existence of (D, d)-global attractor). The DS (St, (D, d)) admits

the (D, d)-global attractor U , which is given by

U :=
⋂

τ≥τ0

Fτ , Fτ :=
⋃

t≥τ

StB0, (8.1)

where τ0 is a positive constant and Fτ stands for the closure of Fτ in (D, d). More-

over, U is the maximal bounded strictly invariant set, and therefore, the (D, d)-
global attractor is unique.

Proof. The following proof is essentially based on a standard theory (see [12, Chap
2, §2] and also [28]); however, for a convenience of the reader, we give a proof
specific to our setting instead of applying a ready-made theorem, since there seem
to be slight differences of basic settings (e.g., in [12, Chap 2, §2], an absorbing set
is supposed to attract all bounded sets in a Banach space; on the other hand, in
our setting, the absorbing set B0 attracts any bounded sets in the metric space

(D, d)). In what follows, we shall check three conditions (i)–(iii) of Definition 8.1
for the set U given by (8.1).

Compactness in (D, d). Here we note that Fτ ⊂ B0 for any τ ≥ t0 and some t0 ≥ 0.
Hence Fτ is compact in (D, d) and included in B0. Therefore U is included in B0

and compact in (D, d).

Attraction property in (D, d). To prove this, suppose on the contrary that there
exist a neighborhood O0 of U in (D, d) and a sequence tn → ∞ such that StnB ∩
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(D \O0) 6= ∅. Let us take yn ∈ StnB ∩ (D \O0). Since B0 is D-absorbing, one can
take τB ≥ 0 such that StB ⊂ B0 for all t ≥ τB. Hence for n≫ 1 satisfying tn ≥ τB,
one observes that yn ∈ StnB ⊂ B0. Therefore, up to a subsequence, yn converges
to an element y of B0 in (D, d). Moreover, let n0 ∈ N be such that Stn0

B ⊂ B0.

Then since yn ∈ Stn−tn0
◦ Stn0

B ⊂ Stn−tn0
B0 ⊂ Ftn−tn0

for all n ≫ 1, the limit y
belongs to U (see Lemma 8.3 below). On the other hand, by yn ∈ D \O0, the limit
y never belongs to U . This is a contradiction. Therefore U enjoys the attraction
property in (D, d).

Lemma 8.3. Let (Xn) be a sequence of closed subsets of a metric space (D, d). Let
yn ∈ Xn be such that yn → y in (D, d). In addition, suppose that Xn ⊂ Xm if

n ≥ m. Then it holds that

y ∈
⋂

k∈N

Xk.

Proof. Let k ∈ N be arbitrarily fixed. For any n ≥ k, we recall yn ∈ Xn ⊂ Xk.
Hence the closedness ofXk implies y ∈ Xk. From the arbitrariness of k, we conclude
that y ∈ ∩k∈NXk. �

Strict invariance. We claim that St U ⊂ U . Let y ∈ St U . Then there exists u ∈ U
such that y = Stu. Moreover, u belongs to Fτ for any τ ≥ τ0. Hence in particular,
by a diagonal argument, one can take a sequence un ∈ Fn such that un → u in
(D, d). Indeed, for each m ∈ N, since u belongs to Fm, one can take a sequence

(u
(m)
n )n∈N in Fm such that u

(m)
n → u in (D, d) as n → ∞. Now let un := u

(n)
n ∈ Fn

and observe that un → u in (D, d). Furthermore, there exist sequences tn ≥ n and
bn ∈ B0 such that un = Stnbn. Here one can suppose that tn is increasing without
any loss of generality. Thus one can write

y = Stu = St( lim
n→∞

un) = lim
n→∞

Stun = lim
n→∞

St ◦ Stnbn = lim
n→∞

St+tnbn.

Here we used the continuity of St in (D, d), which follows from the continuous
dependence of solutions for (1.6)–(1.8) on initial data (see Theorem 3.2), to verify
the third equality. Noting that bn ∈ B0, we deduce that St+tnbn ∈ Ft+tn . Therefore
y belongs to U (see Lemma 8.3), which also implies the relation St U ⊂ U . We next
show U ⊂ St U . Let y ∈ U be fixed. Then y belongs to Fτ for all τ ≥ τ0. Hence one
can particularly take a sequence tn ր ∞ and bn ∈ B0 such that y = limn→∞ Stnbn.
Note that

y = lim
n→∞

Stnbn = lim
n→∞

St ◦ Stn−tbn = St

(

lim
n→∞

Stn−tbn

)

for each t > 0. Here we used the continuity of St again and further noticed that

Stn−tbn ∈ Stn−tB0 ⊂ B0

for n ≫ 1, since B0 is D-absorbing, and therefore, the compactness of B0 implies
that Stn−tbn converges to an element u1 ∈ B0 in (D, d), up to a subsequence, as
n→ ∞. Recall that Stn−tbn ∈ Ftn−t for n≫ 1 to obtain

u1 = lim
n→∞

Stn−tbn ∈ U
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(see also Lemma 8.3). Thus y belongs to St U . Consequently, we conclude that
St U = U .

Finally, let us prove the maximality of U among bounded strictly invariant sets.
Indeed, let V be a bounded strictly invariant set in (D, d). Then since V is a
bounded set in (D, d), one can take τ ≥ 0 such that St V ⊂ B0 for all t ≥ τ .
From (8.1) along with the strict invariance of V, it follows that V ⊂ U . Thus U is
maximal. �

Not surprisingly, we observe that

Proposition 8.4. Let r > 0 and let ψ ∈ Dr be a solution of the inclusion,

∂I[0,∞)(0) − ∆ψ + ψ3 − κψ ∋ 0 in L2(Ω) (8.2)

(hence ψ is a supersolution to the elliptic Allen-Cahn equation (3.2)).Then ψ be-

longs to the global attractor U constructed in Theorem 8.2 under the phase set

D = Dr.

Proof. We note that (8.2) corresponds to a stationary equation for (P). More pre-
cisely, u(x, t) ≡ ψ(x) is a solution for (P) with u0 = ψ. Hence ψ must belong to
the absorbing set B0 (see Lemma 7.1). Therefore by means of (8.1) along with the
fact Sτψ = ψ, one can conclude that ψ ∈ U . �

The connectedness of the global attractor U (with D = Dr) is not proved due
to the peculiar setting of the phase set Dr. However, we can prove it by assigning
the following set D+

r to the phase set D instead of Dr:

D+
r :=

{

u ∈ Dr : u ≥ 0 a.e. in Ω
}

.

Here we remark that D+
r is still non-compact in H1

0 (Ω) and unbounded in H2(Ω)
(cf. see (i) of Remark 3.4). Then the preceding argument still runs as before.
Indeed, the nonnegativity of initial data is inherited to solutions of (P).

Proposition 8.5. It holds that

(i) D+
r is convex,

(ii) U is connected if D = D+
r .

Proof. We first prove (i). Let u, v ∈ D+
r and θ ∈ (0, 1) and set uθ := (1− θ)u+ θv.

Note that

∆uθ + κuθ − u3θ = (1 − θ) [∆u+ κu] + θ [∆v + κv] − ((1 − θ)u+ θv)3

≥ (1 − θ)
[
∆u− u3 + κu

]
+ θ

[
∆v − v3 + κv

]

by the convexity of the cubic function x3 on [0,∞). Hence the decrease as well as
the convexity of the function x 7→ (x)2− lead us to observe that

(
∆uθ − u3θ + κuθ

)2

−
≤
(
(1 − θ)

[
∆u− u3 + κu

]
+ θ

[
∆v − v3 + κv

])2

−

≤ (1 − θ)
(
∆u− u3 + κu

)2

−
+ θ

(
∆v − v3 + κv

)2

−
.
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Thus integrating both sides over Ω and recalling the fact that u, v ∈ D+
r , we obtain

C(∆uθ − u3θ + κuθ) ≤ r,

which implies uθ ∈ D+
r . Therefore D+

r is convex.

