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SUMMARY

Purpose: Structural variations disrupting the gene

encoding the neuron-specific splicing regulator

RBFOX1 have been reported in three patients exhib-

iting epilepsy in comorbidity with other neuropsychi-

atric disorders. Consistently, the Rbfox1 knockout

mouse model showed an increased susceptibility of

seizures. The present candidate gene study tested

whether exon-disrupting deletions of RBFOX1 increase

the risk of idiopathic generalized epilepsies (IGEs),

representing the largest group of genetically deter-

mined epilepsies.

Methods: Screening of microdeletions (size: >40 kb, cov-

erage >20 markers) affecting the genomic sequence of

the RBFOX1 gene was carried out by high-resolution sin-

gle-nucleotide polymorphism (SNP) arrays in 1,408 Euro-

pean patients with idiopathic generalized epilepsy (IGE)

and 2,256 population controls. Validation of RBFOX1 dele-

tions and familial segregation analysis were performed by

quantitative polymerase chain reaction (qPCR).

Key Findings: We detected five exon-disrupting RBFOX1

deletions in the IGE patients, whereas none was observed

in the controls (p = 0.008, Fisher’s exact test). The size of

the exonic deletions ranged from 68 to 896 kb and

affected the untranslated 5′-terminal RBFOX1 exons. Seg-

regation analysis in four families indicated that the dele-

tions were inherited, display incomplete penetrance, and

heterogeneous cosegregation patterns with IGE.

Significance: Rare deletions affecting the untranslated 5′-
terminal RBFOX1 exons increase risk of common IGE syn-

dromes. Variable expressivity, incomplete penetrance,

and heterogeneous cosegregation patterns suggest that

RBFOX1 deletions act as susceptibility factor in a geneti-

cally complex etiology, where heterogeneous combina-

tions of genetic factors determine the disease phenotype.

KEY WORDS: Idiopathic generalized epilepsy, Microde-

letion, RBFOX1, Genetics.

The idiopathic generalized epilepsies (IGEs) affect up to
0.3% of the general population and account for 30% of all
epilepsies (Jallon et al., 2001). Genetic factors play a

predominant role in the etiology of common IGE syn-
dromes. Heritability estimates are >80% and recurrence risk
for first-degree relatives varies between 4% and 9% depend-
ing on the IGE subtype (Helbig et al., 2008). The genetic
architecture is likely to display a biologic continuum, in
which a small fraction follows monogenic inheritance,
whereas the majority of IGE patients presumably display an
oligogenic/polygenic predisposition. Molecular genetic
studies have identified causative gene mutations in mainly
rare monogenic forms of genetic epilepsies. Most of the
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currently known genes for human genetic epilepsies encode
voltage-gated or ligand-gated ion channels (Reid et al.,
2009; Pandolfo, 2011). Despite extensive research, the
majority of genetic variants predisposing to common IGE
syndromes remain elusive.

Large-scale analysis of structural genomic variations
using high-resolution whole-genome oligonucleotide arrays
suggests that copy number variations (CNVs) play a sub-
stantial role in about 3% of patients with idiopathic epilep-
sies (de Kovel et al., 2010; Heinzen et al., 2010; Mefford
et al., 2011). Recurrent microdeletions on 15q11.2,
15q13.3, and 16p13.11 increase risk of IGE and a wide
range of neurodevelopmental disorders (Helbig et al., 2009;
de Kovel et al., 2010; Heinzen et al., 2010; for review see
Hochstenbach et al., 2011). The genes deleted by these mic-
rodeletions are thought to play a key role in the regulation of
neuronal excitation and cortical synchronization.

