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Abstract

Urinary analyte data has to be corrected for tmepda specific dilution as the dilution varies
intra- and interpersonally dramatically, leadingnton-comparable concentration measures.
Most methods of dilution correction utilized nowsgdalike probabilistic quotient
normalization or total spectra normalization resmla division of the raw data by a dilution
correction factor. Here, however, we show thatitglicit assumption behind the application
of division, log-linearity between the urinary flovate and the raw urinary concentration,
does not hold for analytes which are not in steathte in blood. We explicate the
physiological reason for this short-coming in matld¢ical terms and demonstrate the
empirical consequences via simulations and on pielttime-point metabolomic data,
showing the insufficiency of division-based normation procedures to account for the
complex non-linear analyte specific dependencietherurinary flow rate. By reformulating
normalization as a regression problem, we proposaralyte specific way to remove the
dilution variance via a flexible non-linear regressmethodology which then was shown to
be more effective in comparison to division-basedmalization procedures. In the progress,
we developed several, easily applicable method®ohalization diagnostics to decide on the
method of dilution correction in a given sample. the way, we identified furthermore the
time-span since last urination as an importantavexe factor in urinary metabolome data
which is until now completely neglected. In conatus we present strong theoretical and
empirical evidence that normalization has to belya@aspecific in dynamically influenced
data. Accordingly, we developed a normalization hndblogy for removing the dilution

variance in urinary data respecting the singleydadlinetics.

Keywords: Normalization, dilution correction, urine analysisetabolomics, model diagnostics, non-
linear regression techniques



Abbreviations

iild= independent and identically distributed

In= natural logarithm

OLS = ordinary least squares

PC ae = phosphatidylcholine acyl-alkyl

PQN = probabilistic quotient normalization

RCS = restricted cubic splines

SM= sphingomyelin

Voly = volume of urine produced between two urine voids
CV= coefficient of variation

LOD= limit of detection



1 Introduction

Urine, being easily accessible, is frequently uselde sciences, both in clinical and in basic
sciences [1-3]. However, spot urine analyte comaeéinh data is influenced by intra- and
interpersonal variation due to the different ddus [4-7], caused by variation in the velocity
of urine production. The velocity of urine prodwctj herein called the urinary flow rate, has
a wide range of physiological values and changesgly in response to challenges regarding
the water balance of the organism (e.g. water lbrirgake). As this variation among urinary
concentrations is often not of interest, the data to be normalized to remove the dilution
variance according to the state of the art [4,8-Different normalization procedures have
been described in the literature, from osmolaltymalization, specific gravity normalization
and creatinine normalization to total spectra ndimation or probabilistic quotient
normalization (PQN) [9,10,12-15]. For most of thesethods, a correction factor is derived
[16] which is then supposed to be inversely prapodl to the true urinary flow rate [17].
Hence, dividing the raw urinary analyte concentratby this factor should lead, in theory, to
comparable urinary concentrations, relatively irefegent of the urinary flow rate. We call

this approach within this papéivision based normalization.

However, the implicit statistical and physiologica$sumptions behind the application of
division were never systematically tested and aaly However, from the standpoint of
statistical theory, the utilization of ratios ofnclom variables to account for variability is
known to be problematic [18]. Thus, this work aiatsthe clarification of the underlying

assumptions behind division based normalizationtrapsferring kidney physiology to a

mathematical model. In a following empirical sentiave deliver then a systematic test of our
theoretical work, first on simulated data and tlmenreal multiple time point metabolome

measures.



In essence, we will show that division based noizatibn procedures are not adequate in
dynamically influenced data-sets, because the egin of division does not lead to the
removal of dilution variance if the blood conceftitta and excretion kinetics are not time-
invariant. Acknowledging the existence of analypedfic kinetics, we propose a different
strategy to remove the dilution variance usingifiexnon-linear regression modeling. In the
progress, we deliver several methods to check #idity of a certain normalization method

which we call in analogy to regression diagnostiasmnalization diagnostics.

2 Theoretical Methods

As variation in the dilution is caused by the pbiegy of urine production, we will first

explicate the renal processes influencing the ioglabetween the urinary flow rate and
concentration measures of freely filtrated analyfBlse physiology is then expressed in
mathematical terms such that we can explore apalitiand in simulations the statistical
dependencies induced by variation in the urinaswftate. We will neglect for the simplicity

of the main text tubular secretion. In Appendixhdwever, we deliver a generalized model of
the kidney including tubular secretion based orinany linear differential equations, leading
to the same conclusions as the slightly less génavdel in the main text. We note that all
mathematical modeling refers to the physiology dfealthy kidney which means in return
that our model has to be treated with care whetieappo pathophysiological states. In the
following equations, time dependent variables arétem in italic and bold small letters,

while random variables and vectors of observataresdisplayed in bold and italic capitals.

2.1 Physological relation between urinary flow rate and urinary

concentrations under steady state assumptions

In a healthy individual around 90ml/min of bloocdiltrated by glomerular filtration in the

kidney [19]. Most of the fluid is then reabsorbeddifferent parts of the nephron such that
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only around 1.5ml/min urine is actually generatedoopulation average [20]. We call this
velocity of urine production the urinary flow radéed denote it withv(t). This parameter,
causal to the dilution variance [21], can vary sgly intra- and inter-individually. In the case
of extreme fluid uptake, it can reach 11.2mL i22], whereas only urine output of less than
400mL per day (0.28mL mif) would be considered to be abnormal and an iridicanf
kidney injury [23]. The urine is then stored in thladder and gets released by urination if the
stored volume approaches the capacity limits ofitlaelder, normally between 300mL and
400mL in an adult [24]. The higher therefore thmany flow rate, the lower the time until the
bladder reaches its capacity limits. This basi¢ &mwuld be kept in mind in the following

discussions.

Now, consider a freely filtrated analytewith a time-invariant blood concentration =
100pumol L™t such that 9umol £ min™ is filtrated. For many analytes, only a fractidrthis
filtrated amount is finally secreted due to reapsion in the tubule. This fraction is called
fractional excretion and is an analyte specific soea [25]. Consequentially, with a time-
invariant urinary flow rate of 1.5mL mihand a fractional excretion of 5%, the urinary
concentration produced per minute would be 300iitahin™. Under the strong assumption
that every parameter is constant over time, th@awyi concentrationyy,(t) would be
300pmol ! at every time-point, because the excreted massdses proportional with the

excreted fluid.