We next prove (ii). In the proof of Lemma 7.2, we have shown that B0 is bounded
in H2(Ω) ∩ L6(Ω). Hence one can take R > 0 such that

B0 ⊂ B1 :=
{
u ∈ D : ‖u‖H2(Ω) ≤ R

}
.

Then since D = D+
r is convex, so is B1, and hence, B1 is connected in (X, d).

Moreover, we can verify that B1 is compact in (D, d). Furthermore, by Lemma
7.1, we can take t0 > 0 such that StB1 ⊂ B0 for all t ≥ t0. Hence StB1 ⊂ B0 ⊂ B1

for all t ≥ t0, and therefore, it holds that

U =
⋂

τ≥τ0

Eτ , Eτ :=
⋃

t≥τ

StB1.

Moreover, due to the continuity of St in (D, d), the set StB1 is also connected for
each t ≥ 0. Furthermore, since the family {StB1}t≥0 has a nonempty intersection
(indeed, every stationary point in B1 (e.g., 0 ∈ B1) belongs to the intersection),
the union Eτ = ∪t≥τStB1 is connected as well. Therefore the closure Eτ is also
connected. Finally, Lemma 8.6 below ensures the connectedness of U = ∩τ≥τ0Eτ ,
since Eτ is included in the compact set B1 for τ ≥ t0. �

Lemma 8.6 (see e.g. [31, p.437]). Let X be a compact Hausdorff space. Let P be

a family of nonempty, closed and connected subsets of X such that either A ⊂ B
or B ⊂ A holds true for any A,B ∈ P. Then the intersection

⋂

P :=
⋂

A∈P

A

is also connected.

9. Convergence to equilibria

We next discuss the convergence of each solution u = u(x, t) for (P) as t goes
to ∞. We shall prove the ω-limit set is non-empty and a singleton. Moreover, the
limit is characterized as a solution of an elliptic variational inequality of obstacle
type.

Theorem 9.1. Let u0 ∈ Dr
L2

with an arbitrary r > 0 and let u be the solution of

(P) as well as (5.1)–(5.3) (see Theorem 5.1). Then it holds that

u(t) → φ strongly in H1
0 (Ω) ∩ L4(Ω),

weakly in H2(Ω) ∩ L6(Ω) as t→ ∞
for some φ ∈ H2(Ω) ∩ H1

0 (Ω) ∩ L6(Ω). Hence the ω-limit set ω(u) of u is non-

empty and a singleton. Moreover, the limit φ is a solution of the following elliptic

variational inequality of obstacle type:

∂I[u0(x),∞)(φ) − ∆φ+ φ3 ∋ κφ in L2(Ω), φ ∈ H1
0 (Ω), (9.1)
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which is rewritten as

φ ≥ u0, −∆φ+ φ3 − κφ ≥ 0 in Ω,

(φ− u0)
(
−∆φ+ φ3 − κφ

)
= 0 in Ω,

φ|∂Ω = 0.

Proof. Even though the uniqueness of solutions to (P) is not guaranteed, the solu-
tion of (P) as well as of (5.1)–(5.3) is unique (see Theorem 5.1). Hence all energy
inequalities are valid (see Appendix §A and §B). The following proof is based on
a strategy used in [1]. Recall (4.1) and the boundedness of E(·) from below. Then
E(u(t)) decreasingly converges to a number E∞ as t → ∞. Moreover, by (4.2),
there is a sequence τn ∈ [n, n + 1] such that

ut(τn) → 0 strongly in L2(Ω).

Furthermore, since u(t) is bounded in H1
0(Ω) ∩ L4(Ω) for t ≥ 0, up to a (not

relabeled) subsequence, there exists φ ∈ H1
0 (Ω) ∩ L4(Ω) such that

u(τn) → φ weakly in H1
0 (Ω) ∩ L4(Ω) and strongly in L2(Ω).

We also further derive from (4.6) (with s and ‖η(s)‖22 replaced by 0 and r, respec-
tively) and (4.18) along with (4.20) that

η(τn) → η∞ weakly in L2(Ω),

−∆u(τn) + u(τn)3 → −∆φ+ φ3 weakly in L2(Ω),

which along with the demiclosedness of ∂I[0,∞) gives η∞ ∈ ∂I[0,∞)(0). Therefore we
assure that

η∞ − ∆φ + φ3 − κφ = 0, η∞ ∈ ∂I[0,∞)(0), (9.2)

which is a necessary condition for (9.1). Noting that

lim sup
n→∞

‖∇u(τn)‖22 = κ lim
n→∞

‖u(τn)‖22 − lim inf
n→∞

‖u(τn)‖44 − lim
n→∞

(η(τn), u(τn))

− lim
n→∞

(ut(τn), u(τn))

≤ κ‖φ‖22 − ‖φ‖44 − (η∞, φ)
(9.2)
= ‖∇φ‖22

and also deriving in a similar way that

lim sup
n→∞

‖u(τn)‖44 ≤ ‖φ‖44,

we deduce by the uniform convexity of H1
0 (Ω) and L4(Ω) that

u(τn) → φ strongly in H1
0 (Ω) ∩ L4(Ω).

Thus one can also identify the limit E∞ = E(φ).
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It follows from (4.2) that

‖u(t) − u(s)‖2 ≤
(∫ t

s

‖uτ(τ)‖22 dτ

)1/2 √
t− s

≤
(∫ ∞

s

‖uτ(τ)‖22 dτ

)1/2 √
t− s for 0 ≤ s ≤ t <∞. (9.3)

Let tn → ∞ be an increasing sequence. Then one can take a (not relabeled)
subsequence of (τn) such that 0 ≤ tn − τn ≤ 1. Therefore, putting t = tn and
s = τn to (9.3),

u(tn) → φ strongly in L2(Ω),

which along with (4.2) implies, up to a (not relabeled) subsequence,

u(tn) → φ weakly in H1
0 (Ω) ∩ L4(Ω).

Therefore combining all these facts, we observe that

1

2
lim sup
n→∞

‖∇u(tn)‖22 = lim
n→∞

E(u(tn)) − 1

4
lim inf
n→∞

‖u(tn)‖44 +
1

2
κ lim

n→∞
‖u(tn)‖22

≤ E(φ) − 1

4
‖φ‖44 +

1

2
κ‖φ‖22 =

1

2
‖∇φ‖22,

which together with the uniform convexity of H1
0 (Ω) ensures that

u(tn) → φ strongly in H1
0 (Ω).

Similarly, one can prove that u(tn) → φ strongly in L4(Ω). Consequently, φ is
an element of the ω-limit set ω(u) of u. Furthermore, from the non-decrease of
t 7→ u(x, t) for a.e. x ∈ Ω, we conclude that

u(x, t) ր φ(x) for a.e. x ∈ Ω as t→ ∞.

Hence ω(u) = {φ}.

