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Background & Aims: Exaggerated hepatic triglyceride accumulation, i.e. hepatic steatosis, 
represents a strong risk factor for type 2 diabetes mellitus and cardiovascular disease. Despite a 
clear association of hepatic steatosis with impaired insulin signaling the precise molecular 
mechanisms involved are still under debate. We combined data from several metabolomics 
techniques to gain a comprehensive picture of molecular alterations related to the presence of 
hepatic steatosis in a diabetes-free sample (N=769) of the population-based Study of Health in 
Pomerania (SHIP).  
Methods: Liver fat content (LFC) was assessed using MRI. Metabolome measurements of 
plasma and urine samples were done by mass spectrometry and nuclear magnetic resonance 
spectroscopy. Linear regression analyses were used to detect significant associations with either 
LFC or markers of hepatic damage. Possible mediations through insulin resistance, 
hypertriglyceridemia and inflammation were tested. A predictive molecular signature of hepatic 
steatosis was established using regularized logistic regression.  
Results: The LFC-associated atherogenic lipid profile, tightly connected to shifts in the 
phospholipid content, and a pre-diabetic amino acid cluster were mediated by insulin resistance. 
Molecular surrogates of oxidative stress and multiple associations with urine metabolites, e.g., 
indicating altered cortisol metabolism or phase II detoxification products, were unaffected in 
mediation analyses. Incorporation of urine metabolites slightly improved classification of hepatic 
steatosis. 
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Conclusions: Comprehensive metabolic profiling allowed us to reveal molecular patterns 
accompanying hepatic steatosis independent of the known hallmarks. Novel biomarkers from 
urine, e.g. cortisol glucuronide, are worthwhile for follow-up in patients suffering from more 
severe liver impairment compared to our merely healthy population-based sample. 

Liver fat content was strongly associated with a wealth of metabolites in plasma and urine independent of 
known hallmarks. A prominent example was the urine excretion of adrenal steroids. 

BACKGROUND 

The inflated hepatic accumulation of triglycerides (TG), typically above 5%, represents a 
pathophysiological condition defined as hepatic steatosis which might further proceed to 
steatohepatitis and even to cirrhosis. The latter is associated with an increased risk for 
hepatocellular carcinoma [1].  

Obesity represents a major contributor to the development of hepatic steatosis [2]. Estimates 
of its prevalence greatly vary between 10 and 35% depending on the definition used (based on 
ultrasound examination, liver biopsy, magnetic resonance imaging (MRI), or/ and serum 
markers) and ethnicity [3]. Furthermore, in 70% of patients with type 2 diabetes mellitus hepatic 
steatosis could be found [4]. Despite its high correlation with obesity, hepatic steatosis represents 
an independent predictor for insulin resistance [5] and cardiovascular risk and hence mortality [6, 
7].  

The pathophysiological mechanisms underlying hepatic steatosis are still incompletely 
understood. In general, development is thought to be caused by increased release of free fatty 
acids from adipose tissue as a result of nutritional overload and possibly impaired insulin 
sensitivity [8]. As the amount of fatty acids which are subsequently taken up by the liver exceeds 
the hepatic metabolic capacities for oxidation, excess TG are stored as lipid droplets in the 
hepatocyte cytoplasm.  

Apart from the classical hallmarks of hepatic steatosis, i.e., hypertriglyceridemia, insulin 
resistance and inflammation, a number of metabolome analysis (for review see [9]) have greatly 
broaden our understanding of the underlying pathology and suggested novel biomarkers. Briefly, 
metabolomics approaches primarily done in a case-control setting have revealed alterations in 
simple [10, 11] and complex lipids [12, 13], amino acid metabolism [14-16], amides [17], and 
shifts in metabolites produced by microbiota [18]. Exemplarily, surrogate markers of oxidative 
stress, namely γ-glutamyl dipeptides, have been shown to discriminate between different stages 
of liver disease [19]. More recently, Alonso et al. were able to describe three distinct molecular 
profiles of fatty liver disease based on the combination of an animal model and patient data [20]. 
However, up to now such studies were mostly restricted to matched case-control designs 
including (morbidly) obese subjects [9] and are thus of only limited generalizability. Therefore, 
in the present study, we analyzed the association between liver fat content (LFC) determined by 
MRI and metabolites present in fasting plasma as well as urine samples from 769 selected non-
diabetic subjects from the population-based Study of Health in Pomerania (SHIP). By means of 
statistical mediation analyses we were able to separate between those molecular signatures 
assignable to the classical hallmarks accompanying hepatic steatosis and putative novel ones.  

METHODS 

Study Population 
The Study of Health in Pomerania (SHIP-TREND) is a population-based study conducted in 
West Pomerania, a rural region in north-east Germany and a detailed description of the sampling 
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procedure and the study population can be found elsewhere [21]. In total, 4420 subjects chose to 
participate (50.1% response). All participants gave written informed consent before taking part in 
the study. The study was approved by the ethics committee of the University of Greifswald and 
conformed to the principles of the declaration of Helsinki. SHIP data are publicly available for 
scientific and quality control purposes by application at www.community-medicine.de. 

For a subsample of 1000 subjects, plasma as well as urine metabolome data based on mass 
spectrometry (MS) and nuclear magnetic resonance spectroscopy (NMR) were available. Of 
these, 203 had to be excluded due to missing exposure or confounder data. Two and 28 
participants were excluded because of a reported history of liver disease and diagnosed diabetes, 
respectively. Finally, a total sample of 769 subjects was included in the analyses. Figure 1 
summarizes sample compilation and statistical analyses. 