In the next step, we formalize the exemplary calitohs above, enabling a closer
examination of the functional relations between paameters. Technically spoken, we
model the urinary concentratiogn;(t) of an analytey measured at the timeas the integral
over the excreted, time-invariant blood concerdratyg(t) = ygin the interval [Qt]

between two urine voids:



CyyBt — CyYB
vt v '

1 t 1 ,t
(W) yu(® =50 [y o y5(s)ds =12y cyypds =

Here, vol, defines the volume of urine produced in the irderld, t], ¢, displays the
excretion constant (product of filtration and franohl excretion) of the analyte under
consideration, ang is the time-invariant urinary flow rate. It is imgant to realize that the
length of the time-spanonly gets cancelled out from the equation becawsassume time-
invariant parameters, leading to an inversely priogoal relation between urinary flow rate
and concentration. Note that inverse proportiopatian be described with mathematical

equivalence as log-linear relation, an attribute Wil use later on.

Now, if we normalize the urinary concentration biyisilon, we assume that the utilized
normalization factor (e.g. osmolality, PQN, creet@ total spectrum) is inversely

proportional to the urinary flow rate. Indeed, lire tspecial case of (1) division will effectively
remove the variance introduced by intra- and imdividual differences in the urinary flow

rate. However, this procedure is only valid undex strong assumptions of time-invariant
parameters over the time-span between two uriratidg this assumption is likely violated in
most natural settings, the question arises howfuthetional relations are shaped if we add

dynamics to our modeling.

2.2 Physiological relation between urinary flow rate and urinary

concentrations with dynamic blood concentrations

To study the consequences of non-constant bloodetrations for the functional relation
between urinary flow rates and urinary concentretjoconsider the simple example of a
linear increase in blood concentration in the tinterval between urinations. Thus, the blood

concentration follows the functigyg(t) = a + b * t. Inserting the function in (1) gives

cy(at+0.5bt?)  cy(a+0.5bt)

vt v

@) yu@® =——[ c,(a+bs)ds =

'l]OlU
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We observe that in this case the time Spa@tween the two urinations remains a factor in the
equation. The time span however is a function ef dhinary flow rate with an inversely

proportional relationvoly = vt < t = voly/v. Hence, we can rewrite (2) as

cy(a+0.5bt)

@) yy(®) =X——=aZ+b

cy0.5voly
v2

The inverse proportionality we observed in the dyestate model is no longer valid. In the
consequence, normalization by division with a faatwersely related to the urinary flow rate
will not remove the urinary flow rate from the etjoa assuming a linear increase in blood

concentration.

Technically, as we integrate the blood concentnatwer a time interval depending on the
urinary flow rate, the relation of the urinary centration to the urinary flow rate is generally
influenced by the analyte specific time courset®hbiood concentration. In Appendix A, the
argument above is generalized to arbitrary bloadcentration functions using an ordinary
linear differential equation based model of thenkig structurally similar to those that are
used to model and control dialysis [26] and whiohtains the formulas for the calculation of

fractional excretion [27] as a special case.

In the next step, we will discuss how we can remtihee dilution variance from the data,

respecting individual analyte excretion kineticshaarbitrary functional form.
2.3 Normalization asregression problem

To understand the solution we propose to deal Wighanalyte specific dependencies, it is
important to notice that we can formalize dilutioorrection as aegression problem where
we want to remove a variance fraction from the dakaus, we enter the level of statistics and
the parameters of the equation above have to lmeaseandom variables defined on a certain
population. Common normalization strategies aredas
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(4) Yuy ="V/p o in(Vu, ) =In(¥y) —In@)

with Y, being the normalized analyte concentrati#p the urinary concentrationd, an
estimator inversely proportional to the urinarywileate V. Now, we define the regression
problem (5) and its corresponding residual variablg, where we regress the log raw

urinary concentration on the log normalization éact
(5) In(Yy) =byIn(V) + bgand ¥,es := In(Yy) — (byln(V) + by)

Constraining the regression coefficient with= 1, the residual variabl&,.., is equal to the
log of the normalized urinary concentration plusoastant,. As adding constants does not
change variances and covariances, normalizatiomitgion is statistically equivalent to
deriving the residual of the displayed lineanstraint regression [28] and Y,..; andIn(Y,,,)

can be used interchangeable.

If the true relation betwednandY is indeed log-linear with a slope of one, thisqadure is
adequate. However, as discussed above, the relatitre urinary flow rate to the urinary
concentration is by no means restricted to logdliitg with slope one, but can display
arbitrary analyte specific non-linearity. In thiase, division based normalization (or linear
constraint regression) will result in biased measstill dependent on the urinary flow rate.
In essence, in dynamically influenced data, we havestimate per analyte a potentially
arbitrary non-linear dilution correction functiodow to do so will be elaborated in the next

section.
2.4 Regression based normalization using restricted cubic splines

As explained above, our goal is to derive an aerabgecific dilution correction equation

leading to the removal of the dilution variancethe analyte data. Arbitrary continuous



functions can be approximated via polynomials aalynmpmial equations can be estimated
via ordinary least squares (OLS) procedures. Heeesuggest using restricted cubic splines
(RCS) [29] to model flexible non-linear relationbut other methods like fractional
polynomials may be used likewise. Restricted cgbimmes, sometimes called natural splines,
allow the estimation of piece-wise cubic functioméiere the first and the last segments are
restricted to be linear and the resulting functimerall is forced to be smooth. The segments
of the function are user-defined by specifying & sk knot values k ky,....kj with
ki<ko...<k; and k within the range of the modeled variable. The esponding OLS
regression equation for ] knots 5 given by (ad&pte from

https://www.stata.com/manuals13/rmkspline.pdf):
(6) n(Yy) =Dby+ Z{;ll bifi(ln(V)) with f; (ln(V)) = ln(V) and fori=23,..,j— 1:

fi(In(V)) = {(n(V) — ki-)} — (kj — ki~ [(n(V) — k)3 (k; — ki—1)
~(In(?) — k)3 (ki—y — ki—1)1}(k; — k;) where (u), = wifu > 0and (u), =

Oifu<o.

Restricted cubic splines are implemented in moatissical software, for example in R
(https://www.R-project.org) in the inbuilt “splinepackage, so the user is not forced to apply

(6) per hand (see for the R implementation the lempentary material).

As one can see from (6), restricted cubic spliregelthe advantage that the standard linear
model is nested within the flexible non-linear mioddence, if the true relation between
dilution and analyte is log-linear witly, = 1 andb; = 0 fori = 2,3,...,j — 1, the displayed
regression model will deliver consistent estimatds this model. In this case, the
corresponding residual variable will be a consiststimator of the log-transformed division

based normalized concentration. This means thasidiv based normalization is special
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case of our more general regression-based frameworkwveder, whereas division-based
normalization implies time-invariance in blood centrations and kidney parameters, the
flexible non-linear regression based normalizatioes not rely on any special physiological
state. It estimates an arbitrary functional relaiup and is therefore not based on any

specific model.

