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Abstract 

A recent innovation in assessment of climate change impact on agricultural production has been to 

use crop multi model ensembles (MMEs). These studies usually find large variability between 

individual models but that the ensemble mean (e-mean) and median (e-median) often seem to 

predict quite well. However few studies have specifically been concerned with the predictive quality 

of those ensemble predictors. We ask what is the predictive quality of e-mean and e-median, and 
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how does that depend on the ensemble characteristics.  Our empirical results are based on five 

MME studies applied to wheat, using different data sets but the same 25 crop models . We show 

that the ensemble predictors have quite high skill and are better than most and sometimes all 

individual models for most groups of environments and most response variables. Mean squared 

error of e-mean decreases monotonically with the size of the ensemble if models are added at 

random, but has a minimum at usually 2-6 models if best-fit models are added first. Our theoretical 

results describe the ensemble using four parameters; average bias, model effect variance, 

environment effect variance and interaction variance.  We show analytically that mean squared 

error of prediction  (MSEP) of e-mean will always be smaller than MSEP averaged over models, and 

will be less than MSEP of the best model if squared bias is less than the interaction variance.  If 

models are added to the ensemble at random, MSEP of e-mean will decrease as the inverse of 

ensemble size, with a minimum equal to squared bias plus interaction variance. This minimum value 

is not necessarily small, and so it is important to evaluate the predictive quality of e-mean for each 

target population of environments. These results provide new information on the advantages of 

ensemble predictors, but also show their limitations.   

Introduction 

Climate change is expected to have an important impact on crop production and its geographic 

variability, with most results to date showing a negative influence of climate change on crop yields  

(IPCC, 2014). Crop simulation models are important tools for impact assessment,  that allow one to 

generalize to environmental conditions and management options beyond those observed 

experimentally (Ewert et al., 2015; Porter et al., 2014). This makes possible for example a detailed 

spatial analysis of the impact of climate change (Rosenzweig et al., 2014) (Rosenzweig et al., 2014) 

and evaluation of adaptation strategies for climate change (Chenu et al., 2017).  
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A recent innovation in the use of crop models for impact assessment is the use of crop multi-model 

ensembles (MMEs), largely as a result of recent international cooperative programs (Ewert et al., 

2015; Rosenzweig et al., 2013), although the first studies go back to 2011 (Palosuo et al., 2011). In 

these studies, different modeling groups running different models are given the same input 

information and requested to provide simulated values for the same output variables. An initial 

objective of these studies was to evaluate the uncertainty in crop model predictions. These studies 

found that there is large variability in predictions between models, implying large uncertainty in 

predictions when a single model is used (Asseng et al., 2013; Bassu et al., 2014; Hasegawa et al., 

2017; Rötter, Carter, Olesen, & Porter, 2011). We use here the term “prediction” in the sense of 

calculating an output based on known inputs, rather than forecasting the future.  

 

Crop MME studies have often noted that the ensemble mean (e-mean) and ensemble median (e-

median) of simulated values give good agreement with observations (Bassu et al., 2014; Palosuo et 

al., 2011; Rötter et al., 2012). This suggests that in practice, it might be better to create a MME and 

then use the predictions of e-mean or e-median rather than use the predictions of an individual 

model. Several recent impact assessment studies have based conclusions on ensemble predictors 

(Asseng et al., 2014; Liu et al., 2016).   

 

Only a few studies have examined the properties of crop MME predictors in more detail, in each 

case for one set of environmental conditions. One study, based on prediction of multiple response 

variables in four environments, found that e-mean and e-median were both better than the best 

model, for a composite criterion including all outputs and environments (Pierre Martre et al., 2015). 

Yin et al. (2017) found that e-mean predicted grain N better than a randomly chosen model. Of 

particular practical interest is the behavior of e-mean and e-median as a function of the number of 
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models in the ensemble. This has been studied by treating the ensemble as the full population of 

models, and drawing sub samples from that population. The conclusions have been that prediction 

error decreases systematically as the number of models increases. Li et al. (2015) suggested that 

eight models would be sufficient to obtain errors of e-mean below 10% of observed yield. All of 

these studies have been empirical, based on a single MME study. The general behavior of crop 

ensemble predictors has not been addressed. Studies in other fields, including group intelligence 

(Surowiecki, 2005), hydrologic modeling (Duan, Ajami, Gao, & Sorooshian, 2007), air quality 

modeling (Solazzo & Galmarini, 2015) and climate modeling (Tebaldi & Knutti, 2007) have also found 

that averaging over multiple opinions or solutions can give good predictions, often better than any 

individual model. The basis for using MME predictors has received particular attention in the field of 

climate modeling (Hagedorn et al., 2005; Weigel et al., 2008). However, the context there is quite 

different than for crop models; for example in climate modeling each MME member is often itself an 

ensemble based on a single model with different initial conditions (DelSole, Nattala, & Tippett, 2014) 

whereas in crop modeling, each model normally provides a single simulation, a major interest in 

climate modeling is in probabilistic predictions  rather than the deterministic predictions of crop 

models (DelSole et al., 2013; Wang et al., 2009) and in climate modeling spatial patterns of 

prediction play an important role  (DelSole et al., 2013). 

 

One can easily imagine situations where e-mean and e-median for crop models do not predict well. 