Participants’ characteristics and medical histories were recorded using computer-aided 
personal interviews. Smoking status was categorized as current, former or never smokers. Daily 
alcohol consumption was calculated using beverage-specific pure ethanol volume proportions 
averaged across 30 days prior the interview. Subjects exercising for at least two hours a week 
were classified as physically active. Waist circumference (WC) was measured midway between 
the lower rib margin and the iliac crest in the horizontal plane. Body-mass-index (BMI) was 
calculated as weight (kg) / height² (m²). 

Standard Laboratory Assays 
Fasting blood samples (≥ 8 hours) were collected between 6:00 am and 12:00 pm from the 
cubital vein of subjects in the supine position and analyzed immediately or stored by -80°C in 
the Integrated Research Biobank (Liconic, Liechtenstein). Serum cystatin C, lipids (total 
cholesterol, high-density (HDL) and low-density lipoprotein (LDL) cholesterol, TG), high-
sensitivity C-reactive protein (hsCRP), albumin and serum activities of ALT, AST and GGT 
were measured by standard methods (Dimension VISTA, Siemens Healthcare Diagnostics, 
Eschborn, Germany). Plasma insulin levels were measured (Centaur XP by Siemens Healthcare 
Diagnostics) and the homeostatic model assessment of insulin resistance (HOMA-IR) index was 
calculated as insulin (µU/ml) × glucose (mmol/l)/22.5 [22]. We calculated the AST/ALT ratio, 
the NAFLD-score [23] and the FIB4-score [24] to include surrogates of liver fibrosis. Cystatin 
C-based estimated glomerular filtration rate (eGFR) was calculated using the CKD-EPI equation 
[25]. 

MRI examinations were performed on a 1.5-Tesla MR system (Magnetom Avanto, Siemens 
Healthcare AG, Germany; software version Syngo MR B15) using a body phased array coil. 
Assessment of LFC was performed using calculation of proton density fat fraction based on 
chemical shift encoded MRI as previously described in detail [26]. 

Metabolome Analyses 
A detailed description of all applied measurement techniques is given in the Supplemental 
Information. Briefly, four different approaches were combined: 1) non-targeted MS-based 
profiling of plasma and urine samples as reported previously [27] 2) targeted MS-based profiling 
of plasma samples using the AbsoluteIDQ p180 Kit (BIOCRATES LifeSciences AG, Innsbruck, 
Austria) 3) NMR-based profiling of urine samples as reported previously [28] and 4) NMR-
based profiling of plasma samples to derive lipoprotein particles. 

After quality control and pre-processing (see Supplemental Information) 613 plasma (Tab. 
S1) and 587 urine (Tab. S2) metabolites were available for statistical analyses. Note that some of 
these could not be unambiguously assigned to a chemical identity and are referred to hereafter 
with the notation “X” followed by a unique number. Data on lipoprotein particles comprise 117 
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measures describing the gradient from Very-low-density lipoprotein (VLDL) particles to HDL 
particles, including their triglycerides, cholesterol, free cholesterol, phospholipid as well as 
apolipoprotein B (ApoB), A1 (Apo-A1) and A2 (Apo-A2) content. 

Statistical Analysis 
Linear regression models were performed to assess the associations of LFC as well as serum 
activities of ALT, AST, and GGT (independent variables) with plasma (including lipoprotein 
particles) and urine metabolites (dependent variables). To fulfill requirements of linear 
regression ALT, AST, LFC and metabolite levels were log-transformed. Serum activities of 
GGT were transformed to -1/GGT. All models were adjusted for age, sex, BMI, alcohol 
consumption and physical activity. Notably, we combined men and women in the present 
analyses as no strong evidence for an interaction between sex and one of the liver traits became 
obvious. The same analyses were done for the fibrosis scores. In a second step, a possible 
mediation of significant associations by HOMA-IR, serum glucose, total TG (not for 
lipoproteins) and hsCRP was performed. Analyses were implemented using the R package 
mediate to obtain bootstrap p-values (N=2000 samples) for the mediation effect as well as 
confidence intervals for the proportion mediated. We defined a significant mediation if the p-
value was <0.01 and at least 10% of the association was mediated through one of the four 
variables. Sensitivity analyses were done by excluding subjects reporting heavy drinking (n=53; 
men >30g/day and women >20g/day). To combine the metabolome data with lipoproteins, linear 
regression models were run with the lipoprotein as exposure and the metabolite as outcome 
controlling for age, sex, and BMI. To account for multiple testing, we adjusted the p-values from 
regression analyses by controlling the false discovery rate (FDR) at 5% using the Benjamini-
Hochberg procedure. 

Integration of multi-fluid data was achieved by computation of metabolic networks using 
Gaussian graphical modelling (GGM). The procedure is outlined in the Supplemental 
information.  

A signature predictive for hepatic steatosis (LFC > 5%) using least absolute shrinkage and 
selection operator (LASSO) for variable selection was compiled. Using a two-staged cross-
validation procedure allowed us for testing robustness of selected features across random subsets 
of the population as well as to assess generalizability of the results (see Supplemental 
Information). Briefly, a score was calculated by counting each time a feature survived the feature 
selection using the LASSO in the test set and weighted by the discriminative ability (area under 
the ROC-curve) on the independent validation set. The score could be seen as the mean 
discriminative ability of the final sparse model to predict presence of hepatic steatosis if the 
specific variable was included. Three types of variable set ups were used to perform this 
classification. First, considering only clinical variables as presented in Table 1. Second, only 
metabolites significantly associated with LFC and third, a combination of both. Finally, three 
sparse logistic regression models were built to predict hepatic steatosis. The latter ones were 
further assessed for generalization in a Monte-Carlo cross-validation procedure. Statistical 
analyses were done using R 3.3.2 (R Foundation for statistical computing, Vienna, Austria). 