In conclusion, we propose that each analyte getsown dilution correction which is
estimated using flexible non-linear modeling in@bS framework via the regression model

(6). Normalization has then two steps:

1. Regress the log raw urinary concentration on tlegilfle non-linear modeled
normalization factor (e.g. restricted cubic spljnes each analyte.

2. Derive the corresponding residual variable for emchlyte.

The residual variable would then represent thetiditucorrected urinary analyte measure
which has by construction zero covariance withuhkzed normalization factor. In contrast,

in division based normalization, this attribute z&fro covariance is not granted as we deal
with a constraint regression. In drastic cases. (&igng deviations from steady state in
blood), division based normalization may even iaseethe variance fraction explained by the

urinary flow rate.

2.5 Statistical requirementsfor regression-based normalization

From a statistical standpoint, our methodologyicaity depends on independent and
identically distributed i{d) observations as the whole sample is used to dstirtiee

dependency of the urinary concentration on theawnyinflow rate. This means that the
observations are drawn independently from the sawévariate distribution of parameters.
However, the methodology can be modified to de#h wiolations. For example, on repeated

measurements, mixed models or general equatiomasin procedures [30] could be used
11



for estimating the correction function, as obseaora from the same individual will show
correlation between them. Another case of violatvauld be if a clinical phenotype changes
the relation between urinary flow rate and urinanalyte concentration. In this case, it may
be necessary to estimate the dilution correctioretion in a stratified way, allowing different

estimates for different strata of the data (e.g@sasd controls).

Note that we do not need any specific distributicaesumption (e.g. log-normality) as the
regression coefficients of OLS regressions arerohéted by the covariances and variances. It
is however known that these can be largely inflednoy outliers. In certain cases, it may be
more appropriate therefore to use an outlier rolbagtession methodology, for example

guantile regression [31].
2.6 Checking the efficacy of normalization: Normalization diagnostics

Until now, we did not explicate how to test whetlaerapplied normalization technique (e.g.
division-based or regression-based) effectivelyaesd the dilution variance from the data.
Different criteria were proposed in the literat{8¢9, 12, 17], but they implicitly or explicitly
rely on the log linearity assumption. Here, we @®pto use graphical heuristics to choose
the method of dilution correction, instead. Thesappical assessments can be augmented

with statistics if the graphical assessment dogd te ambiguous results.
2.5.1 Diagnostic graphs

Successful dilution correction should end in zevgaciance of the analyte variables and the
urinary flow rate. This can be tested graphicaljy dhotting the dilution corrected analyte
variable against the normalization factor. If amgnt is perceivable, the dilution correction
was not successful for this analyte. This is a \eagy method already applied in a previous
study [12] on metal ions, but is totally neglectednetabolomics. Likewise, the assumption

of log-linearity can be easily tested graphicalBne can plot the log of the raw analyte
12



concentration against the log dilution estimatiod display additionally the identity (y=x) as
reference line. If any analyte shows systematicadepe from this line, division-based

normalization will not work.
2.5.2 Diagnostic statistics

Sometimes, it may be hard to decide whether anrebddrend is of statistical substance. In
this case, we propose to test the constrainedinegl model (division based normalization)
against the flexible non-linear model statisticallyiis can be done simply by regressing the
division based normalized variables on the nonalinmodeled (e.g. by restricted cubic
splines) normalization factor. A significant modiedlicates then a systematic departure from
log-linearity with a slope 1. This procedure heseasking whether the model-fit of the
constrained log-linear model is equal to the mddedf the flexible non-linear model. This
comparison is here justified without further regumients because we test nested models

against each other.

This test can be performed via parametric testsnaisg) normality of the residuals which is
given if the metabolites are log-normally distridt In this case, one can simply use the F-
statistic of the corresponding regression. Altauedy, non-parametric tests could be

performed using quantile regression or resampliethods.

2.6 Summary

To transfer our theoretical work to empiricallytedse hypotheses, we summarize the main
points of the discussions above. First of all, madeling is critically based on the assumption
that normalization factors are inverse measureseotirinary flow rate and as such are related
to the time-span between two urinations due tdithged volume of the bladder. This is the

first testable hypothesis in a data-set whereithe-span was sampled:
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1. The time interval since the last urination is clated with the normalization factors.

Secondly, in dynamically influenced data, we regdahat the time-span between urinations
is a factor influencing urinary concentration measu explicitly even after division-based

normalization. Thus, we hypothesize:

2. The time-span between urinations is correlated wiihary analyte concentrations

after division-based normalization.

Then, if the first two attributes are true in aadaet, it follows directly from our mathematical

framework:

3. The normalization factors are not log-linear to ttev-concentration of urinary
analytes and, hence, the urinary concentrationasseciated with the normalization

factors after division-based normalization.

The third hypothesis refers to the statisticalilates we use in normalization diagnostics. In
combination, these three attributes lead to thetrakerstatement of this paper that in
dynamically influenced urinary data, regressionedasormalization is superior to division-

based normalization in removing the dilution vadarfrom the data.

3 Empirical methods

3.1 Smulations

The simulations were conducted to test first oftladl PQN as estimator of the urinary flow
rate in dynamically influenced urinary data, sedgndo illustrate the equivalence of
regression-based normalization and division-basedhalization in data derived under steady

state assumptions, and thirdly, to test the abdftypormalization methods to reconstruct the
14



true correlation matrix in data devoid of dilutieariance. The simulations were designed
according to the formulas in section 2.1 and 2.@ te parameter settings were chosen to
represent realistic measures of kidney physioldgydetailed description, a corresponding
script in R, and an exemplary data-set can be fautige supplementary material. In essence,
we vary the urinary flow rate in the context oftaypiological system which is constrained by

capacities and kinetic laws.

We derived seven data-sets with 500 observationslating one steady state data set and six
non-steady state data-sets with increasing dynaamge. For each of these seven data-sets,
we additionally calculated a corresponding dataweh a fixed urinary flow rate of
2.5ml/min. This corresponding data-set devoid afaten in the urinary flow rate served as
benchmark data-set. In essence, successful dilabarction should change the correlation
matrix of the data such that it resembles the tatiom matrix of the data-set devoid of

variation in dilution.