Structural variations disrupting the gene encoding the
neuronal splicing regulator RBFOX1 (also assigned as
A2BP1, HRNBP1, or FOX1) have been reported in three
patients exhibiting epilepsy in comorbidity with autism,
intellectual disability, or pontocerebellar hypoplasia (Bhalla
et al., 2004; Martin et al., 2007; Gallant et al., 2011). The
RBFOX1 gene is located in the chromosomal region
16p13.3 to which a linkage locus for photoparoxysmal
response in families of IGE subjects has been mapped (Pinto
et al., 2005). The RBFOX1 gene plays a key role in the regu-
lation of neuronal excitation and influences susceptibility of
epilepsy (Gehman et al., 2011; Voineagu et al., 2011). The
RBFOX1 protein regulates splicing of many neuronal tran-
scripts by binding the sequence (U)GCAUG in introns
flanking alternative exons (Jin et al., 2003; Auweter et al.,
2006; Voineagu et al., 2011; Fogel et al., 2012). A number
of RBFOX1 target transcripts (e.g., SNAP25, SCN8A,
GRIN1, GABRG2, DCX, GAD2, KCNQ2, SLC12A5, SV2B,
SYN1) have been implicated to play a role in epileptogenesis
(Barnby et al., 2005; Corradini et al., 2009; Papale et al.,
2009; Pandolfo, 2011; Fogel et al., 2012; Veeramah et al.,
2012) and show differentially spliced RNA transcripts in
Rbfox1 knockout mice (Gehman et al., 2011) Notably,
brain-specific homozygous and heterozygous Rbfox1
knockouts in mice do not alter brain morphology but display
spontaneous seizures and a dramatic epileptogenic response
to kainic acid resulting in status epilepticus (Gehman et al.,
2011). Consistent with the splicing alterations in mice, a
RNA interference–mediated 50% knockdown of RBFOX1
transcripts in human neurons changes the alternative splic-
ing pattern and expression of primarily neuronal genes
involved in synapse formation and function (Voineagu
et al., 2011; Fogel et al., 2012).

The present candidate gene association study tested
whether exon-disrupting deletions of RBFOX1 increase risk
of common IGE syndromes. We found a significant excess
of exon-disrupting deletions of the RBFOX1 gene in IGE
patients compared to population controls. Familial cosegre-

gation analysis implicates that exon-disrupting RBFOX1
deletions represent susceptibility factors that increase risk
of IGE but are not sufficient for the expression of IGE in
most of the families.

Subjects and Methods
Study participants

The study protocol was approved by the local institu-
tional review boards of the participating centers, and all
study participants gave informed consent. The patients with
common IGE syndromes were recruited as a concerted
effort of epilepsy genetics programs integrated in the Euro-
pean EPICURE Project (http://www.epicureproject.eu;
EPICURE Consortium et al., 2012). Phenotyping and diag-
nostic classification of IGE syndromes were carried out
according to standardized protocols (available at: http://por-
tal.ccg.uni-koeln.de/ccg/research/epilepsy-genetics/sam-
pling-procedure). Patients with IGE exhibit unprovoked
generalized seizures but are typically otherwise normal and
have no anatomic brain abnormalities (Commission on
Classification & Terminology of the International League
Against Epilepsy, 1989; Nordli, 2005). Accordingly, the
ascertainment scheme applied in this multicenter study did
not include IGE patients with severe intellectual disability
(no basic education, permanently requiring professional
support in their daily life). All subjects of the case–control
association cohorts were typed by the Affymetrix Genome-
Wide Human SNP Array 6.0 (Affymetrix, Santa Clara, CA,
U.S.A.). To ensure highly confident CNV calls, we
excluded all individuals (351 of 4,015) carrying a genome-
wide excess of more than 50 microdeletions (size >40 kb,
coverage >20 markers) prior to the assessment of RBFOX1
microdeletions (Elia et al., 2012).

The case–control sample included in this candidate gene
CNV study comprised 1,408 unrelated patients with IGE of
self-identified Northwestern European ancestry (869 females/
539 males; childhood absence epilepsy [CAE] n = 413, juve-
nile absence epilepsy [JAE] n = 207, unspecified idiopathic
absence epilepsy [IAE] n = 7, juvenile myoclonic epilepsy
[JME] n = 557, epilepsies with generalized tonic–clonic
seizures alone [EGTCS] n = 224) and 2,256 German
population controls (1,077 females/1,179 males). Array data
of 2,256 German control subjects were obtained from the
PopGen biobank (University Hospital Schleswig-Holstein,
Campus Kiel, Kiel, Germany) and the KORA (Cooperative
Health Research in the Region of Augsburg) research plat-
form representing epidemiologically recruited cohorts from
the Northern (Schleswig-Holstein, PopGen) and Southern
(Augsburg, KORA) regions of Germany. The control sub-
jects have not been screened for epilepsy or other neurodevel-
opmental disorders. EIGENSTRAT principal component
analysis (Price et al., 2006) was applied to remove ancestry
outliers and to match the European ancestry of the case–con-
trol cohorts (EPICUREConsortium et al., 2012).
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RBFOX1microdeletion screening
For all DNA samples of the case–control cohorts, we

assessed the signal intensities of 1.8 million probe sets on
the Affymetrix Genome-Wide Human SNP Array 6.0. CNV
analysis of all Affymetrix SNP 6.0 arrays was performed at
the Cologne Center for Genomics, using the algorithm
implemented in the Affymetrix Genotyping Console ver-
sion 4.1.1. To achieve high accuracy in CNV calling across
Affymetrix SNP 6.0 arrays processed at different laborato-
ries, microdeletion screening was restricted to deletions
covered by at least 20 probes and spanning >40 kb in size
(Pinto et al., 2011).