RESULTS 

General characteristics of the study population are displayed in Table 1. Briefly, 34.7% of the 
participants presented with hepatic steatosis. These participants were characterized by an adverse 
metabolic profile, comprising higher concentrations of glycemic parameters (e.g., fasting glucose 
or HOMA-IR), higher LDL and lower HDL-cholesterol concentrations, higher hsCRP 
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concentrations as well as higher serum activities of liver enzymes and higher values of fibrosis 
scores (with the exception of the AST/ALT ratio).  

Lipoprotein particles and mediation by HOMA-IR 
An atherogenic lipoprotein particle profile was revealed to be associated with LFC in linear 
regression analyses (Fig. 2). In detail, LFC was positively associated with total TG levels, as 
well as with VLDL and small LDL particles. In contrast, LFC associated inversely with large 
LDL particles and HDL particles measures. ALT, AST, and, GGT serum activities partially 
mirrored these associations but with less pronounced association strengths. Small HDL particles 
were uniquely positively associated with ALT, GGT, or AST activities.  

The vast majority of the associations with respect to LFC, ALT, and GGT were mediated by 
HOMA-IR (Fig. 2 and Tab. S3). The highest proportion of mediation was observed for LDL2, 
LDL3 and large VLDL particle measures (all above 50%). The associations between LFC and 
large LDL particles as well as between ALT and small-dense HDL particles were unaffected.  

Small molecules and mediation by HOMA-IR and total TG 
Linear regression analyses revealed 179 and 103 metabolites in plasma and urine, respectively, 
to be associated with at least one of the measures of liver function (Fig. 3A; Tab. S4/S5). LFC 
was the most prominent trait with 129 and 93 significantly associated metabolites in plasma and 
urine, respectively. 

About half of the associations in plasma (N=79) and about one third in urine (N=26) were at 
least partially mediated, thereby total TG and HOMA-IR were the most important mediators 
(Fig. 3B).  

With respect to plasma, total TG accounted in part for positive associations between LFC and 
lipid species, e.g. lysolipids, diacyl PCs as well as inverse associations with sphingolipids or 
serine. Positive associations between LFC and branched-chain amino acid (BCAA) catabolites 
(e.g. 3-methyl-2-oxobutyrate), alanine, or carbohydrates as well as the inverse association with 
sphingolipids or glycine were mediated by HOMA-IR. The inverse association between LFC and 
lysoPC C18:2 was mediated by HOMA-IR and hsCRP. Similar mediations became apparent 
with respect to ALT and GGT whereas associations with AST were far less affected (Fig. 3, Tab 
S6). 

The positive association between LFC/ALT and urine 3-sialylactose was affected by all 
mediators to a degree of up to 53%. Similar strong mediating effects in urine were noted for the 
unknown X-02249 (inversely with LFC) and X-17340, tetrahydrocortisone or alanine (positively 
with LFC). 

After discarding mediated associations, only plasma xanthine levels remained significantly 
positively associated with all traits. However, even plasma levels of adrenate, 
docosapentaenoate, γ-glutamylleucine and γ-glutamylphenylalanine were positively associated 
with all traits but were slightly mediated (max. 15%) by serum glucose (LFC) or HOMA-IR 
(ALT).   

Metabolic fingerprint of LFC 
The largest number of non-mediated associations remained for LFC with a comparable amount 
of significantly associated metabolites in plasma (N=58) and urine (N=68) (Fig. 3C). In plasma, 
two prominent metabolite signatures were detected: 1) decreased levels of ether-PCs (thereafter 
referred as PC ae CXX:Y) and 2) increased levels of BCAAs and aromatic amino acids as well 
as dipeptide derivatives (Fig. 2). Inverse associations with LFC were restricted to these lipid 
species, with the additional exceptions of 3-phenylpropionate, stachydrine and some unknown 
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compounds. Further positive associations with LFC were detected for the levels of proline, 
tryptophan, indolelacetate, urate, piperine and 7-α-hydroxy-3-oxo-4-cholestenoate (Tab. S3).  

Associations with urine metabolites were almost exclusively detected for LFC (Fig. 3C). In 
line with the increased plasma levels mentioned above, the urine levels of BCAA-derivatives as 
well as lactate were also positively associated with LFC. In contrast, several glycine conjugates 
like isovaleryl- and isobutyrylglycine as well as γ-glutamylthreonine exhibited an inverse 
association (Tab. S2). Additionally, LFC was inversely associated with the urine levels of several 
xenobiotic species, e.g., 4-vinylpheno sulfate, hippurate or cinnamoylglycine. Almost one-third 
of the LFC-associated metabolites in urine were of unknown identity. 

Metabolite associations with serum markers of hepatic damage  
Only a few plasma metabolites were solely associated with one of the liver enzymes but not with 
LFC. Briefly, serum AST activities were positively associated with several acylcarnitine species 
and monounsaturated fatty acids. ALT was uniquely positively associated with two ether-PCs 
(PC ae C36:0 and PC ae C38:6). Inverse associations with 2-aminoheptanoate and citrate were 
specific for GGT. Only few weak metabolite associations with liver enzyme serum activities 
were observed in urine (Fig. 3C).  

Fibrosis scores and exclusion of heavy drinkers 
Similarities between the NAFLD and the FIB4-score with LFC were restricted to inverse 
associations with large LDL-particle measures (Fig. S2). Both scores were in general associated 
with lower concentrations of almost all LDL measures. Compared to LFC, only few metabolites 
in plasma (Fig. S3) or urine (Fig. S4) associated with either the NAFLD or the FIB4-score, 
partially being residual from either ALT or AST.  