Two normalizations based on the PQN factor weréop®ed on each data-set with variation
in the urinary flow rate: division-based and regres-based using restricted cubic splines.
Additionally, we performed normalization by usingetsimulated urinary flow rate directly in
division- and regression-based normalization. ther definition of the splines, four knots
were used specified by th& percentile, the 35 percentile, the 6%percentile and the 85
percentile as recommended in [29]. Now, we caledldhe distance (operationalized by the
Frobenius norm, see supplementary material forildetaf the correlation matrix of the
differentially normalized data-sets to the coriielatmatrix of the benchmark data-set devoid
of urinary flow rate variance. Then, the correlatiof the urinary concentrations with each
other resulting from the two normalization methodgre calculated, along with the
correlations of the normalized concentrations wita true urinary flow rate. Furthermore,

exemplary cases of normalization diagnostic grapdr® generated.
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The whole procedure of the simulations was perfor®@0 times to assess random variation

in the estimates of the Frobenius norm.

3.1 Study participants

For the practical application of the developed mdtiogy and the test of the theoretical
predictions, metabolome data from 100 female nubstseen 25 and 65 years of age were
used. The nurses were recruited at the clinicalyssite Bergmansheil in Bochum, Germany.
Exclusion criteria included 1) current pregnancypgastfeeding less than 6 months ago, 3)
past or present fertility drug usage / medicatidnprior cancer diagnosis. Each participant
provided written informed consent. The study comfed to the Declaration of Helsinki and
was approved by the Ethics Committee of the FacoftyMedicine of Ruhr-Universitaet

Bochum (No. 4450-12).

From the 100 nurses, 75 nurses worked on nightagdahift, while 25 nurses worked on day
shift schedule only. During day shift, nurses warker four consecutive days (Monday -
Thursday) and up to five consecutive days (Mondayiday) during night shift. Throughout

day and night shift, urine samples and informatan diet, sleep, and medication were

collected.
3.2 Urine samples

Spontaneous urine samples were collected in 100SARSTEDT disposable plastic

containers, stored at 9°C for a maximum of 24 loleebeing aliquoted to 1.5 ml Eppendorf
tubes and deep frozen at -80°C. The repeated neasot design led to urine samples
collected over the whole 24 h range of the dayueng that dynamical influences should
have an impact on the metabolome data. As eack udil led to one urine sample of which

the time of day was noted, the time interval betwaenations could be calculated.
16



3.3 Targeted metabolite quantification

Each urine sample was measured with the Abs@@&" p150 Kit (BIOCRATES Life
Sciences AG, Innsbruck, Austria) using FIA-ESI-MSM(flow injection-electrospray
ionisation-triple quadrupol mass spectrometry). @ksay procedure using urine samples has
been described previously [32]. In order to enabkearchers to take into account different
urine excretion rates, creatinine was includedigyBIOCRATES Life Sciences AG into the

metabolite panel.

In 10 pL urine, 162 metabolites were quantified 2000 urine samples (Table S1). A urine
pool based on a mixture of study participants’ @rsamples (positive control) was measured
five times per 96-well plate, to calculate the ¢ioefnts of variance. In the course of quality
control (QC), we excluded metabolites with a cast of variance (CV) higher than 25 %.
Furthermore, three water based zero-samples parefiglate were measured to assess the
limit of detection (LOD, which is defined as threémes the median value of zero-samples).
To ensure detectability we excluded metabolited witore than 50 % of measured values
below LOD. Overall, 2990 urine samples were measurgwo batches. The urine samples
were randomly assigned to the batches, blockingpksrirom one individual with respect to
the shift condition (night vs. day-shift). The Q@svwonducted separately for each metabolite
for each batch. In total 44 metabolites passe@i@efree carnitine, 25 acylcarnitines (Cx:y),
13 proteinogenic amino acids, creatinine, hexoses (of hexoses), two phosphatidylcholine
acyl-alkyl (PC ae), and one sphingolipid (SM) (T&Bl1). The abbreviations Cx:y depicts the

total number of carbons and double bonds of alinshaespectively .
3.4 Osmolality

Freezing-point depression was used to determineoladitres in “wakeup urine” samples

which consisted of the morning urine samples at sfaft and the first urine void after the

17



main sleeping period at night shift, resulting i634samples classified as wakeup urine
samples. Osmolality measurements were made usi@preotec Osmomat 030 (Berlin,

Germany).
3.5 Normalizations

Several different normalized metabolome data-setewlerived. We utilized PQN, integral
normalization, creatinine normalization, and osrityianormalization as described in the
literature [12-14, 17]. For the PQN, the mediancamration vector of all observations was
used as reference spectrum. In sensitivity analysesused batch-specific PQN factors and
person-specific PQN factors without seeing majdfeténces in the results. Then, we
modeled the normalization factors via restrictedicsplines using four knots at th8, 35",
65" , and 95 percentile of the distribution of the correspomgimormalization factor and
regressed in mixed models the raw log concentratodrihe metabolites on each of this non-
linear modeled normalization factor. As the datatamed repeated measurements per study
participant, the regressions were designed as mixedels with random intercepts for the
study participants. This implies the assumptionaaf exchangeable correlation structure
which means that the correlations between measutsma different time points are
supposed to be the same. Then, we calculated @r eetabolite and each normalization
factor the residual of these mixed effect regressidhus, in the end, we had eight (two for
each method: division-based and regression-bas#djetitly normalized data-sets for the
wakeup urine samples, and 6 differently normalizida-sets in the whole sample, as

osmolality measures were only available in the wakarine samples.
3.6 Statistical analyses

All metabolite concentrations were log-transformdéor sample description, urinary

metabolite concentrations were summarized by mednes and standard deviations (see
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supplementary Table S1). For statistical inferemuesed effect linear models were fitted
using the study participants as random intercepiabke, thereby respecting the repeated
measurement design of the data. As mentioned hetbise implies an exchangeable
correlation structure over the repeated measureaméiit other covariates were treated as
fixed effect variables. Each analysis was run tintes, first for the whole sample including
all available data and secondly for the subsampleaieup urines. For statistical analyses of
the time-span variable, we excluded all samplesreviiee reported time-span between the
two urine voids was longer than 12 hours for bepmentially not reliable. In the
supplementary material, we explicated all equatibae®nging to the described regression

models above.

3.6.1 Testing the association of the time-span with the normalization factors

Here, we fitted a simple regression with the tipparssince last urination as response variable
and the log of the normalization factor as predicidis was repeated for each normalization

factor.

3.6.2 Testing the association of the time-span with urinary analyte concentrations after

division based normalization

Regarding the second hypothesis, we regressed ddaision-based normalized metabolite
concentration (log-transformed) for each of the nmalization factors on the time-span
variable (non-linear via RCS using four knots asva), including the time of day (RCS with
four knots), age, batch and body mass-index asriatga. The linearity of the time-span
variable was tested by a Wald test, testing thdficamts of the second and third spline
variable simultaneously on zero. As the first splirariable represents the linear trend, this

procedure effectively provides a test on deparfina linearity.
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3.6.3 Testing the association of urinary concentrations with the normalization factors

after division-based normalization.