Array-based screening of RBFOX1 deletions captured all
deletions affecting the genomic sequence of the RBFOX1
gene (chr16:6,069,131-7,763,339, human genome build 37/
hg19). The RBFOX1 gene is located in the chromosomal
region 16p13.3 and consists of 21 exons (NM_018723.3),
which form six mRNA transcripts encoding five known pro-
tein isoforms (Fig. 1; RBFOX1 exon annotation adapted
from Fogel et al., 2012). Notably the 5′-terminal exons 1, 2,
3, 1B and part of exon 4 are untranslated (Fig. 1). All poten-
tial RBFOX1 microdeletions were manually inspected for
the regional SNP heterozygosity state and log2 ratios of the
signal intensities to exclude technical artifacts. Subse-
quently, the copy number state of all RBFOX1 microdele-
tions identified by the array-based CNV analysis was
examined by real-time quantitative PCR (qPCR), using
seven TaqMan CNV assays covering the 5′-terminal
RBFOX1 exons 1-4 (Life Technologies, Carlsbad, CA, U.S.A.;
Fig. S1).

Statistical analysis
Case–control association analysis was carried out using a

two-sided Fisher’s exact test.

Results
Detection of RBFOX1 deletions in patients with IGE and
controls

Microdeletions (size >40 kb, coverage >20 markers)
affecting the genomic sequence of the RBFOX1 gene were

found in 8 (0.6%) of 1,408 individuals with IGE, whereas
two deletions were observed in 2,256 controls (p = 0.017,
Fisher’s exact test; odds ratio [OR] 6.4, 95% confidence
interval [CI] 1.2–62.35; Figs 1 and S1). The size of the dele-
tions ranged from 41 to 896 kb. All 10 RBFOX1 deletions
were located in the 5′-terminal RBFOX1 region encompass-
ing the untranslated exons 1–4. Remarkably, the two
RBFOX1 deletions observed in the controls were both
located in intronic sequences and were smaller (41 and
56 kb) than the deletions observed in the IGE patients (68–
896 kb; Fig. S1). Specifically exon-disrupting RBFOX1
deletions were present in 5 (0.35%) of 1,408 individuals
with IGE (Table 1) and none was detected in 2,256 controls
(p = 0.008, Fisher’s exact test; Figs 1 and S2). The hemizy-
gous copy number state of all RBFOX1 deletions detected
by the array-based CNV scan could be confirmed in the IGE
patients by TaqMan qPCR assays. DNA samples of the con-
trol subjects were not available for qPCR validation.

Fig 1.

Exon-disrupting RBFOX1 deletions. Overview of exon-disrupt-

ing RBFOX1 deletions, genomic localization, and overview of

the transcript variants (hg19). The largest transcript variants 4–
5 (NM_018723.3, NM_001142333.1) cover almost the entire

1.7 Mb of the gene and encode isoforms 4 and 5. The third larg-

est transcript variant 6 also encodes isoform 4

(NM_001142334.1), whereas transcript variants 1, 2, and 3

cover only approximately 380 kb of the 3′-region of the gene.

Green bars represent microdeletion size and location for each

individual IGE patient. The red bars indicate the untranslated

5′-terminal RBFOX1 exons. Tr., Transcript variant ID. The exon

annotation refers to the genomic organization of RBFOX1 as

shown in Fogel et al. (2012).

Epilepsia ILAE

Table 1. RBFOX1 exon-disrupting deletions in IGE index patients

Family Index patient Deletion size (kb) Breakpoints at chr16 (Mb)

Diagnosis/age-at-onset/seizure

types Familial comorbidity

1 EG0369 896 5.616–6.512 CAE:3/abs,7/GTCS Developmental delay, LD, sudden death

2 EPI613 68 6.797–6.865 JAE:1/FS,15/abs,15/GTCS No neuropsychiatric disorders

3 D07u0680 103 7.035–7.138 JME:16/myo,16/GTCS ASD, LD, myopia

4 EG0395 165 6.709–6.874 CAE:3/abs, 3/GTCS No neuropsychiatric disorders

– L2364 100 6.294–6.394 JME:14/myo,14/GTCS No neuropsychiatric disorders

Diagnosis: ASD, autism spectrum disorder; CAE, childhood absence epilepsy; EGTCS, epilepsy with generalized tonic–clonic seizures alone; FS, febrile seizure;
JME, juvenile myoclonic epilepsy; IGE, idiopathic generalized epilepsy; LD, learning disability; Seizure types: myo, myoclonic seizure; abs, absence seizure.