Now, recall that u also solves (5.1)–(5.3) and η belongs to ∂I[u0(x),∞)(u). By the
demiclosedness of ∂I[u0(x),∞) in L2(Ω) ×L2(Ω), we conclude that η∞ is a section of
∂I[u0(x),∞)(φ) a.e. in Ω. Thus φ turns out to be a solution of (9.1). This completes
the proof. �

Remark 9.2. (i) To prove that the ω-limit set is a singleton,  Lojasiewicz-
Simon type inequalities are often used. However, it seems difficult to apply
them to (P), since (1.6) is not a gradient flow but a generalized one, which
can be written in the form,

ut + ∂I[0,∞)(ut) ∋ −E ′(u),

where E ′ stands for a functional derivative of E (i.e., Fréchet derivative).
On the other hand, this point was proved more easily since solutions of (P)
are non-decreasing in time.

(ii) As for the parabolic obstacle problem (5.1)–(5.3), it also seems difficult
to apply a  Lojasiewicz-Simon type inequality due to the presence of the
nonsmooth potential I[u0(x),∞); however, by reducing the obstacle problem



34 GORO AKAGI AND MESSOUD EFENDIEV

to (P), one can prove that the ω-limit set of each solution for the obstacle
problem is a singleton and consists of a single solution to (9.1).

In Theorem 9.1, the rate of convergence is not estimated. Under a suitable
assumption on initial data, by employing (4.5), one can verify an exponential con-
vergence of u(t) as t→ ∞.

Corollary 9.3. In addition to the same assumptions as in Theorem 9.1, suppose

that

u0 ≥ 0 and λΩ(3u20) > κ. (9.4)

Set σ := λΩ(3u20) − κ > 0 and C = ‖(∆u0 − u30 + κu0)+‖2. Then it holds that

‖u(t) − φ‖2 ≤
C

σ
e−σt for all t ≥ 0.

Proof. By Theorem 9.1, it is already known that u(t) converges to some equilibrium
φ strongly in H1

0 (Ω) ∩ L4(Ω) as t → ∞. Moreover, setting σ := λΩ(3u20) − κ > 0
and letting s0 > 0, we observe that

‖u(t) − u(s)‖2 ≤
∫ t

s

‖∂τu(τ)‖2 dτ

(4.5)

≤ C

∫ t

s

e−στ dτ ≤ C

σ

(
e−σs − e−σt

)
for s0 ≤ s ≤ t <∞

for some constant C ≥ 0. Letting t→ ∞, we deduce that

‖φ− u(s)‖2 ≤
C

σ
e−σs for all s ≥ s0.

This completes the proof. �

Remark 9.4 (On assumption (9.4)). Note that λΩ(3u20) > µ(Ω) > 0 by u0 6≡ 0,
where µ(Ω) stands for the first eigenvalue of the Dirichlet Laplacian −∆ posed in
Ω. Hence, the second inequality of (9.4) holds true if µ(Ω) ≥ κ (e.g., the diameter
of Ω is small enough). On the other hand, even if µ(Ω) < κ, the second condition
of (9.4) is also satisfied under an appropriate assumption on the initial datum u0,
for instance,

3u20 ≥ Uλ a.e. in Ω,

where Uλ = Uλ(x) is the (unique) positive solution of the elliptic equation for any
λ > κ,

− ∆Uλ + U2
λ = λUλ, Uλ > 0 in Ω, Uλ = 0 on ∂Ω. (9.5)

Indeed, for each λ > κ (hence λ > µ(Ω)), (9.5) admits the unique positive solution
Uλ ∈ C2(Ω) ∩ C(Ω) such that 0 < Uλ ≤ λ in Ω, and moreover, (λ, Uλ) turns out
to be a principal eigenpair of the Schrödinger operator v 7→ −∆v + Uλv. Hence if
3u20 ≥ Uλ a.e. in Ω, then λΩ(3u20) ≥ λΩ(Uλ) = λ > κ.
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Appendix A. Proof of the existence part of Theorem 3.2 and
derivation of energy inequalities

In this section, we give a proof for the existence part of Theorem 3.2 and a
rigorous derivation of energy inequalities, which are derived in §4 by formal com-
putations. More precisely, we shall prove

Theorem A.1. Let r > 0 be arbitrarily fixed.

(i) Let u0 belong to the closure Dr
L2

of Dr in L2(Ω). Then (P) admits the

unique solution u = u(x, t) satisfying all the regularity conditions as in

(i) of Theorem 3.2 such that (4.1), (4.3), (4.7)–(4.10), (4.12), (4.14) and

(4.19) hold true with ‖η0‖22 replaced by r. Moreover, it is also satisfied that

‖η(t)‖22 ≤ r for a.e. t > 0. (A.1)

(ii) If u0 also belongs to the closure Dr
H1

0
∩L4

of Dr in H1
0 (Ω)∩L4(Ω), then the

solution u = u(x, t) also satisfies all the regularity conditions as in (ii) of

Theorem 3.2. Moreover, (4.1)–(4.3), (4.7)–(4.14), (4.18)–(4.21) and (A.1)
are satisfied with ‖η0‖22 replaced by r.

(iii) If u0 ∈ H2(Ω) ∩ L6(Ω), then the solution u = u(x, t) also fulfills all

the regularity conditions as in (iii) of Theorem 3.2. Moreover, (4.1)–
(4.3), (4.7)–(4.14), (4.16), (4.18)–(4.21) are satisfied with ‖η0‖22 replaced

by ‖(∆u0 − u30 + κu0)−‖22. Furthermore, it holds that

‖η(t)‖22 ≤ ‖(∆u0 − u30 + κu0)−‖22 for a.e. t > 0. (A.2)

(iv) If u = u(x, t) also solves the obstacle problem (5.1)–(5.3) (see Theorem

5.1), then (4.6), (4.15) and (4.17) hold. In addition, if u0 ∈ H2(Ω) ∩
H1

0 (Ω)∩L6(Ω), then (4.5) is also satisfied with ‖v0‖22 replaced by ‖(∆u0 −
u30 + κu0)+‖22.

Now, we give a proof of Theorem A.1 below.

A.1. Reduction to an abstract Cauchy problem. Let T > 0 be arbitrarily
fixed. Set H = L2(Ω), V = H1

0 (Ω) ∩ L4(Ω) and define a functional ψ on H as in
(4.23). Moreover, set ϕ : H → [0,∞] by

ϕ(u) =
1

2
‖u‖22 + I[0,∞)(u) for u ∈ H,

which is homogeneous of degree p = 2. Then as in §4, (P) is reduced to the abstract
Cauchy problem (4.24), which is also equivalent to

∂ϕ(ut) + ∂ψ(u) ∋ κu in H, 0 < t < T, u(0) = u0. (A.3)

In order to prove the existence of solutions to (A.3), it suffices to check assumptions
(A.1), (A.2), (A.3)′, (A.4), (A.5) of [7] (see also [14]). Since (A.1)–(A.4) follow
immediately from the setting of ψ and ϕ, we only give a proof for checking (A.5)
(i.e., the ∂ϕ-monotonicity of ∂ψ) below.
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Lemma A.2. Let Jλ be the resolvent of ∂ψ, that is, Jλ := (I + λ∂ψ)−1. Then it

holds that

I[0,∞)(Jλu− Jλv) ≤ I[0,∞)(u− v), ‖Jλu− Jλv‖22 ≤ ‖u− v‖22
for u, v ∈ H. In particular,

ϕ(Jλu− Jλv) ≤ ϕ(u− v) for all u, v ∈ H.