The third hypothesis was tested analogously tos#mond hypothesis, with the time-span
variable being exchanged for the log-transformedmadization factor (RCS with four

splines) and the division-based normalized coneéintr being exchanged for the raw urinary
concentration. The log-linearity was checked byingsthe second and third spline variable

derived from the normalization variable simultanggwn zero via a Wald test.

3.6.4 Nor malization diagnostics

To deliver the diagnostic statistics describedentisn 2.5.2, we fitted the same models as
explained above with the division-based normalir@etabolite concentration as dependent
variable and the corresponding normalization véeigRCS using four knots) as independent

variable. Once again, exemplary normalization disgjic graphs were generated.

4 Results

First, we describe the results of the simulatiomed, we move on to the results from the real

metabolomic data.

4.1 Simulation results

The results of the simulation are comprised in Fegliand 2. The first relevant result is that
even in dynamic data-sets the PQN factor was by fgood estimator of the true urinary flow

rate with a correlation of 0.99, regardless ofdimeulated dynamic range in blood (see Figure
la and 1b). In the absence of dynamics, divisigetdanormalization and regression-based
normalization delivered statistically equivalensults and the residual variable correlated
nearly perfectly (r=0.999) with the quotient of nary concentration and PQN factor (see

Figure 1c). However, with increasing dynamics botethods diverged from each other as
20



expected (see Figure 1d and supplementary FigureT8iks was mirrored in the differences
between the “true” correlation matrix and the clatien matrices of the differentially
normalized data-sets (see Figure 2A and 2B). Wiatedivision-based normalization the
distance rises strongly with increasing dynamigearthere is only a very small increase in
distance for the regression based methodology. M@ein Figure 2A the true correlation
between the two simulated metabolites was zeroy asing the true urinary flow rate in

regression-based normalization was able to redbnetrait from the data.

With larger dynamic range, we observed increasingfficiency of division-based

normalization to remove the urinary flow rate frahe data (see Figure 2). After division-
based normalization the urinary flow rate remaineatrelated with the normalized

concentration (see supplementary Figure S2 andréi@D). For the regression-based
approach, in contrast, the urinary flow rate wasaurelated to the corresponding normalized
concentrations regardless of the dynamic rangdaadb(see supplementary Figure S2 and
Figure 2C). Thus, regression-based normalizatiowiged in these simulations better results
in comparison to division-based normalization imaiyically influenced data. Both methods

are however statistically equivalent in steadyestitta-sets.

4.2 Resultsfrom urinary multiple time point metabolome data

Descriptive statistics of 2990 measured urine sempf 100 female nurses for 162
metabolites are shown in supplementary Table Siv Reean metabolite concentrations
varied from 0.001 to 146.621 uM, displaying enorsiintra- and inter-individual variance

underlining the need of pre-processing steps feasing the comparability of the data.
4.2.1 Empirical test of theoretical modeling

The first hypothesis of our theoretical work waattthe time interval between urinations

covariates with the normalization factors, regassllef the type of normalization factor. We
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observed that all normalization factors were sigaiitly associated with the time since last
urination (log creatinine: regression coefficiestLdl0, 95%-CI:(1.00;1.20), p=3.05e-105; log
PON: b=1.31, 95%-CI:(1.18;1.44), p=1.83e-87; logegnal: b=1.09,95%-CI:(0.98;1.19),
p=9.03e-93) in the complete sample. This means ligter dilution was associated with
shorter time-span between urine voids as expeEtadvisualization of the effects, see Figure
3. Even when restricting the analyses to the mtandsrdized wakeup urine samples, the
effect remained, regardless of the normalizatiaofautilized (log creatinine: b=1.53, 95%-
Cl:(1.17;1.89), p=1.33e-17; log PQN: b=1.83, 95%(LB8;2.27), p=5.83e-16); log
osmolality: b=1.87, 95%-CI:(1.20;2.55), p=5.56e-08pg integral: b=1.56, 95%-

Cl:(1.19;1.92), p=1.00e-16).

For the second and third hypothesis, we only reffeetresults for the PQN on the whole
sample in detail in Table 2. Summaries regardiregdther normalization factors (integral,
creatinine, and osmolality normalization) can benfd in the supplementary material. In
general, all normalization factors behaved simjlashowing strong departure from the log-

linearity assumption in most of the metabolite® ($able S2, supplementary material).

The second hypothesis was that the time-span isyportant covariate for urinary data after
division-based normalization. From 44 PQN (divislmsed) normalized metabolites
surviving quality control, 38 were nominally sigioéint. Bonferroni correction for multiple

testing (corrected threshold: p=0.0011) would d&ld to 25 significant metabolites (see
Table 2) with 14 metabolites following a signifitametabolite-specific and non-linear trend

as anticipated by the theoretical modeling.

The third hypothesis stated that the log raw cotmagan is not linear to the log of the
normalization factor in dynamically influenced datts. From 44 tested metabolites, 40
showed a significant departure from log lineariggarding the PQN factor (34 after

correction for multiple testing). Thus, for neadil analyzed metabolites the normalization
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factor was not log-linear to the concentration asld be expected from the results of the

theoretical modeling.

Performing normalization diagnostic statistics, @mal data were in favor of the superiority
of regression based normalization with 43 metad®ldf 44 being related to the normalization
factor after division-based normalization. This meghat for nearly all metabolites division-
based normalization did not remove the dilutionaraze completely. In the supplement, for
each metabolite the gain in variance explained doy-lmear modeling is listed in Table S3.
Importantly, the dependency of the urinary metdabslion the normalization factor was
metabolite-specific (see Figure 4 for an exampenfthe wakeup urine data). Figure 3 is also

an example for a normalization diagnostic graph.

We noted above that division-based normalizatianinerease the stochastic dependency on
the dilution in drastic cases which would be camtta our goal of removing the influence of
the urinary flow rate. An example for this phenomercan be seen in Figure 5. For PC ae
38:3, division-based normalization led to highenrelation (in absolute value) to the
normalization factor compared to the raw urinargaantration. This was equally true for all
other normalization methods based on division litg ietabolite. For integral and creatinine
normalization, we could observe the same for th@camitines C16:2 and C18:2 (see

supplementary Table S3).