Survey on RBFOX1 exon-disrupting deletions in index patients with idiopathic generalized epilepsies.
Values indicate the age-of-onset in years.
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Familial segregation and comorbidity analysis of the
exonic RBFOX1 deletions

The segregation of exonic RBFOX1 deletions identified
in the IGE index cases was tracked in four families (Fig. 2).
The copy number status of the RBFOX1 was assessed in 20
available family members using TaqMan qPCR assays
(Table S1). In total, 12 family members carried an exon-dis-
rupting RBFOX1 deletion (6 females, 6 males). All
RBFOX1 deletions identified in the IGE index patients were
inherited. Overall, the deletions were transmitted five times
maternally and one time paternally. Seven of 12 deletion
carriers were affected by IGE, and five carriers were clini-
cally unaffected. Seven of nine IGE patients investigated
carried an exonic RBFOX1 deletion. In families 1 and 2, ex-
onic RBFOX1 deletions were detected in all investigated
family members with IGE. In contrast, the RBFOX1 dele-
tion identified in the IGE index patient did not cosegregate
in family 3. The phenotypic features of the IGE syndromes
of the seven affected exonic deletion carriers did not differ
from those IGE patients lacking a RBFOX1 deletion. Nota-
bly, six of seven IGE patients with RBFOX1 exon-disrupt-
ing deletions exhibited typical absence seizures.

Comorbidity with other neuropsychiatric disorders was
observed in families 1 and 3. In family 1, the index patient
EG0369 was affected by a classical CAE but also exhibited
neurodevelopmental problems with delayed speech and
attention and memory problems resulting in a learning dis-
ability that required special education. Learning disability
also occurred in the IGE-affected siblings of family 3
(D07u680 and D06519). However, only D07u680 carried a
RBFOX1 deletion, whereas the RBFOX1 deletion was miss-
ing in sibling D06519, who was affected by IGE since the
age of 15 years but also had pervasive developmental disor-
der, which is part of the diagnostic group of autism spectrum
disorders. Moreover, vision impairment due to a strong
myopia was present in the IGE-affected mother and all three
siblings in family 3. Comorbidity with neuropsychiatric dis-
orders was not reported in families 2 and 4. Magnetic reso-
nance imaging scans of three IGE patients carrying an
exonic RBFOX1 deletion (family 1, EG0340; family 2,
EPI613; family 4, EG0395) did not reveal any structural
abnormalities of the brain, other than for bifrontal lesions in
patient EG0340 due to a traumatic brain contusion occur-
ring 16 years after the onset of the IGE.

Discussion
The present candidate gene CNV study revealed a signifi-

cant excess of intronic and exonic deletions affecting the
neuron-specific RBFOX1 gene in patients with IGE com-
pared with population controls. Specifically, we found
RBFOX1 exon-disrupting deletions in 5 (0.35%) of 1,408
IGE patients, whereas none was detected in 2,256 controls.
Considering the key role of the splicing regulator RBFOX1
in the control of neuronal excitation and seizure susceptibil-
ity (Gehman et al., 2011), the present findings suggest that
rare microdeletions affecting the RBFOX1 gene increase the
risk of common IGE syndromes.

The four exonic RBFOX1 deletions tested for familial
segregation were all inherited. They differed considerably
in size, ranging from 68 to 896 kb, and were all located in
the 5′-terminal RBFOX1 region encompassing the untrans-
lated exons 1–4 (Fig. S1). The RBFOX1 5′-terminal exons
represent highly conserved genomic sequences (Fig. S3)
and are predominantly expressed in brain, suggesting that
the 5′-terminal RBFOX1 region contains important regula-
tory elements (Damianov & Black, 2010). Consistent with
our findings, the structural genomic variations of the
RBFOX1 gene reported previously in three single patients
with neurodevelopmental disorders and epilepsy also dis-
rupted the 5′-terminal RBFOX1 exons (Bhalla et al., 2004;
Martin et al., 2007; Gallant et al., 2011). Moreover, a
female with autism carrying a deletion of RBFOX1 exon 1
due to a de novo translocation t(15p;16p) displayed a signif-
icantly reduced RBFOX1mRNA expression in lymphocytes
(Martin et al., 2007). Accordingly, a similar reduction in
RBFOX1 mRNA expression can be expected in the

Figure 2.