Excluding participants who reported heavy drinking changed the association strength 
between the traits under investigation and lipoproteins or metabolites only minor (Fig. S5 and 
S6). Only associations between AST and lipoprotein measures changed markedly.   

Interrelation between lipoproteins and lipid species 
Figure S1 summarizes the association results for lipoprotein measures and lipid species for those 
obvious from linear regression analyses for the amount of liver fat. Briefly, strong positive 
associations became obvious between ether-PCs and large LDL as well as small dense HDL 
particles. The TG-content of small VLDL particles (VLDL 6) was positively associated with 
various free fatty acid species.  

A metabolite signature with predictive value for hepatic steatosis 
Our procedure to classify hepatic steatosis (LFC > 5%) exclusively based on metabolites 
exhibited a performance that was comparable to that of clinical variables (ROC-AUC ~ 0.89; 
Fig. 4 and Tab 2). A combined feature selection approach using metabolome and clinical data led 
to a moderate but significant improvement in the ROC-AUC (p=0.002) from 0.89 to 0.91 (Fig. 
4). These results were confirmed using a Monte-Carlo cross-validation procedure (Fig. S8). Even 
the net reclassification index improved significantly (0.62; 95%-CI [0.47 - 0.76]; p<0.001). 
Urine levels of X-20643, X-12407 and uracil as well as plasma levels of glycine were associated 
with decreased odds for hepatic steatosis whereas HOMA-IR, age, waist circumference, ALT 
serum activities and hsCRP levels were associated with increased odds (Tab. 2).  

DISCUSSION 

The present study aimed to characterize early (i.e. subclinical) molecular signatures of hepatic fat 
accumulation in a sample from the general population. The broad panel of detected metabolites 
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that were associated with LFC partly reflects physiological aspects of hepatic fat accumulation 
apart from established comorbidities, i.e. insulin resistance, hypertriglyceridemia, or 
inflammation. In particular, several urine metabolites were exclusively associated with LFC. The 
corresponding signature that indicates among others altered cortisol degradation enabled 
moderate improvement for the classification of hepatic steatosis. 

Insulin sensitivity partially mediates an atherogenic lipoprotein profile 
The most obvious hallmark of hepatic steatosis is an impaired TG metabolism manifested by 
dyslipidemia which is likely accompanied by insulin resistance and hepatic inflammation [8]. 
Indeed, more than half of the detected associations with lipoproteins were mediated to a 
significant amount by HOMA-IR. Possible responsible mechanisms include increased hepatic 
uptake of fatty acids, either released from adipose tissue or from remnant VLDL particles, and 
hepatic de novo lipogenesis finally increasing VLDL secretion as a consequence of peripheral 
insulin resistance [29]. Increased availability of plasma fatty acids from remnants is further 
supported by our cross-metabolomics analyses linking an increase in the TG-content of small, 
i.e. remnant VLDL particles (VLDL6), to increased levels of a broad range of plasma fatty acids 
(Fig. S1). Of note, the associations between the TG-content of VLDL6 or plasma levels of 
monounsaturated fatty acids with LFC were not mediated by HOMA-IR. The latter nicely aligns 
with a recent report on an insulin-independent positive correlation between plasma levels of 
palmitoleate and hepatic phosphorus metabolism in metabolically healthy individuals [30].    

TG-rich LDL particles are either taken up by hepatocytes via LDL-receptors or further 
hydrolyzed by hepatic lipase (HL) yielding small dense LDL particles [31]. Our observation of a 
LFC-associated decrease in large LDL particles together with an increase in small dense LDL 
particles argues for a prolonged dwelling time of LDL-particles in the circulation, including 
shrinkage by HL activity [31], making them prone to oxidation. In line with this hypothesis 
hepatic steatosis was characterized by diminished LDL-receptor expression [32]. Oxidized LDL 
particles in turn mediate the adverse, pro-inflammatory setting implicated in the onset of 
cardiovascular disease [33]. Despite this LDL-signature was mediated to a significant amount by 
HOMA-IR (Fig. 2), the inverse association between LFC and large LDL-particles (LDL1) was 
unaffected and might hence represent an early event in the adverse relation between hepatic 
steatosis, insulin resistance, and cardiovascular disease. Of note, the same mechanism likely 
accounts for the inverse associations between LFC and ether-PCs, as both strongly associate 
(Fig. S1) and PCs are integral for the monolayer surrounding lipoprotein particles. This 
observation emphasizes the particular value of multi-platform metabolomics approaches to 
contextualize findings.  