Proof. The second inequality follows from a well-known fact that resolvents of
maximal monotone operators are non-expansive, i.e., ‖Jλu − Jλv‖H ≤ ‖u − v‖H
for u, v ∈ H (see e.g. [21]). So it remains to prove the first inequality. In case
I[0,∞)(u − v) = ∞, we have nothing to prove. In case I[0,∞)(u − v) = 0, that is,
u ≥ v a.e. in Ω, by the definition of Jλ, we see that

Jλu− Jλv + λ [∂ψ(Jλu) − ∂ψ(Jλv)] = u− v. (A.4)

Test both sides by −(Jλu− Jλv)− ≤ 0 to get
∫

Ω

(Jλu− Jλv)2− dx ≤ −
∫

Ω

(u− v) (Jλu− Jλv)− dx ≤ 0,

which implies Jλu ≥ Jλv a.e. in Ω. Here we used the fact that

(∂ψ(Jλu) − ∂ψ(Jλu),−(Jλu− Jλv)−) = (−∆(Jλu− Jλv),−(Jλu− Jλv)−)

+
(
|Jλu|2Jλu− |Jλv|2Jλv,−(Jλu− Jλv)−

)
≥ 0

by monotonicity. Thus I[0,∞)(Jλu− Jλv) = 0. �

A.2. Proof of (iii). Let us prove (iii). To this end, suppose that

u0 ∈ D(∂ψ) = H2(Ω) ∩H1
0 (Ω) ∩ L6(Ω). (A.5)

Then thanks to Arai [7, Theorem 3.3] (see also Barbu [14]), we assure that (A.3)
admits a solution u ∈ W 1,∞(0, T ;H) ∩ L∞(0, T ;V ) such that the function t 7→
ϕ(u′(t)) belongs to L∞(0, T ) and the function t 7→ ψ(u(t)) is absolutely continuous
on [0, T ]. Concerning energy inequalities, one can rigorously derive (4.1)–(4.3) as in
§4 under the frame of Definition 3.1. So we shall verify the other energy inequalities.
To this end, the rest of this subsection is devoted to preparing auxiliary steps.

Recall approximate problems (4.25) for (P) and denote by uλ the unique solution.
Furthermore, let ηλ be the section of ∂I[0,∞)(∂tuλ) satisfying

∂tuλ + ηλ + ∂ψλ(uλ) = κuλ, uλ(0) = u0. (A.6)

Set pλ := ∂tuλ + ηλ. Then pλ is a section of ∂ϕ(∂tuλ).

Remark A.3 (Approximate equations in [7]). Approximate problems used in [7]
seem slightly different from (A.6); indeed, they involve a liner relaxation term such
as

λut + ∂ϕ(ut) + ∂ψλ(u) ∋ κu,

since the quadratic coercivity of ϕ is not assumed. However, concerning (1.6), one
can reproduce the same arguments as in [7] for (A.6), since the original equation
(1.6) already includes the linear relaxation term. On the other hand, the following
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arguments also work well for approximate equations with the additional relaxation
term as in [7].

As mentioned in §4, we assure that ∂tuλ, ηλ ∈ C0,1([0, T ];H) and ηλ = −(κuλ −
∂ψλ(uλ))− in H for each t ∈ [0, T ]. In particular, one finds that

ηλ(0) := lim
t→0+

ηλ(t) = −
(
κu0 − ∂ψλ(u0)

)

−
.

Moreover, every assertion obtained by [7] for uλ is valid (see proofs of Theorems 3.1
and 3.3 in [7] for details). In particular, let us recall that, up to a (not relabeled)
subsequence λ→ 0,

Jλuλ → u strongly in C([0, T ];H),

uλ → u strongly in C([0, T ];H),

∂tuλ → ut weakly star in L∞(0, T ;H),

∂ψλ(uλ) → ∂ψ(u) weakly star in L∞(0, T ;H),

pλ → p weakly star in L∞(0, T ;H),

and moreover, t 7→ ψ(u(t)) is (absolutely) continuous on [0, T ] (hence, u ∈ C([0, T ];H1
0(Ω)∩

L4(Ω))) and p ∈ ∂ϕ(ut). Since ∂ψ(u) ∈ L∞(0, T ;H) and u(t) ∈ D(∂ψ) = H2(Ω) ∩
H1

0 (Ω)∩L6(Ω) for a.e. t ∈ (0, T ), it follows that u ∈ L∞(0, T ;H2(Ω)∩L6(Ω)) from
the fact that ‖∆w‖22 + ‖w‖66 ≤ ‖∂ψ(w)‖22 for all w ∈ D(∂ψ) along with the elliptic
estimate ‖w‖H2(Ω) ≤ C(‖∆w‖2 + ‖w‖2) for w ∈ H2(Ω). Thus u solves (P). Here
we further observe that

Jλuλ → u weakly star in L∞(0, T ;H1
0(Ω) ∩ L4(Ω))

and (see [21], [20] and [13])

lim
λ→0

∫ T

0

(∂ψλ(uλ), Jλuλ) dt→
∫ T

0

(∂ψ(u), u) dt.

One can also verify that

lim sup
λ→0

∫ T

0

‖∇Jλuλ(t)‖22 dt = lim sup
λ→0

∫ T

0

(−∆Jλuλ, Jλuλ) dt

≤ lim sup
λ→0

∫ T

0

(
∂ψλ(uλ) − (Jλuλ)3, Jλuλ

)
dt

≤
∫ T

0

(−∆u, u) dt =

∫ T

0

‖∇u(t)‖22 dt,

which implies

Jλuλ → u strongly in L2(0, T ;H1
0(Ω)).

Similarly,

Jλuλ → u strongly in L4(0, T ;L4(Ω)).

Hence
∫ T

0

φ(Jλuλ(t)) dt→
∫ T

0

φ(u(t)) dt. (A.7)
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Moreover, by u ∈ C([0, T ];H1
0(Ω) ∩ L4(Ω)) ∩ L∞(0, T ;H2(Ω) ∩ L6(Ω)), we deduce

that u ∈ Cw([0, T ];H2(Ω) ∩ L6(Ω)) (see [44]). It follows that

Jλuλ(t) → u(t) weakly in H2(Ω) ∩ L6(Ω) for any t ∈ [0, T ]. (A.8)

On the other hand, there exists η ∈ L∞(0, T ;H) such that

ηλ → η weakly star in L∞(0, T ;H)

and η = p − ut ∈ ∂I[0,∞)(ut). From the equivalence between (1.6) and (1.2), we
also remark that

η = − (κu− ∂ψ(u))− = −
(
∆u− u3 + κu

)

−
a.e. in Ω × (0, T ). (A.9)

We next justify formal arguments in §4 to derive energy inequalities (except
Energy Inequality 1 in §4). To this end, we claim that

Jλu, |Jλuλ|Jλuλ ∈ W 1,2(0, T ;H1
0(Ω)). (A.10)

Indeed, recalling (A.4) with u and v replaced by uλ(t+ h) and uλ(t), respectively,
and multiplying it by Jλuλ(t+ h) − Jλuλ(t), one can derive that

1

2
‖Jλuλ(t + h) − Jλuλ(t)‖22 + λ ‖∇ (Jλuλ(t+ h) − Jλuλ(t))‖22

+
3

4

∥
∥
∥(|Jλuλ|Jλuλ)(t+ h) − (|Jλuλ|Jλuλ)(t)

∥
∥
∥

2

2
≤ 1

2
‖uλ(t+ h) − uλ(t)‖22

for a.e. t ∈ (0, T ) and h ∈ R satisfying t + h ∈ [0, T ]. Here we also used the
fundamental inequality,

3

4

∣
∣
∣|a|a− |b|b

∣
∣
∣

2

≤ (a3 − b3)(a− b) for all a, b ∈ R. (A.11)

From the arbitrariness of h, we deduce that Jλuλ ∈ W 1,2(0, T ;H1
0(Ω)) by uλ ∈

C1,1([0, T ];L2(Ω)) ⊂W 1,2(0, T ;L2(Ω)).