4.2.2 Thedilution variance as confounding variance

Here, we show that the urinary flow rate not ordyaivariance factor, but also an important
confounding variable. In Table 2, we show for thxaraple of PC ae 38:3 the association
pattern to age and the sampling time using differemmalization approaches. As creatinine

and the integral normalization variable both weegatively associated with age (integral: b=
23



-0.014, 95%-CI: (-0.021;-0.006), p=0.0005; creatnib= -0.016, 95%-ClI: (-0.023;-0.009),
p=2.09e-05), the positive effect of age in the slom-based normalized concentrations is a

statistical artefact caused by residual confounding

The anticipated higher power to detect real difiees due to better removal of dilution
variance can be seen in the results regarding ahwleng time variable in intra-individual
analyses. In the case of flexible non-linear regjoesbased normalization, the sampling time
explained around 10% of intra-individual varianadile in division-based normalization the
time variable explained not more than 3.08% ofarase. This is a clear hint that division-
based normalization was not as effective as regmesmsed normalization in removing intra-

individual variance.

5 Discussion

In this work, we showed that the normalization ohary data has to be seen in the light of a
physiological system which is constrained by kindaws and limitations in capacities.
Basically, from acknowledging that the bladder hafnite volume, it follows that dilution
correction by division can only be efficient if ahalytes under consideration have time-
invariant concentrations in blood. Only in this yespecial case, the urinary flow rate is
indeed inversely proportional to the urinary amalgbncentration, as shown in our theoretical
sections. This questions fundamentally the “stétéhe art” [4,5] of urinary data analyses as
the metabolome is a highly dynamic system [33]Jueficed by nutrition [34], exercise [35],
medication [36], the female cycle [37], and cireadirhythm [38]. Thus, the implicit
statistical assumption (log-linearity between unnélow rate and concentration with the
same slope for all metabolites) behind the apptinadf division cannot be expected to hold
in data influenced by dynamic factors. This wasraned by the provided results on simulated

and real urinary data, showing clear analyte specifinary flow rate dependencies. In
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consequence, an analyte specific regression-bassmbdure allowing for arbitrary non-
linearity resulted in a better removal of the ddatvariance in simulations and in real data.
Importantly, division-based normalization can bersas a special case of the more general
regression-based normalization we propose. Thus,slasvn mathematically and in
simulations, regression-based normalization willvée equivalent results to division-based

normalization if the assumptions behind divisiorsdzhnormalization are fulfilled.

We strongly believe thahormalization diagnostics should be an important step in the
analyses of urinary data, as it is a priori unchedich method of normalization is most
efficient in removing the dilution variance fronsample. Generally, as the functional relation
between urinary flow rate and concentration is ddpat on dynamic factors, it is dependent
in return on features of the study design. For eptamt may be that for a highly standardized
study the log-linearity assumption would be appiadpr but this has to be tested before
applying a method based on log-linearity. Otherpibe risk of wrong inferences and false

positive results is not controllable, as demonsttdty the example of PC ae 38:3.

Our analyses showed additionally that the time-space the last urination is an important
covariate which is completely neglected in uringabhelomics until now. We think however
that it is clearly of interest to assess the vammtaused by, technically spoken, different
integration windows over the blood concentratioBensidering non-constant blood analyte
concentration, urine produced over a time-sparhoivid not be equivalent to urine produced
over a time-span of 8h in its biological informatioThus, variation in the time interval
variable may lead to non-generalizability of mogdelsomplicating the meaningful
interpretation of results and hindering their tfaral to clinical applications. In consequence,
we suggest collecting data on the time-span becstaswlardizing it will be impossible in

most research settings, especially in large gepeallation cohorts.

25



While our data is in alignment with our theoretipaédictions from mathematical modeling,
one has to recollect certain limitations of our kvok very important point to keep in mind is
that the estimation of the potentially non-lineandtion is based on thed assumption and
does need certain sample sizes for a reliable astim In our case, we used restricted cubic
splines with four knots which resulted in the esiiion of three regression coefficients. On
samples like the analyzed data-set comprising leadsdof urine samples, this is clearly no
problem. In general, 10-20 observations per es@ithgtarameter are considered to be
sufficient for reliable estimates [29]. For smdihical samples therefore, it may be, in the
sense of bias-variance trade-off, that divisioneldasormalization procedures outperform
regression-based normalizations while still intraidg bias. Another limitation might be seen
in the fact that we only analyzed metabolome dath bence, our results may not generalize
to other analytes like metal ions. However, ouroth@cal work explains also the pattern
observed in [12, 39-41] describing the renal cleegaof metal ions. Thus, we think our work
is plausibly applicable to all kinds of urinary &rtas which may not be at steady state in
blood. Importantly, the mathematical model usec hetikely too simple for real quantitative
modeling as many aspects of human physiology weteaspected. For example, for certain
metabolites like hippurate, the secretion doesfoldw solely a first order kinetics due to
tubular secretion [42]. Moreover, in individualstividiseases like diabetes or chronic kidney
disease the model will be invalid, as for exampletabolite concentrations may directly
influence the urinary flow rate (e.g. glucose). Awhally, the model does not consider
feedback mechanisms which may change statisticdl fanctional relations between the
parameters. Theoretically, on the other hand, ssgpa-based normalization does not assume
a certain physiological state. It estimates thati@h between urinary flow rate and analytes
from the data and is designed to cope with arlyitfanctional relations, even in data
reflecting pathophysiological states. This theasdtiattribute of our methodology however

has still to be tested in clinical data sets. 8yrispoken, the conclusions of this work are
26



therefore limited to healthy individuals. A fingben question is how to perform the PQN on
repeated measurement designs. In this study, we theenaive approach of calculating the

median of all samples, but it is not clear atladittthis approach is best.

6 Conclusions

Normalization is a pivotal step in urinary data poeessing which has been largely
performed without clarifying the implicit statisticand physiological assumptions behind it.
Here, we showed that division-based normalizatsotheoretically and empirically not valid
in dynamically influenced data-sets. The conclusiohour work have important implications
for studies and diagnostic procedures based or analysis, as the usually applied division-
based normalization can introduce severe bias imamycally influenced data-sets and
therefore cannot be recommended. According to awkwegression-based normalization, as
proposed above, will often be superior, enablinglye specific dilution corrections. In
conclusion, this work demonstrates the importande understanding the statistical
representation of dynamics in analyte concentratdata and incorporating physiological
constraints into the design of statistical analygithough challenging, we see serious
potential in future work along these lines, enhagdhe interpretability and the utilization of

urinary concentration data.