Altered small-dense HDL composition as hint towards progression to steatohepatitis 
The transition from hepatic steatosis to steatohepatitis constitutes a continuum rather than a 
discrete event and hence we could also identify molecular signatures described in more advanced 
stages of liver impairment, e.g., an accumulation of PCs in the circulation [11, 34]. With respect 
to ALT activities but not LFC our results partially confirm these observations and our multi-
platform metabolomics approach once more allows us to link these findings to lipoprotein 
metabolism. Briefly, we observed consistent positive associations between PCs and small-dense 
HDL particles (HDL3) both uniquely associated with ALT (Fig. 3). Enriched PC content of HDL 
particles has been shown to increase efflux of free cholesterol from scavenger receptor BI (SR-
BI) expressing cells [35]. As SR-BI, the HDL-receptor is highly expressed on hepatocytes this 
might indicate altered reverse cholesterol transport in relation to hepatic steatosis or 
steatohepatitis given the unique association with elevated liver enzyme activities.  
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BCAA catabolites are linked by insulin sensitivity with liver fat 
A frequently published link between obesity, hepatic steatosis, and impaired glucose homeostasis 
comprises an accumulation of BCAAs and aromatic acids [36-40]. Consistently, we observed a 
BMI-independent association with all these amino acid species and LFC. Besides an increased 
proteolysis, responsible mechanism for BCAA accumulation might include decreased catabolism 
in adipose tissue [41] or skeletal muscle [42] as the first step of BCAA-catabolism is facilitated 
by branched-chain ketoacid dehydrogenase (BCKDH) in non-hepatic tissues. Accumulation of 
such catabolites, including 3-methyl-2-oxobutyrate, is considered to mediate the adverse effects 
of BCAAs [43] E.g., suppressing pyruvate dehydrogenase activity which catalyzes the formation 
of acetyl-CoA from pyruvate [44]. Notably, a subsequent shift in pyruvate utilization towards 
lactate and alanine formation aligns well with our observation of positive associations between 
LFC and these metabolites. Further, increased activity of the BCKDH kinase, and hence 
diminished BCKDH activity due to hyper-phosphorylation, has been shown to integrate BCAA-
catabolism with stimulated hepatic de novo lipogenesis due to phosphorylation of ATP-citrate 
lyase generating substrates for lipogenesis [45]. Importantly, the associations with BCAA-
catabolites (but not primary BCAAs), lactate, and alanine were all significantly mediated by 
HOMA-IR (Tab. S4). In conclusion, our BMI-independent observations as well as confirmative 
results from previous studies [15, 46] strongly argue for hepatic (or at least ectopic) fat 
accumulation as key mechanism for impaired BCAA-catabolism. However, even if diminished 
BCAA-metabolism seems to integrate hepatic lipogenesis the pathophysiological event linking it 
to insulin resistance remains elusive but a solitary increase in BCAAs in plasma seems to be not 
a sufficient criterion. The latter aligns with a recent study by Gaggini and colleagues who 
reported less prominent alterations in plasma BCAA concentrations among hepatic steatosis 
patients without type 2 diabetes [40].  

A signature of increased oxidative stress is a hallmark of hepatic steatosis 
Surrogates of oxidative stress in respect to hepatic steatosis have been noted by several previous 
studies with γ-glutamyl amino acids and glutamate [precursors of the antioxidant glutathione 
(GSH)] being the most prominent examples [19, 40]. Notably, those markers were able to 
indicate progressive liver disease, i.e. fibrosis [40]. Consistently, intensified mitochondrial 
respiration causing accumulation of reactive oxygen species has been described for liver biopsies 
from patients with hepatic steatosis and steatohepatitis [47]. Besides GSH synthesis, residual 
serum activity of GGT might also account for these observations, as the latter association was 
not attributable to any of the tested mediators. Beyond biomarker research, the application of 
genome-scale metabolic modelling revealed the crucial importance of the further upstream 
metabolites glycine and serine [48]. In general, these observations well align with our findings 
but we observed a strong dependence of these associations on insulin sensitivity, i.e. those were 
mediated to a great extent by HOMA-IR. Interestingly, among patients with hepatic steatosis 
plasma glycine concentrations strongly correlated with hepatic but not peripheral insulin 
resistance [40]. Hence, it would be of particular interest to define if diminished insulin sensitivity 
causes (hepatic) oxidative stress or vice versa. 

In contrast, the strong positive association with plasma xanthine with all liver traits was 
unaffected by HOMA-IR adjustment but also points towards augmented defense against 
systemic/hepatic oxidative stress. Xanthine is an intermediate in purine degradation finally 
resulting in the formation of urate one of the most important antioxidants in human blood. The 
reaction is catalyzed by xanthine oxidase (XO) and recent cellular and mouse models [49] 
showed increased activity of XO in hepatic steatosis which is supported by observational studies 
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[50, 51]. The far less pronounced association with plasma urate compared to xanthine levels in 
the present study might be due to the oxidation of urate in a state of high oxidative stress 
accompanying hepatic steatosis. Subsequently, the consistent positive association with xanthine 
might be a surrogate for increased XO activity to provide urate as antioxidant. 

Urinary fingerprint of LFC 
The significant associations with LFC and urine metabolites are of particular interest as they 
were in the majority 1) not mirrored by common markers of liver damage and 2) not mediated by 
total TG, HOMA-IR, fasting glucose or, hsCRP and hence present besides pathophysiological 
insights the potential of complementary biomarkers. Some of the metabolites were closely 
related to processes already described for plasma metabolites, e.g. increased levels of BCAA 
catabolites or lactate as marker for impaired glucose metabolism.  

Altered phase I and phase II detoxification 
Apart from that, several steroid species in urine showed an inverse association with LFC. In 
particular those attributable to be released from the adrenal cortex, e.g. dehydroepiandrosterone 
sulfate (DHEA-S) or etiocholanone. Interestingly, this contrasts to some extent the positive 
associations seen in plasma. Considering that most of the observed associations were related to 
sulphated or glucuronidated compounds this might indicate an altered metabolism/degradation of 
adrenal derived steroids. While the relation between glucocorticoids and hepatic steatosis was 
frequently described (see below) data on other adrenal derived hormones is less established. 
Presence of hepatic steatosis was linked with higher DHEA-S levels among adults [52] and an 
altered adrenal steroid profile in urine among children [53]. A diminished activity of responsible 
sulfotransferases in the progressively impaired liver [54] might be one plausible explanation. In 
general, the urine profile associated with LFC points towards a diminished detoxification 
capacity of the liver, not only phase II as presented above but also phase I. E.g., the urinary 
metabolites gentisate and 5-hydroxyindolacetate (inversely associated with LFC) represent 
degradation products of tyrosine and serotonin, respectively.  