By [7, Lemma 3.10] and the monotonicity of ∂ψλ along with Lemma A.2, we
have

Lemma A.4. For u ∈ C1([0, T ];H) satisfying ut ≥ 0 a.e. in Ω × (0, T ), it holds
that

(i) I[0,∞)((Jλu)t) ≤ I[0,∞)(ut) for a.e. t ∈ (0, T ), in particular, (Jλu)t ≥ 0
a.e. in Ω × (0, T ),

(ii) for any η ∈ ∂I[0,∞)(ut), one has

(

η(t),
d

dt
∂ψλ(u(t))

)

≥ 0 for a.e. t ∈ (0, T ).
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A.3. Derivation of Energy Inequalities under (A.5). We next derive energy
inequalities.

Energy Inequalities 3. Differentiate both sides of (A.6) in t (indeed, it is rigor-
ously possible, since both sides of (A.6) are smooth (in t) enough by approximation)
and put vλ := ∂tuλ ∈ C0,1([0, T ];H) ⊂W 1,∞(0, T ;H). Then

∂tvλ + ∂tηλ +
d

dt
∂ψλ(uλ) = κvλ. (A.12)

Multiplying both sides by ηλ and employing (ii) of Lemma A.4, we deduce that

d

dt
I[0,∞)(vλ) +

1

2

d

dt
‖ηλ‖22 ≤ κ

∫

Ω

vληλ dx = 0,

which leads us to get

‖ηλ(t)‖22 ≤ ‖ηλ(0)‖22 = ‖(κu0 − ∂ψλ(u0))−‖22 for all t ∈ [0, T ]. (A.13)

Since ∂ψλ(u0) → ∂ψ(u0) strongly in H as λ→ 0 by u0 ∈ D(∂ψ) (see [21]), one has

‖η(t)‖22 ≤ ‖η‖2L∞(0,T ;H) ≤ lim inf
λ→0

‖ηλ‖2L∞(0,T ;H) ≤ ‖(κu0 − ∂ψ(u0))−‖22

for a.e. t ∈ (0, T ). Hence (A.2) follows.

Energy Inequalities 4–6. Thanks to (A.2), as in §4, one can derive (4.7)–(4.14)
by replacing ‖η0‖2 by ‖(∆u0−u30 +κu0)−‖2. As for Energy Inequality 6, test (A.6)
by (∂ψλ(uλ)−κuλ)t, which is well-defined due to the smoothness of uλ and ∂ψλ(uλ)
in t. Then it follows that

(∂tuλ + ηλ, (∂ψλ(uλ) − κuλ)t) +
1

2

d

dt
‖∂ψλ(uλ) − κuλ‖22 = 0.

Here we also observe by (ii) of Lemma A.4 that

(ηλ, (∂ψλ(uλ) − κuλ)t) = (ηλ, (∂ψλ(uλ))t) ≥ 0,

and moreover,
(

∂tuλ,
d

dt
∂ψλ(uλ)

)

=

(

(Jλuλ)t + λ
d

dt
∂ψλ(uλ),

d

dt
∂ψλ(uλ)

)

≥
(

(Jλuλ)t,
d

dt
∂ψλ(uλ)

)

(4.26)

≥ ‖∇(Jλuλ)t‖22 +
3

4

∥
∥
∥
∥

d

dt
(|Jλuλ|Jλuλ)

∥
∥
∥
∥

2

2

. (A.14)

Here we also used the fact that

(Jλuλ(t + h) − Jλuλ(t), ∂ψλ(uλ(t+ h)) − ∂ψλ(uλ(t)))

≥
∥
∥
∥∇ (Jλuλ(t + h) − Jλuλ(t))

∥
∥
∥

2

2
+

3

4

∥
∥
∥(|Jλuλ|Jλuλ)(t+ h) − (|Jλuλ|Jλuλ)(t)

∥
∥
∥

2

2
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by (A.11). By combining all these facts,

‖∇(Jλuλ)t‖22 +
3

4

∥
∥
∥
∥

d

dt
(|Jλuλ|Jλuλ)

∥
∥
∥
∥

2

2

+
1

2

d

dt
‖∂ψλ(uλ) − κuλ‖22

≤ κ‖∂tuλ‖22 = −κ d

dt
Eλ(uλ(t)),

where Eλ(w) := ψλ(w) − (κ/2)‖w‖22. Integrate both sides over (0, t) to see that

∫ t

0

(

‖∇(Jλuλ)τ‖22 +
3

4

∥
∥
∥
∥

d

dt
(|Jλuλ|Jλuλ)

∥
∥
∥
∥

2

2

)

dτ

+
1

2
‖∂ψλ(uλ(t)) − κuλ(t)‖22 + κEλ(uλ(t)) ≤ 1

2
‖∂ψλ(u0) − κu0‖22 + κEλ(u0).

(A.15)

Thus

(Jλuλ)t → ut weakly in L2(0, T ;H1
0(Ω)), (A.16)

∂t (|Jλuλ|Jλuλ) → ∂t(|u|u) weakly in L2(0, T ;L2(Ω)). (A.17)

Passing to the limit in (A.15) as λ → 0 and recalling that u ∈ Cw([0, T ];H2(Ω) ∩
L6(Ω)), we have

∫ t

0

(

‖∇uτ‖22 +
3

4

∥
∥
∥
∥

d

dt
(|Jλuλ|Jλuλ)

∥
∥
∥
∥

2

2

)

dτ

+
1

2
‖∂ψ(u(t)) − κu(t)‖22 + κE(u(t)) ≤ 1

2
‖∂ψ(u0) − κu0‖22 + κE(u0)

for all t ∈ (0, T ). Furthermore, one can also derive (4.18) (with ‖η0‖2 replaced by
‖(∆u0 − u30 + κu0)−‖2). Then (4.21) also follows immediately from (4.18) as in §4.

A.4. Proof of (ii). We next prove (ii). Take an approximate sequence (u0,n)
satisfying

u0,n ∈ Dr, u0,n → u0 strongly in H1
0 (Ω) ∩ L4(Ω). (A.18)

Since u0,n fulfills (A.5), the solution un of (P) with u0 replaced by u0,n and the
section ηn ∈ ∂I[0,∞)(∂tun) as in (3.1) satisfy all energy inequalities that have been
justified in the proof of (iii). Here we mainly use (4.1)–(4.3) and (4.13) and note
by (A.2) and (A.18) that

E(u0,n) → E(u0), ‖ηn(t)‖22 ≤ ‖
(
∆u0,n − u30,n + κu0,n

)

−
‖22 ≤ r for a.e. t > 0.
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Hence, by a priori estimates (4.1)–(4.3) and (4.13) for un, one can obtain, up to a
(not relabeled) subsequence n→ ∞,

un → u weakly in W 1,2(0, T ;H),

weakly star in L∞(0, T ;H1
0(Ω) ∩ L4(Ω)),

strongly in C([0, T ];H),

−∆un + u3n → −∆u+ u3 weakly in L2(0, T ;H),

ηn → η weakly star in L∞(0, T ;H),

which also implies u(t) ∈ D(∂ψ) for a.e. t ∈ (0, T ) and ut + η − ∆u + u3 = κu
a.e. in Ω × (0, T ). Moreover, as in the proof of (A.7), one finds that

∫ T

0

E(un(t)) dt→
∫ T

0

E(u(t)) dt.