Appendix A: The analyte specific functional dependency on the urinary

flow ratein mathematical terms

Here, we will explicate the arguments for an amalypecific functional dependency on the
urinary flow rate in mathematical terms. Considke tbasic differential equation (Al)

describing the change of a blood analyte level
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(A1) yg' () = Yi=1 9k(®) -[(1 — cr)(cr + c5)] yp(t)

with yg(0) =y, yp(t) >0Vt € Rand cg,cpand cg € R,

whereyg(t) is the blood concentration of an analytas a function of timeg, (t) denotes
the sum of uptake and secretion into blood frontisdues k=1,...,K. Here, we understand the
microbiota in the gut as an additional tissue dbaotmg to the blood concentrationg
describes the exponential removal of the analytefilmation, cg and cg denote tubular
secretion and reabsorption, respectively. By thimtila, we assume first order kinetics for all
transport processes and we defige= [(1 — cg)(cr + cs)]. Note that equation (Al) is
structurally similar to those equations that aredus> model and control dialysis [26], is
the starting value at the time of last urinatioheTime of last urination was set to zero. The
dynamics of the equation are largely driven by tissue dependent componegft) =

YK _ gk(t). Here, we are only interested in understanding ffects of dynamics in the
relation to the urinary flow rate. For other apgtions like quantitative modeling, the

functionsg, (t) would have to be specified in a more detailed way.

Now, for deriving steady state solutions, we set)(# zero. In this casg(t) has to be a

constang, and one gets

(A2) yp(t) =2 and

y

(A3) =7

by inserting (A2) into equation (1) in the main ttekhis indicates that for analytes being in
steady state the log analyte concentration should be lineah&log of the urinary flow rates.

Note that the steady state solutions derived hexecammonly used to calculate fractional
excretions [27], so we are moving on common grotliad. metabolites not in steady states,

we have to solve (Al) which is easily done by tkendard technique of variation of the
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parameters as (Al) is a linear differential equatibhe linear differential equation (A1) thus

is unambiguously solved by

(Ad)  yp(t) = e [yo + [} evEg(e)ag]

Using the mean value theorem for integration vgtldenoting the average net influx into

blood in the interval [0Ot], (A4) simplifies to

(A5) yp(t) = (yo - CE) eyt + 9

y Cy

Insertion of (A5) into equation (1) of the main te&sults in

(vo-Z)a-e=v4ge

(A6) yu(t) =

vt

Modeling the nor malization process

In steady state, the urinary concentration canelea s a direct indicator of the paramgter
if a good estimatiorty of v is available. Typically, urine analyte datee anormalized by

dividing the raw concentration by an estimatoof the urinary flow rate, inversely
proportional to the true urinary flow rate with anstant k. Hence, division of (A6) by a

normalization variable leads to

yo-Z)a-e Y

(A7) yuN<t>=\< Y+

The constant k should be equal across individuats aver time, otherwise the results are
systematically biased through normalization. Creaé normalization (assuming creatinine
concentration in blood is in steady state) is aanmgXde of a normalization procedure
introducing bias as the constant k is then equahéocreatinine production rate, which is

thought to be a proxy for muscle mass, varying Wik, age, and body mass index [20]. As
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(A7) is a function ot for non-steady state analytes, the normalizedatyisoncentrations are
a function of the length of the time interval beénehe urine voids. For example, for constant
net influxes, (A7) will be decreasing with incraagitime interval if the starting value would

be above the steady state solution.
Transferring the model to the population level

In reality, we do not have continuous analyte mesrments over time of one person, but only
point measurements of many persons at differergégintherefore, we have to think of the

parameters of equation (A7) as random variablesréieite (A7) in the following way

A8) Yy = [(yo - E) (1—eONT1 4 G|v-17,

N Cy

where the capitals are representing the correspgrn@indom variables to the before made
definitions of the characters. A urinary concembratis thus a function of the random
variables vector Ko, C,, G,T,V,V) which has an unknown distribution and a specific

covariance matrix for a certain population. EaclsembationYuNi is a realization of (A8) and

a sample of urinary measurements can be seenggeindent and identically distributed (iid)
realizations of the vectorYy, Cy,E,T,V,V). The urinary flow rate logically depends
negatively on the time variable as explained abdvas implies that the normalization
variable covariates with the time interval varialbldich in return means that even after
normalization the data will not be stochasticatigependent of the dilution variable. This is
further complicated by the fact thétis also a function oT for analytes with non-constant
blood concentrations. It follows that the normdii@a variable will not be log linear to the

raw urinary concentration if an analyte is nottieesly stat@opulation-wise.
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Figure 1. Results of the simulations. Figure 1A and 1B show the scatter plots of the F@dor
against the inverse urinary flow rate in steadyesfA) and in the scenario of maximal dynamics (B).
In both cases, the correlation was 0.99. Figureab@ 1D show the exemplary scatter plot of
regression-based normalizations against divisimethanormalizations. In the steady state case (C),
the correlation was 0.99, while in the case of makidynamics (D) the correlation for this metalmlit
was only 0.60.
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Figure 2: Results of the simulations. Error bars in Figure 2A and 2B display standardiatens
from 500 independent replicateln Figure 2A, the correlation of two theoreticaligdependent
metabolites is shown in dependency of the dynaemge in blood for division- and regression-based
normalizations using the true urinary flow ratetoe PQN factor as normalization factor, respecyivel
Figure 2B displays the distance (Frobenius nornthefcorrelation matrix of the normalized data to
the true correlation matrix of data devoid of vAda in dilution. Figure 2C and figure 2D are
normalization diagnostic graphs, showing the depeog of normalized concentrations on the
normalization factor for regression-based normétza(C) and division-based normalization (D).
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Figure 3: Scatter plots of the time interval between urinations against different normalization
factors with flexible non-linear fits. The PQN variable explained 18.52% (95%-Cl: (1%49
21.55%), p=7.844e-29 bootstrap derived using 2@Micates of resampling) of intra-individual
variance in the time interval between urinationd #me creatinine concentrations explained 20.99%
(95%-Cl: (17.84%,24.13%), bootstrap derived usi@@@replicates of resampling).
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Figure 5: Dependency of PC ae C38:3 on the PQN factor before and after the division based
PQN. The correlation to the log PQN factor is strongier normalization (r=0.38 vs. r=-0.69)
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Table 1: Summary of the results regarding the PQN angbtidictions from the theoretical modeling