A molecular signature predictive for FLD 
Extensive feature selection revealed a model which allowed for a slightly better identification of 
hepatic steatosis cases compared to classical clinical measures. Notably, we designed the 
classification algorithm to generate a sparse set of variables comprising complementary 
information and hence not necessarily including all top associated metabolites/clinical features. 
Despite this improvement might be of limited direct clinical relevance the identified molecules 
might be of particular value for the discrimination of different subtypes of hepatic steatosis as 
has been shown recently [20].  

Besides known risk factors like abdominal obesity, insulin resistance or already outlined 
molecular perturbations (glycine), the most consistent parameter was the unknown urinary 
compound X-20643 which was linked to a decreased odd for hepatic steatosis. A putative 
annotation of the metabolite might be possible due to its direct neighboring with plasma cortisol 
in the derived GGM (Fig. 4) [55]. Based on its molecular weight (~539.4 Da) this would fit to a 
conjugation of cortisol with glucuronic acid yielding the respective glucuronide indicating a 
diminished degradation of cortisol. Cortisol or more general glucocorticoid excess either caused 
endogenously (Cushing´s syndrome) or exogenously was consistently linked with the 
development and presence of hepatic steatosis (for review see [56]). Cortisol is thereby assumed 
to drive several hallmarks of hepatic steatosis, including increased lipogenesis and VLDL 
assembly [56, 57]. Notably, no association between LFC and plasma cortisol levels became 
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apparent even when accounting for blood sampling time. In summary, altered cortisol 
metabolism, in particular in the liver, was a prominent independent hallmark of hepatic steatosis 
in the present study and degradation intermediates of cortisol in urine might be a suitable proxy 
for prolonged hypercortisolism accompanying hepatic steatosis.  

Strengths and Limitations 
The present study comprised one of the most comprehensive metabolomics approaches in an 
epidemiological setting to address the metabolic fingerprint of liver function. The assessment of 
LFC using MRI represents thereby an outstanding feature. However, the absence of liver 
biopsies restricted the distinction of progressive liver diseases and represents a drawback of the 
present approach. However, it has to be noted that despite being present in about one-third of our 
study population the degree of hepatic steatosis was rather mild. Therefore, we could only 
speculate about a transfer of our findings in more severe states of liver disease. Furthermore, the 
cross-sectional character of the study provides only observational results and restricts functional 
insights on the molecular level. This fact also subsumes a possible residual confounding by 
obesity in linear regression analyses even if accounting for BMI. Despite those limitations the 
sample size conducted is a clear advantage for the classification assessment as it provides by far 
more information about the generalizability of the achieved results as in tightly controlled 
experimental settings which constitutes the gross of research conducted so far with respect to 
metabolomics and hepatic steatosis.  

Conclusion 

The present high-quality metabolomics approach among a population-based sample 
characterized by the absence of diabetes revealed a molecular fingerprint of hepatic steatosis 
which was characterized by complex alterations in lipid metabolism with lipoprotein particles as 
key driver, augmented defense against oxidative stress as well as adverse cortisol signaling. 
References to impaired BCAA-catabolism and accumulation of small dense LDL particles were 
strongly related to diminished insulin sensitivity accompanying hepatic steatosis. From a clinical 
perspective the use of urine samples to identify (or stratify) subjects with hepatic steatosis might 
be of particular interest as the presented markers provide complementary information to those 
already established.  
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Figure 1 Flowchart of the analyses procedure. 

Figure 2 Color coded corrected p-values (controlling the false discovery rate (FDR) at 0.05; 
dotted lines) from linear regression analyses using liver fat content (LFC), alanine transaminase 
(ALT), aspartate transaminase (AST) or γ-glutamyl transpeptidase (GGT) as explanatory 
variables and lipoprotein particles as outcome. Models were adjusted for age, sex, body mass 

A
D

V
A

N
C

E
 A

R
T

IC
LE

:
T

H
E

 J
O

U
R

N
A

L 
O

F
 C

LI
N

IC
A

L 
E

N
D

O
C

R
IN

O
LO

G
Y

 &
 M

E
T

A
B

O
LI

S
M

JC
EM

Downloaded from https://academic.oup.com/jcem/advance-article-abstract/doi/10.1210/jc.2018-00999/5060465
by GSF-Forschungszentrum fuer Umwelt und Gesundheit GmbH - Zentralbibliothek user
on 30 July 2018



ADVANCE A
RTIC

LE

The Journal of Clinical Endocrinology & Metabolism; Copyright 2018  DOI: 10.1210/jc.2018-00999 
 

 16 

index, smoking, alcohol consumption and physical activity. Orange shadings indicate positive 
associations whereas blue the opposite direction. Hatched boxes indicate mediation of the 
association either by a measure of insulin resistance (HOMA-IR; homeostatic model assessment 
of insulin resistance), high-sensitivity C-reactive protein (hsCRP) or serum glucose. VLDL = 
very low-density lipoprotein; LDL = low-density lipoprotein; IDL = intermediate-density 
lipoproteine; HDL = high-density lipoprotein; Apo = apolipoprotein 