We next identify the limit η. We see that

∫ T

0

(ηn, ∂tun) dt = −
∫ T

0

‖∂tun‖22 − E(un(T )) + E(u0,n),

which implies

lim sup
n→∞

∫ T

0

(ηn, ∂tun) dt ≤ −
∫ T

0

‖ut‖22 − E(u(T )) + E(u0) =

∫ T

0

(η, ut) dt.

Hence by Minty’s trick, we conclude that ut ≥ 0 and η ∈ ∂I[0,∞)(ut) a.e. in Ω ×
(0, T ). Since the function t 7→ u(t) is weakly continuous on [0, T ] with values in
H1

0 (Ω) ∩ L4(Ω) (see [44]) and the function t 7→ φ(u(t)) is (absolutely) continuous
on [0, T ] (by ut ∈ L2(0, T ;H) and −∆u+ u3 ∈ L2(0, T ;H)), we also assure by the
uniform convexity of H1

0 (Ω) ∩ L4(Ω) that

u ∈ C([0, T ];H1
0(Ω) ∩ L4(Ω)).

Concerning energy inequalities, (4.1)–(4.3) are (rigorously) derived as in §4.
Moreover, (A.1) is proved as in the proof of (iii). Hence (4.7)–(4.14) can be also rig-
orously derived with ‖η0‖22 replaced by r. Moreover, combining (4.18) with (4.13)
for un, one can verify

t1/2∂tun → t1/2ut weakly in L2(0, T ;H1
0(Ω)),

t1/2∂t(|un|un) → t1/2∂t(|u|u) weakly in L2(0, T ;L2(Ω)),

t1/2∆un → t1/2∆u weakly star in L∞(0, T ;L2(Ω)),

t1/2u3n → t1/2u3 weakly star in L∞(0, T ;L2(Ω)),

which also yields (4.18)–(4.21). Thus (ii) has been proved.



42 GORO AKAGI AND MESSOUD EFENDIEV

A.5. Proof of (i). Finally, let us prove (i). To this end, take u0,n satisfying

u0,n ∈ Dr, u0,n → u0 strongly in L2(Ω). (A.19)

The solution un of (P) with u0 replaced by u0,n and the section ηn of ∂I[0,∞)(∂tun)
satisfy all the energy inequalities that are justified in (iii). Here we mainly use (A.2),
(4.7)–(4.9), (4.14) and (4.19) (with ‖η0‖2 replaced by ‖(∆u0,n − u30,n + κu0,n)−‖2)
for un along with the fact that

‖ηn(t)‖22 ≤ ‖
(
∆u0,n − u30,n + κu0,n

)

−
‖22 ≤ r for a.e. t > 0.

Moreover, (4.9) yields
∫ t

0

τ‖∂τun‖22 dτ + tE(un(t)) ≤ C1

2
t
(

1 + ‖η0‖4/32

)

+
1

4
‖u0,n‖22,

which implies

E(un(t)) ≤ C1

2

(
1 + r2/3

)
+

1

4t
‖u0,n‖22 for any t > 0. (A.20)

Due to the lack of the convergence E(u0,n) → E(u0), we need an extra argument.
One can obtain the following estimate for solutions u of (P) in the dual space
V ∗ = H−1(Ω) + L4/3(Ω) of V = H1

0 (Ω) ∩ L4(Ω):
∫ T

0

‖ut‖4/3V ∗ dt ≤ C

∫ T

0

(

‖η‖4/32 + ‖∆u‖4/3V ∗ + ‖u3‖4/3V ∗ + ‖u‖4/32

)

dt

≤ C

∫ T

0

(

‖η‖22 + ‖∇u‖22 + ‖u‖4L4(Ω) + ‖u‖22 + 1
)

dt.

By Aubin-Lions-Simon’s compactness lemma along with the compact embeddings
V →֒ L2(Ω) ≡ (L2(Ω))∗ →֒ V ∗, it follows that

un → u weakly star in L∞(0, T ;L2(Ω)),

weakly in W 1,4/3(0, T ;V ∗) ∩ L2(0, T ;H1
0(Ω)) ∩ L4(0, T ;L4(Ω)),

strongly in L2(0, T ;L2(Ω)) ∩ C([0, T ];V ∗),

ηn → η weakly star in L∞(0, T ;L2(Ω)).

Moreover, u ∈ Cw([0, T ];L2(Ω)) and u(0) = u0. Let δ ∈ (0, T ) be arbitrarily fixed.
Then it follows from (4.9), (4.14) and (4.19) for un that

un → u strongly in C([δ, T ];L2(Ω)),

t1/2∂tun → t1/2ut weakly in L2(0, T ;L2(Ω)),

t1/2un → t1/2u weakly star in L∞(0, T ;H1
0(Ω)),

t1/4un → t1/4u weakly in L∞(0, T ;L4(Ω)),

t
(
−∆un + u3n

)
→ t

(
−∆u+ u3

)
weakly star in L∞(0, T ;L2(Ω)),

and hence, ut + η−∆u+ u3 = κu a.e. in Ω× (0, T ). Here we used the demiclosed-
ness of maximal monotone operators to identify the limit. Moreover, from the
arbitrariness of δ > 0, we see that u ∈ C((0, T ];L2(Ω)). We claim that u(t) → u0
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strongly in L2(Ω) as t→ 0+, which also implies u ∈ C([0, T ];L2(Ω)). Indeed, since
u(t) → u0 weakly in L2(Ω) as t→ 0+, by (4.8) and (A.19),

‖u0‖2 ≤ lim inf
tց0

‖u(t)‖2 ≤ lim sup
tց0

‖u(t)‖2 ≤ ‖u0‖2,

which concludes that u(t) → u0 strongly in L2(Ω) as t ց 0. Thus we obtain
u ∈ C([0, T ];L2(Ω)).

Now, it remains to identify the limit η of ηn ∈ ∂I[0,∞)(∂tun). To this end, let
ε ∈ (0, T ) be a constant, and observe that

lim sup
n→∞

∫ T

ε

(ηn, ∂tun) dt
(1.6)

≤ − lim inf
n→∞

∫ T

ε

‖∂tun‖22 dt− lim inf
n→∞

E(un(T ))

+ lim sup
n→∞

E(un(ε)).

By Aubin-Lions-Simon’s compactness lemma along with the compact embedding
H2(Ω) ∩ L6(Ω) →֒ H1(Ω) ∩ L4(Ω), for any δ > 0, we see that

un → u strongly in C([δ, T ];H1
0(Ω) ∩ L4(Ω)),

which particularly implies

un(t) → u(t) strongly in H1
0 (Ω) ∩ L4(Ω)

for t ∈ (0,∞). Therefore for any ε > 0, we conclude that

E(un(ε)) → E(u(ε)).

Here we also remark that due to (A.20), E(u(ε)) is estimated by

E(u(ε)) ≤ C1

2

(
1 + r2/3

)
+

1

4ε
‖u0‖22 for any ε > 0.

It follows that

lim sup
n→∞

∫ T

ε

(ηn, ∂tun) dt ≤ −
∫ T

ε

‖∂tu‖22 dt−E(u(T )) + E(u(ε))

=

∫ T

ε

(η, ut) dt,

and therefore, due to Minty’s trick (see [21]), we conclude that η ∈ ∂I[0,∞)(ut)
a.e. in Ω × (ε, T ) (see §A.4). Since one can also take ε > 0 arbitrarily close to
zero, the desired conclusion is obtained. As for the energy inequalities, the idea of
derivation is basically same as the proof of (ii).