Mdabolite Dependence on Tm\1/r;3pan sincelast urine Dg%epldsgfgfgn Dependence on P_QN after
nor malization normalization
p-valuefor p-valuefor
p-value departure Shape .Of departurefrom | p-valueoverall Shape .Of
overall ’ from association log-linearity association
inearity
Acylcarnitines
(o0] 0.424 0.248 - 0.4351 0.0001 n
C10 3.32e-05 0.106 ! 1.15e-20 2.3e-131 !
Ci10:1 4.09e-08 1.026e-07 N 0.0393 1.20e-31 1
C10:2 0.341 0.633 - 0.0402 7.46e-08 1
C12 0.0002 0.095 ! 9.23e-19 6.76e-64 !
Cl14 3.74e-30 8.99e-06 ! 3.19e-95 3.4e-274 U
Ci4:1 0.302 0.517 - 1.72e-35 1.59%e-41 U
C14:1 OH 2.47e-17 0.291 ! 1.34e-56 1.3e-128 U
C14:2 0.082 0.157 - 5.29e-60 2.73e-65 U
C14:2 OH 4.458e-34 1.154e-06 ! 2.82e-74 6.4e-263 U
C16 9.030e-10 0.821 ! 4.38e-33 7.53e-57 U
C16 OH 6.916e-07 0.405 ! 2.31e-32 1.16e-56 U
C16:2 7.026e-35 2.045e-10 1 7.97e-62 1.00e-300 U
C18:2 1.642e-52 1.194e-11 1 1.05e-52 1.00e-300 !
Cc2 0.007 0.368 1 0.0593 8.39%e-24 )
C3 0.247 0.172 - 0.0185 1.63e-11 )
C4:1 0.003 0.141 1 5.71e-06 3.95e-46 )
C5 0.515 0.321 - 0.6387 0.6074 -
C5 MDC 0.018 0.413 1 0.0001 9.38e-08 1
C5:1 6.345e-06 0.979 1 1.37e-05 4.28e-06 !
C5:1DC 1.892e-14 0.007 1 1.43e-09 2.58e-80 n
C6:1 0.0010 0.0008 U 0.0002 3.52e-48 !
C7DC 7.47%e-11 2.039e-07 N 1.12e-06 8.71e-39 1
c8 0.004 0.014 U 3.55e-26 1.54e-29 !
c8:1 1.996e-09 0.066 1 0.0012 1.80e-67 1
C9 2.889%e-14 1.543e-12 N 0.4908 4.15e-15 n
Amino Acids
ARG 2.138e-07 0.496 1 3.97e-10 1.99e-50 n
GLN 0.002 0.949 1 1.27e-43 8.66e-43 n
GLY 1.15e-05 0.294 1 2.68e-19 3.32e-38 n
HIS 7.896e-07 0.604 1 1.56e-50 1.08e-52 n
MET 0.018 0.944 1 4.90e-30 6.35e-40 n
PHE 0.0012 0.455 ! 1.17e-43 8.10e-56 n
PRO 2.128e-38 4.957e-07 1 8.56e-33 1.00e-300 1
SER 0.0004 0.281 1 5.93e-25 2.54e-43 n
THR 2.322e-08 0.176 1 6.83e-21 1.19e-67 n
TRP 0.042 0.180 1 3.38e-35 8.45e-35 n
TYR 2.907e-05 0.008 N 2.20e-26 6.9e-112 n
VAL 6.257e-09 0.679 1 1.65e-28 1.99e-82 n
ILE/LEU 3.515e-23 0.017 1 9.62e-26 4.4e-204 n
CREATININE 1.299e-70 9.816e-12 1 1.70e-27 1.00e-300 1
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Lipids
PC ae C38:3 1.663e-30 2.889%e-14 U 0.0467 1.00e-300 !
PC ae C38:6 0.021 0.400 1 0.0194 1.28e-08 !
SMC24:0 0.0035 0.056 ! 1.62e-05 6.23e-52 !

Hexoses
H1 0.035 0.041 N 0.0313 8.51e-33 n

l=monotonously decreasing;=monotonously increasing)=inverse u-shaped association; U=u-shaped assotiathape
of association derived from graphical inspectiovaiues from mixed models adjusting for age, braich, and the sampling
time (non-linear via restricted cubic splines).
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Table 2: Assaociation of PC ae 38:3 to age (inter-individiaator) and time of day of urine sampling
(intra-individual factor) using different normalizan strategies

Association of PC ae b SE of regression AR-Squared p-value
38:3 to age and time of coefficient
day
Age' Between
PQN (Division) 0.002 0.003 0.6% 0.472
PQON (RCS) -0.003 0.002 1.21% 0.105
Integral (Division) 0.008 0.004 5.02% 0.019
Integral (RCS) -0.002 0.002 0.47% 0.252
Creatinine (Division) 0.106 0.003 8,41% 0.002
Creatinine (RCS) -0.002 0.002 0.18% 0.382
Timeof Day™* - - Within
PQN (Division) - - 2.73% 5.429e-17
PQON (RCS) - - 11.42% 3.089%-75
Integral (Division) - - 1.40% 1.197e-08
Integral (RCS) - - 10.99% 4.745e-74
Creatinine (Division) - - 3.08% 3.493e-09
Creatinine (RCS) - 10.78% 1.864e-72

b=regression coefficient, SE=standard error, PC &8:3=phosphatidylcholine C38:3,
PQN=probabilistic quotient normalizing, RCS=reg#&a cubic splines

'Results from mixed linear regression, adjustedfaich, random effects for individuals

n-value for association of time of day variablesfrieted cubic splines using four knots) to PC ae
38:3 is derived by Wald test, testing all threargplariables simultaneously on zero. As the edétha
functional relation of urinary metabolite concetiba to time of day was inherently non-linear,
regression coefficients are not interpretable aog hot shown.
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Data-dictionary
Variables

id

yB_mean_j

v

In_v_inv
spline_v_inv1-spline_v_inv3
yu_k_j

yU_k_j_to

PQN_k
spline_PQN_k_1-spline_PQN_k_3
yU_k_j_normed
yU_k_j_vnormed
yU_k_j_rcs

yU_k_j_vrcs

Label

Observation number

Mean blood concentrations in blood for the metabolites j=1,2,...,10

Urinary flow rate

log inverse urinary flow rate

spline transformation of the inverse urinary flow rate

Urinary concentration for dynamic range k=0,1,...,6 and metabolite j=1,2,...,10

Urinary concentration for dynamic range k=0,1,...,6 and metabolite j=1,2,...,10 with constant urinary flow rate

PQN factor for dynamic range k

spline transformations of the log PQN for dynamic range k

Division-based normalized urinary concentrations (PQN) for dynamic range k=0,1,...,6 and metabolite j=1,2,...,,10
Division-based normalized urinary concentrations (true urinary flow rate) for dynamic range k=0,1,...,6 and metabolite j=
Regression-based normalized urinary concentrations (PQN) for dynamic range k=0,1,...,6 and metabolite j=1,2,...,10
Regression-based normalized urinary concentrations (true urinary flow rate) for dynamic range k=0,1,...,6 and metabolite

Parametrization of the variables is as described in the "Simulations" section in the supplementary material.
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Highlights

- Division-based dilution correction implicitly assumes constant blood
concentrations.

- The time-span since last urination is an important variance factor in
urinary data.

- In dynamic data, each analyte needs its own dilution correction function.

- The efficiency of dilution correction can be tested via diagnostic graphs.

- Regression-based correction outperforms division-based methods in
dynamic data.