Figure 3 A) Corrected p-values (controlling the false discovery rate (FDR) at 0.05; dotted lines) 
from linear regression analyses using liver fat content (orange), alanine transaminase (ALT; 
purple), aspartate transaminase (AST; green) or γ-glutamyl transpeptidase (GGT; blue) as 
explanatory variables and plasma (upper panel) or urine metabolites (lower panel) as outcome. 
Results were separated by association direction - positive (β>0) or negative (β<0). 
Corresponding beta estimates and FDR values are given in table S1 and S2. Metabolites marked 
with a triangle exceeded the plotting range. B) Boxplots for the estimated proportion mediated 
between the exposure and metabolites by serum glucose, high-sensitivity C-reactive protein, a 
measure of insulin resistance (HOMA-IR; homeostatic model assessment of insulin resistance) 
and total triglycerides. C) Color coded FDR-values from linear regression analyses using liver 
fat content (LFC), ALT, AST or GGT as explanatory variables and plasma or urine metabolites 
as outcome, limiting to non-mediated metabolites. Significant associations (FDR < 0.05) are 
framed black. Orange shading indicates positive and blue shading indicates negative 
associations, respectively. Hatched boxes indicate mediation of the association either by a 
measure of insulin resistance (HOMA-IR; homeostatic model assessment of insulin resistance), 
total triglycerides (TG), high-sensitivity C-reactive protein or serum glucose.   

Figure 4  left panel ROC curves and AUC with 95%-confidence interval (CI) for the three 
different models to predict fatty liver disease: Clinical variables – green; Metabolites – purple; 
Combination of both – orange. right panel Subnetwork of the derived GGM with emphasize on 
the unknown urinary predictors X – 20643 and X - 16774. On each node the results from linear 
regression analysis for liver fat content (LFC, orange), serum alanine aminotransferase (ALT; 
purple), asparagine aminotransferase (AST; green) and γ-glutamyl transpeptidase (GGT; blue) 
were mapped as portion of the associations strength given as –log10(FDR-value). Significant 
results in at least one trait, false discovery rate (FDR) below 5%, were highlighted by colors. 
Node sizes were chosen as maximum association strength of the single traits. The prefix P 
denotes plasma metabolites whereas U indicates urine metabolites. Edges represent significant 
partial correlations (par. cor.) between metabolites. Type and color represent metabolite and fluid 
dependencies. 

Table 1 General Characteristics of the study population. 

Characteristic 
whole sample 

(n=769) 
Liver fat content <5% 

(n=502) 
Liver fat content >5% 

(n=267) 
P-value* 

Age (years) 51 (41; 61) 47 (38; 57) 57 (48; 64) <0.01 
Females (%) 56.0% 62.3% 44.2% <0.01 
Smoking (%)    <0.01 

never smoker 42.1% 44.0% 38.6%  
former smoker 36.4% 31.6% 45.3%  
current smoker 21.4% 24.3% 16.1%  

Physically active (%) 73.6% 73.7% 73.4% 0.99 
Alcohol consumption (g/day) 4.03 (1.30; 10.36) 3.70 (1.14; 8.65) 4.91 (1.40; 14.69) <0.01 
Waist circumference (cm) 86 (78; 96) 82 (74; 89) 97 (88; 105) <0.01 
Body mass index (kg/m²) 26.7 (23.9; 29.6) 25.3 (22.9; 27.8) 29.5 (27.2; 32.4) <0.01 
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Glucose (mmol/l) 5.3 (4.9; 5.7) 5.2 (4.9; 5.5) 5.5 (5.1; 6.0) <0.01 
HOMA-IR 2.04 (1.41; 3.20) 1.68 (1.22; 2.33) 3.33 (2.28; 4.90) <0.01 
Insulin (mU/l) 8.6 (6.0; 12.9) 7.2 (5.4; 10.0) 13.5 (9.8; 18.4) <0.01 
Triglycerides (mmol/l) 1.21 (0.86; 1.70) 1.04 (0.76; 1.41) 1.56 (1.17; 2.12) <0.01 
LDL-cholesterol (mmol/l) 3.36 (2.76; 3.98) 3.24 (2.63; 3.83) 3.60 (3.04; 4.11) <0.01 
HDL-cholesterol (mmol/l) 1.44 (1.22; 1.72) 1.53 (1.30; 1.78) 1.30 (1.11; 1.55) <0.01 
Total cholesterol (mmol/l) 5.4 (4.8; 6.2) 5.3 (4.7; 6.1) 5.6 (4.9; 6.3) <0.01 
hsCRP, mg/l 1.13 (0.61; 2.21) 0.94 (0.54; 1.77) 1.55 (0.90; 2.91) <0.01 
Liver fat content (%) 3.43 (2.16; 6.59) 2.45 (1.89; 3.35) 9.2 (6.4; 14.9) - 
Hepatic steatosis† (%) 34.7% 0% 100% - 
ALT (µkatal/l) 0.37 (0.27; 0.52) 0.32 (0.25; 0.43) 0.49 (0.37; 0.67) <0.01 
AST (µkatal/l) 0.29 (0.23; 0.36) 0.27 (0.21; 0.33) 0.33 (0.27; 0.41) <0.01 
GGT (µkatal/l) 0.48 (0.38; 0.66) 0.43 (0.36; 0.56) 0.62 (0.48; 0.88) <0.01 
AST/ALT 0.74 (0.59; 0.94) 0.80 (0.64; 1.00) 0.66 (0.53; 0.79) <0.01 
NAFLD-Score -2.11 (-2.86; -1.34) -2.38 (-3.03; -1.58) -1.62 (-2.29; -0.89) <0.01 
FIB4-Score 0.81 (0.56; 1.08) 0.76 (0.51; 1.02) 0.90 (0.67; 1.19) <0.01 
eGFRcys (ml/min/1.72m²) 114 (105; 122) 117 (108; 124) 109 (100; 118) <0.01 

HOMA-IR = homeostatic model of insulin resistance; hsCRP = high-sensitivity C-reactive protein; HDL = high 
density lipoprotein LUS = liver ultra sound pattern; ALT = alanine transaminase; AST = aspartate transaminase; 
GGT = γ-glutamyl transpeptidase; eGFR = estimated glomerular filtration rate based on cystatin C measurements, 
Continuous data are expressed as median (25th percentile; 75th percentile); nominal data are given as percentages. 
*χ2-test (nominal data) or Mann-Whitney-U test (interval data) were performed to test for difference by liver fat 
content. †defined as liver fat content greater than five percent; 

Table 2 Summary on predictors selected in at least one-third of the loops in the classification 
scheme for fatty liver disease. 