A.6. Proof of (iv). Let u = u(x, t) be a solution to (P) which also solves (5.1)–
(5.3). By Theorem 5.1, it is uniquely determined by u0 (and actually exists).
Therefore by the proofs of (i)–(iii) of Theorem A.1, u(x, t) satisfies the energy
inequalities which have already been verified in the preceding subsections and is
also obtained as a limit of unique solutions uλ to (A.6) as λ→ 0.
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Energy Inequality (4.6). By (A.9), for each s ∈ [0, T ) at which η(s) satisfies
(1.6), we can construct a solution to (P) with the initial datum u(s) as above and
deduce by (A.2) and the uniqueness of solutions that

‖η(t)‖22 ≤ ‖η(s)‖22 for a.e. t ∈ (s, T ). (A.21)

We remark that the set of t ∈ (s, T ) at which (A.21) is satisfied may depend on
the choice of s. We further claim that

‖η(t)‖22 ≤ ‖η(s)‖22 for a.e. (s, t) ∈ {(σ, τ) ∈ [0, T ]2 : σ ≤ τ} (A.22)

(hereafter, we also simply write (4.6) instead of (A.22)). Indeed, the subset I =
{(σ, τ) ∈ [0, T ]2 : σ ≤ τ, ‖η(τ)‖2 > ‖η(σ)‖2} is (Lebesgue) measurable due to
the measurability of t 7→ ‖η(t)‖2. Hence since Iσ := {τ ∈ [σ, T ] : (σ, τ) ∈ I} has
Lebesgue measure zero, so is I by Fubini-Tonelli’s lemma. Thus (A.22) follows.

Energy Inequalities (4.15) and (4.17). Similarly, we can also prove by unique-
ness that

∫ t

s

(

‖∇uτ‖22 +
3

4

∥
∥
∥
∥

d

dt
(|u|u)

∥
∥
∥
∥

2

2

)

dτ

+
1

2
‖∂ψ(u(t)) − κu(t)‖22 + κE(u(t)) ≤ 1

2
‖∂ψ(u(s)) − κu(s)‖22 + κE(u(s))

for a.e. 0 < s < t < T.

In particular, the function t 7→ (1/2) ‖∂ψ(u(t)) − κu(t)‖22+κE(u(t)) is non-increasing,
and hence, it is differentiable a.e. in (0, T ). Dividing both sides by t−s and taking
a limit as sր t, we obtain (4.15). Furthermore (4.17) also follows in a similar way.

Energy Inequality 2. Here we suppose that u0 satisfies (A.5). Multiplying (A.12)
by vλ, we have

1

2

d

dt
‖vλ‖22 +

∫

Ω

(∂tηλ)vλ dx +

(
d

dt
∂ψλ(uλ), vλ

)

= κ‖vλ‖22.

Here we remark that
∫

Ω

(∂tηλ)vλ dx =
d

dt
I∗[0,∞)(ηλ) = 0

by vλ ∈ ∂I∗[0,∞)(ηλ). Therefore we find by (A.14) that

1

2

d

dt
‖vλ‖22 + ‖∇(Jλuλ)t‖22 +

3

4

∥
∥
∥
∥

d

dt
(|Jλuλ|Jλuλ)

∥
∥
∥
∥

2

2

dx ≤ κ‖vλ‖22.

To apply the convergence obtained so far (e.g. (A.16) and (A.17)) and employ the
weak lower semicontinuity of norms,

1

2

d

dt

(
e−2κt‖vλ‖22

)
+ e−2κt‖∇(Jλuλ)t‖22 ≤ 0.

Integrate both sides over (s, t), pass to the limit as λ→ 0, divide both sides of the
resulting inequality by t− s and take the limit as sր t. Then one can obtain

1

2

d

dt

(
e−2κt‖ut‖22

)
+ e−2κt‖∇ut‖22 ≤ 0 for a.e. 0 < t < T,
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which implies (4.5). Thus all energy inequalities (for u0 satisfying (A.5)) obtained in
§4 along with (iii) of Theorem 3.2 have been rigorously reproduced. This completes
the proof.

Appendix B. Proof of Theorem 5.1

As mentioned in Remark 5.5, the arguments in §5 include formal computations.
In order to justify them, we recall again the approximate problems (A.6) whose
solutions are sufficiently smooth in time and reproduce the arguments in a rigorous
fashion. Throughout this section, let ((0, T ),Mt, µt), (Ω,Mx, µx) and (Q,Mx,t, µx,t)
be the measure spaces of Lebesgue measures with respect to t, x and (x, t), respec-
tively. Moreover, for any A ∈ Mx,t, we write

Ax := {t ∈ (0, T ) : (x, t) ∈ Q} for each x ∈ Ω,

At := {x ∈ Ω: (x, t) ∈ Q} for each t ∈ (0, T ).

Then Ax ∈ Mt for µx-a.e. x ∈ Ω and At ∈ Mx and for µt-a.e. t ∈ (0, T ), by
Fubini-Tonelli’s lemma.

Let uλ be the solution of (A.6) for u0 ∈ D(∂ψ) = H2(Ω) ∩ H1
0 (Ω) ∩ L6(Ω) and

let ηλ be the section of ∂I[0,∞)(∂tuλ). We recall that uλ ∈ C1,1([0, T ];L2(Ω)) and
ηλ, ∂ψλ(uλ) ∈ C0,1([0, T ];L2(Ω)). Hence ηλ and ∂ψλ(uλ) are differentiable µt-a.e. in
(0, T ) with values in L2(Ω). Moreover, (by taking a continuous representation of
ηλ) it holds that

uλ(t) = uλ(s) +

∫ t

s

∂τuλ(τ) dτ, ηλ(t) = ηλ(s) +

∫ t

s

∂τηλ(τ) dτ in L2(Ω)

for any t, s ∈ [0, T ]. Moreover, recall that uλ and ηλ satisfy (A.6) in L2(Ω) for all
t ∈ [0, T ].

Since both sides of (A.6) are differentiable µt-a.e. in (0, T ), as in the proof of
Lemma 5.4, for any r ∈ (1, 2) and ζ ∈ Lq(Ω), ζ ≥ 0 with q ∈ (1,∞) satisfying
1/q + r/2 = 1, one observes that

∫

Ω

ζ(x)|ηλ(x, t)|r dx ≤
∫

Ω

ζ(x)|ηλ(x, s)|r dx if t ≥ s

for all t, s ∈ [0, T ]. Since ηλ ∈ C0,1([0, T ];L2(Ω)) and ζ |ηλ|r−2ηλ ∈ C([0, T ];L2(Ω)),
we deduce that the function t 7→

∫

Ω
ζ(x)|ηλ(x, t)|r dx belongs to C0,1([0, T ]), and

hence,
d

dt

∫

Ω

ζ(x)|ηλ(x, t)|r dx ≤ 0 for µt-a.e. t ∈ (0, T ).

From the arbitrariness and nonnegativity of ζ , it follows that

r|ηλ(·, t)|r−2ηλ(·, t)∂tηλ(·, t) = ∂t|ηλ(·, t)|r ≤ 0 µx-a.e. in Ω

for µt-a.e. t ∈ (0, T ). Hence ∂tηλ(t) ≥ 0 µx-a.e. in Ω for µt-a.e. t ∈ (0, T ).