Familial segregation of the exonic RBFOX1 deletions. Familial

segregation of exon-disrupting RBFOX1 microdeletions. Dele-

tion carriers of RBFOX1 are marked with a red dot, “n” indi-

cates an analyzed sample without deletion. Crossed individuals,

deceased; black symbols, individuals affected by IGE; CAE,

childhood absence epilepsy; JME, juvenile myoclonic epilepsy;

EGTCS, epilepsy with generalized tonic–clonic seizures alone;
FS, febrile seizures; myo, myoclonic seizures; abs, absence

seizures; ASD, autism spectrum disorder.

Epilepsia ILAE
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members of IGE-multiplex family 1 carrying the large
896 kb microdeletion that deletes the RBFOX1 exons 1–2.
IGE-multiplex family 1 is of particular interest because of
the consistent cosegregation of the IGE trait with the
RBFOX1 deletion (Fig. 2). Notably, none of the previously
identified IGE-associated microdeletions at 15q11.2,
15q13.3, and 16p13.11 (Helbig et al., 2009; de Kovel et al.,
2010; Heinzen et al., 2010; for review see: Hochstenbach
et al., 2011) was found in the IGE index patients carrying a
RBFOX1 deletion.

The potential functional alterations of the four smaller
deletions involving the RBFOX1 5′-terminal exons 2–4 and
exons 1B and 4 remain elusive (Figs 1 and S1). In particu-
lar, IGE-multiplex family 3 does not show a co-segregation
of the IGE-trait with the 163 kb spanning deletion affect-
ing exon 4. Similar heterogeneous cosegregation patterns,
incomplete penetrance, and variable phenotypic expressivi-
ty have been observed for the recurrent 15q13.3 microdele-
tion, representing the strongest genetic risk factor for IGE
(OR 68; 95% CI 29–181) identified so far (Dibbens et al.,
2009; Helbig et al., 2009; de Kovel et al., 2010; Mefford
et al., 2011; Mulley et al., 2011). Together these lines of
evidence support an oligogenic/polygenic heterogeneity
model for the genetic architecture of the majority of com-
mon IGE syndromes and other common neurodevelopmen-
tal disorders. Accordingly, the effect of each genetic risk
factor alone is not sufficient to express IGE phenotypes,
but the interactive effects of heterogeneous sets of rare and
low frequency susceptibility factors together promote icto-
genesis and epileptogenesis (Dibbens et al., 2007).
Depending on the heterogeneous composition of genetic
risk factors, the phenotypic expression of exonic RBFOX1
microdeletions is likely to exhibit extensive phenotypic
variability as observed for the large recurrent microdele-
tions at 1q21.1, 15q11.2, 15q13.3, 16p11.2, 16p13.11, and
22q11.2 (Coe et al., 2012). These pathogenic microdele-
tions seem to affect normal neurodevelopment, resulting in
an impaired homeostatic regulation of neuronal networks.
In combination with other genetic susceptibility factors, a
set of genomic structural variations may contribute to the
genetic variability and phenotypic overlap of a wide spec-
trum of common neuropsychiatric diseases sharing a neu-
rodevelopmental pathogenesis (Coe et al., 2012). With
regard to the pivotal role of RBFOX1 in regulating both
splicing and transcriptional networks in human neurodevel-
opmental processes (Fogel et al., 2012), the highly variable
spatiotemporal expression of the RBFOX1 gene in differen-
tiating human neurons (Gehman et al., 2011; Fogel et al.,
2012; Lin et al., 2012) and the variable expressivity of the
large number of downstream gene transcripts may also
contribute to the pleiotropic effects of exon-disrupting
RBFOX1 deletions. In line with the oligogenic/polygenic
heterogeneity model, we observed a familial comorbidity
with other neurodevelopmental disorders, such as learning
disability and autism spectrum disorder, in two families

(1 and 3) with RBFOX1 exon-disrupting deletions
(Table 1, Fig. 2). Taking into account that the ascertain-
ment scheme for subjects with IGE applied in this study
leads to an exclusion of individuals with severe intellectual
disability or predominant neuropsychiatric disorders, com-
orbidity of generalized seizures with other neurodevelop-
mental disorders should be more common.

In summary, the present candidate gene CNV study of the
neuron-specific splicing regulator gene RBFOX1 suggests
that microdeletions affecting the untranslated 5′-terminal
RBFOX1 exons increase risk of common IGE syndromes.
The present findings warrant further studies to replicate an
involvement of RBFOX1 in the genetic predisposition of
IGE syndromes and other common neurodevelopmental
disorders and to elucidate the pathogenic mechanisms of
epileptogenesis resulting from RBFOX1-mediated altera-
tions of the splicing process of neuronal genes.
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