Clinical Traits    Metabolites    Combined    

Variable 
Sco
re 

OR (95%-
CI) 

Select
ed 

Variable 
Sco
re 

OR (95%-
CI) 

Select
ed 

Variable 
Sco
re 

OR (95%-
CI) 

Select
ed 

ALT 0.87 2.79 
(2.31;3.40) 

30 P::Glycine 0.86 0.65 
(0.55;0.76) 

30 HOMA-IR 0.88 4.38 
(3.48;5.60) 

30 

HOMA-IR 0.87 4.38 
(3.48;5.60) 

30 U::X - 20643 0.80 0.58 
(0.49;0.68) 

28 U::X - 20643 0.88 0.58 
(0.49;0.68) 

30 

Waist 
circumference 

0.84 4.58 
(3.66;5.83) 

29 P::butyrylcarnitine 0.75 2.27 
(1.89;2.76) 

26 Waist 
circumferenc
e 

0.85 4.58 
(3.66;5.83) 

29 

Age 0.67 2.04 
(1.72;2.43) 

23 P::Tyrosine 0.72 2.69 
(2.20;3.32) 

25 ALT 0.76 2.79 
(2.31;3.40) 

26 

Total 
triglycerides 

0.64 2.90 
(2.39;3.57) 

22 U::X - 15472 0.66 2.33 
(1.95;2.81) 

23 Age 0.73 2.04 
(1.72;2.43) 

25 

hsCRP 0.61 1.75 
(1.49;2.07) 

21 U::uracil 0.66 0.60 
(0.51;0.71) 

23 P::Glycine 0.68 0.65 
(0.55;0.76) 

23 

Alcohol intake 0.47 1.36 
(1.17;1.58) 

16 U::X - 16774 0.58 2.33 
(1.94;2.82) 

20 U::X - 12407 0.56 0.80 
(0.68;0.93) 

19 

    
P::lysoPC a C18:2 0.58 0.65 

(0.55;0.76) 
20 U::uracil 0.56 0.60 

(0.51;0.71) 
19 

    P::PC ae C42:5 0.55 0.54 
(0.45;0.63) 

19 hsCRP 0.53 1.75 
(1.49;2.07) 

18 

    
P::glutamate 0.49 2.54 

(2.10;3.10) 
17 P::butyrylcar

nitine 
0.44 2.27 

(1.89;2.76) 
15 

    
P::γ-
glutamylphenylalani
ne 

0.46 2.62 
(2.17;3.20) 

16 P::PC aa 
C32:1 

0.41 1.55 
(1.32;1.82) 

14 

    
P::PC aa C32:1 0.40 1.55 

(1.32;1.82) 
14 P::PC ae 

C42:5 
0.35 0.54 

(0.45;0.63) 
12 

    
P::PC aa C40:6 0.40 1.59 

(1.36;1.88) 
14 U::X - 16581 0.30 0.71 

(0.61;0.83) 
10 

    
U::X - 16581 0.38 0.71 

(0.61;0.83) 
13 P::glutamate 0.29 2.54 

(2.10;3.10) 
10 

    
P::X - 01911 0.31 1.98 

(1.67;2.37) 
11 

    

    P::Valine 0.31 2.37 11     
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(1.97;2.88) 

    
U::X - 12407 0.29 0.80 

(0.68;0.93) 
10 

    

OR (95%-CI) = crude odds ratio per standard deviation increase for hepatic steatosis with 95%-confidence interval; 
Score = defined as average area under the curve in the final classification loop in case the variable was included (see 
Methods); Selected = number of times the variable was selected for the final classifier (max = 30); Metabolites 
depicted in bold were used to build the final classifier. ALT = alanine aminotransferase; HOMA-IR = homeostatic 
model assessment of insulin resistance; hsCRP = high-sensitivity C-reactive protein;  
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N=1000 

N=769 

Exclusion criteria (overlap exist): 
• Missing values (n=203) 
• Diabetic patients (n=28) 
• Liver disease (n=2) 

Associated metabolites 

Linear regression 
LFC, ALT, AST and GGT  

Mediation analyses: 
• HOMA-IR 
• Total triglycerides 
• hsCRP 
• Fasting glucose 

Classification (LFC >5%): 
• Clinical variables 
• Metabolites 
• Combination 
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U::5beta-pregnan-3alpha,21-diol-11,20-dione
21-glucosiduronate

U::X - 12844

P::X - 11470

U::X - 12846
U::X - 11444

U::X - 17357

P::X - 11444

P::cortisol

U::cortisol

P::pregnenolone
sulfate

U::X - 20643

P::cortisone

U::X - 17341

U::tetrahydrocortisone

U::X - 17340

U::X - 17339

U::etiocholanolone
glucuronide

ALT AST

LFC GGT par. cor. (same Met.) 

par. cor. (different Fluid) 

par. cor. (same Fluid) 

width : |par. cor.| 

sign. Metabolite non-sign. Metabolite
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