For each t ∈ (0, T ), define the set Ωt ∈ Mx of x ∈ Ω satisfying

(i) uλ and ηλ satisfy (A.6) at (x, t),
(ii) uλ, ηλ and ∂ψλ(uλ) are partially differentiable in t at (x, t),



46 GORO AKAGI AND MESSOUD EFENDIEV

(iii) the following identities hold at (x, t):

uλ(x, t) = uλ(x, 0) +

∫ t

0

∂τuλ(x, τ) dτ,

ηλ(x, t) = ηλ(x, 0) +

∫ t

0

∂τηλ(x, τ) dτ,

(iv) ∂tηλ(x, t) ≥ 0 at (x, t).

Then µx(Ω \ Ωt) = 0 for µt-a.e. t ∈ (0, T ). Define the set Q1 ∈ Mx,t of (x, t) ∈ Q
satisfying (i)–(iv) above. Then noting that Ωt = (Q1)t, we find by Fubini-Tonelli’s
lemma that Q1 has full measure, i.e., µx,t(Q \Q1) = 0.

Now, set

Ω1 := {x ∈ Ω: µt((0, T ) \ (Q1)x) = 0} .
First, we claim that Ω1 ∈ Mx. Indeed, by Fubini-Tonelli’s lemma, we see that
(Q1)x ∈ Mt for µx-a.e. x ∈ Ω, and moreover, the function x 7→ µt((Q1)x) is Mx-
measurable. Since the function

x 7→ µt((0, T ) \ (Q1)x) = T − µt((Q1)x)

is also Mx-measurable, the level set Ω1 of the Mx-measurable function above also
belongs to Mx.

Next, we claim that µx(Ω \ Ω1) = 0. Indeed, note that

N1 := {(x, t) ∈ Q : x ∈ Ω \ Ω1, t ∈ (0, T ) \ (Q1)x} ⊂ Q \Q1,

N2 := {(x, t) ∈ Q : x ∈ Ω1, t ∈ (0, T ) \ (Q1)x} ⊂ Q \Q1.

Since the measure space (Q,Mx,t, µx,t) is complete, the sets N1 and N2 also belong
to Mx,t. In particular, we obtain µx,t(N1) = µx,t(N2) = 0. By Fubini-Tonelli’s
lemma,

∫

Ω\Ω1

µt((0, T ) \ (Q1)x) dx = µx,t(N1) = 0,

which implies µx(Ω \ Ω1) = 0 by µt((0, T ) \ (Q1)x) > 0 for a.e. x ∈ Ω \ Ω1.

Furthermore, the set

Q2 := {(x, t) ∈ Q : x ∈ Ω1, t ∈ (Q1)x} = (Ω1 × (0, T )) \N2

is Mx,t-measurable and has full measure, i.e., µx,t(Q \ Q2) = 0; indeed, applying
Fubini-Tonelli’s lemma and combining all the facts obtained so far, we conclude
that

0 ≤ µx,t(Q \Q2) ≤ µx,t(N2) + µx(Ω \ Ω1)T = 0.

Moreover, Q2 is a subset of Q1. Now, we are ready to prove Theorem 5.1. Let
(x0, t0) ∈ Q2 be fixed. In case uλ(x0, t0) = u0(x0), by ∂I[u0(x),∞)(uλ(x0, t0)) =
(−∞, 0], the relation

∂tuλ + ∂I[u0(x),∞)(uλ) + ∂ψλ(uλ) − κuλ ∋ 0 (B.1)
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holds true at (x0, t0). In case uλ(x0, t0) > u0(x0) (then ∂I[u0(x0),∞)(uλ(x0, t0)) =
{0}), since (x0, t0), (x0, t) ∈ Q1 for µt-a.e. t ∈ (0, T ), there exists t1 ∈ (0, t0)∩(Q1)x0

such that ∂tuλ(x0, t1) > 0, which implies ηλ(x0, t1) = 0. Moreover, it follows that

0 ≥ ηλ(x0, t0) =

∫ t0

t1

∂τηλ(x0, τ) dτ + ηλ(x0, t1)

=

∫

(t1,t0)∩(Q1)x0

∂τηλ(x0, τ) dτ + ηλ(x0, t1) ≥ 0,

which implies ηλ(x0, t0) = 0. Thus (B.1) is satisfied at (x0, t0). In particular, the
section ηλ of ∂I[0,∞)(∂tuλ) also belongs to the set ∂I[u0(x0),∞)(uλ) for µx,t-a.e. in Q.

Recalling the convergence as λ→ 0 of solutions uλ for (A.6) obtained in §A, one
can deduce that

ηλ → η ∈ ∂I[u0(x),∞)(u) weakly star in L∞(0, T ;L2(Ω))

by the demiclosedness of maximal monotone operators. Hence the limit u of uλ
also solves (5.1)–(5.3).

We next consider the case that u0 ∈ Dr
L2

. Then let us take u0,n ∈ Dr such that

u0,n → u0 strongly in L2(Ω). (B.2)

Let un be the solution of (P) with the initial data u0,n such that un also solves
(5.1)–(5.3) with u0 replaced by u0,n. In particular, the section ηn of ∂I[0,∞)(∂tun)
as in (3.1) also belongs to the set ∂I[u0,n(x),∞)(un). On the other hand, by (B.2), it
holds that I[u0,n(x),∞) → I[u0(x),∞) on L2(Ω) in the sense of Mosco (see Lemma B.1
below and [10]). Therefore from the convergence of un obtained in §A.4, we deduce
that the limit η of ηn fulfills

η ∈ ∂I[u0(x),∞)(u) for a.e. t ∈ (0, T ).

Lemma B.1. Let u0,n, u0 ∈ L2(Ω) be such that u0,n → u0 strongly in L2(Ω). Then

I[u0,n(x),∞) → I[u0(x),∞) on L
2(Ω) in the sense of Mosco.

Proof. Existence of recovery sequences : For each w ∈ D(I[u0(x),∞)), define a recovery
sequence wn := w − u0 + u0,n ∈ L2(Ω). Then wn ≥ u0,n, which gives wn ∈
D(I[u0,n(x),∞)). Moreover, wn → w strongly in L2(Ω) by assumption.

Weak liminf convergence: Let wn, w ∈ L2(Ω) be such that wn → w weakly in
L2(Ω). We shall check that

lim inf
n→∞

I[u0,n(x),∞)(wn) ≥ I[u0(x),∞)(w).

In case lim infn→∞ I[u0,n(x),∞)(wn) = ∞, the assertion follows immediately. In case
lim infn→∞ I[u0,n(x),∞)(wn) <∞, up to a (not relabeled) subsequence, I[u0,n(x),∞)(wn)
is bounded. Hence wn ≥ u0,n a.e. in Ω. For each z ∈ C∞

0 (Ω) satisfying z ≥ 0, it
follows that ∫

Ω

wnz dx ≥
∫

Ω

u0,nz dx.
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Letting n → ∞ and using the arbitrariness of z, we conclude that w ≥ u0
a.e. in Ω. Thus I[u0(x),∞)(w) = 0, and hence, the assertion follows. Consequently,
I[u0,n(x),∞) → I[u0(x),∞) on L2(Ω) in the sense of Mosco. �

As in §5, one can prove the uniqueness of u which solves both (5.1)–(5.3) and (P)
as well as the equivalence of two problems. This completes the proof of Theorem
5.1.
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golstädter Landstraße 1, 85764 Neunerberg, Germany ; Technische Universitt
München, Zentrum Mathematik, Boltzmannstraße 3, D-85748 Garching bei München,
Germany.

E-mail address : akagi@m.tohoku.ac.jp

(Messoud Efendiev) Helmholtz Zentrum München, Institut für Computational Bi-
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