For example, if all models have large positive bias, then e-mean and e-median will also have large 

positive bias, and e-median will be worse than half the models.  Thus, one cannot automatically 

assume that one will obtain reliable predictions by using MME predictors. The question we ask then 

is what is the predictive quality of e-mean and e-median, and how does that depend on the 

ensemble characteristics?  We break this down into specific sub-questions. First, how does the 

predictive quality of MME predictors compare to predictive quality of a model chosen at random 
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from the models in the ensemble, or to that of the best individual model in the ensemble, and how 

does that depend on the ensemble characteristics? The answer to this question affects the choice 

between using an individual model and a MME predictor. Second, what is the level of error of the 

MME predictors? This is a major determinant of the potential usefulness of these predictors. Finally, 

how does the level of error of the MME predictors depend on the number of models in the 

ensemble? This affects the very practical decision as to the number of models to include in a MME.  

 

Materials and Methods 

Data  

The data sets simulated in the five wheat MME studies considered here are described in Table 1.  

Details are available in the cited references. Each data set concerns a different range of 

environmental conditions, where an environment is to be understood as a combination of physical 

environment and management. We consider each data set as representative of some infinite  range  

of environments, the target population. The target population corresponding to the AgMIP wheat 

pilot data set is worldwide wheat environments. The data set is a  sample from that population, and 

the prediction problem is prediction for a randomly chosen individual environment from that 

population.  In the case of the HSC data set,  the target population of environments is considered to 

be all  possible weather sequences for wheat in Maricopa, Arizona, generated by different years and 

planting dates. The data set can be considered a sample from that distribution of environments, 

where the heat treatments are meant to increase artificially the diversity of the sampled conditions.  

In the case of the HSGE data set, the target population of environments is taken to be worldwide hot 

environments for wheat, including all possible weather sequences and all locations. The target 

population for the C3-GEM data set is taken to be all possible weather sequences at the location of 

the study, with or without heat shocks during grain filling. Finally, the target population 
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corresponding to the AGFACE data set is considered to be wheat crops under different weather 

sequences at the location of the study, with or without irrigation and with either current or 

enhanced CO2 levels. We consider here four output variables that were measured in most or all of 

these studies: grain yield (yield), grain protein concentration (protein), final aboveground biomass 

(biomass) and maximum leaf area index during the course of growth (maximum LAI). 

Models and calibration 

We consider only the 25 crop models that provided simulation results for all of the data sets for at 

least yield and biomass (Supplementary Table S1). All of these models have been described in detail 

in separate publications (see references in Table S1).  All are dynamic system models; they describe 

crop development, crop growth and soil processes of a homogeneous field over a single growing 

season, using differential or difference equations, often with a time step of one day. The explanatory 

variables include daily weather over the growing season, management (sowing date and cultivar, 

irrigation and fertilization, etc.) and soil characteristics and initial conditions. While there are 

certainly similarities between some of the crop models, it seems reasonable to consider them as 

independent since each has undergone at least some development independently of other models. 

Each model produces a single prediction of a specific output (e.g. yield)  for each environment.  In 

addition to the individual models in the MME we consider the two most common MME predictors, 

namely e-mean and e-median. 

 

In all of these studies, some of the data were provided to the modeling groups for calibration (Table 

1). The calibration data consisted of detailed crop data, including yield,  from one environment for 

the HSC and AGFACE data sets, from the three control environments for the C3-GEM data set and 

from four environments for the HSGE data set, plus some peripheral information  related to, but not 

the same as, the variables to be simulated (crop phenology information, parameter values of some 

models that had previously seen the data).  
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Evaluation metrics 

Our basic criterion of simulation accuracy is mean squared error (MSE), i.e. squared error averaged 

over environments of a data set:  

  
2

1

ˆ1/
N

i i

i

MSE N y y


    

where yi is the observed value for the ith environment of the data set, ˆ iy   is the corresponding 

simulated value, and N is the number of environments in the data set. MSE is calculated separately 

for each output variable and each model. Often it is more convenient to look at root mean squared 

error; RMSE MSE .  

MSE is an important measure of model error, but skill measures are better at conveying the 

usefulness of model simulations, since they compare model errors to errors of some alternative, 

simple predictor. The skill measure commonly used for crop models is modelling efficiency (EF), 

defined as 

 1 /model yEF MSE MSE    

where modelMSE  is MSE for the model in question and 
yMSE  is MSE when all predictions use the 

average of observed values for that data set ( y ). Since y  is a constant, it explains none of the 

variability in the data set.  A perfect model has EF=1.  A model that does worse than y  has 0EF   

and can be considered to have no skill in explaining variability between environments. 

 

The above criteria refer to the data in the data set. As a criterion of prediction accuracy for the 

target population we use mean squared error of prediction (MSEP), defined as the expectation of 

squared error over the target population. It is well known that if the same data are used for 
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calibration and for evaluation, MSE tends to under-estimate MSEP. To examine how important this 

is, we calculated MSE for yield, using either all environments or leaving out all those environments 

which provided yield for calibration. The resulting MSE values for e-mean and e-median, and their 

ranks among all models, were very similar (Supplementary Table S2).  We therefore use MSE based 

on all environments of a data set as an estimate of MSEP for the corresponding target population.   

 

Statistical description of multi-model ensemble 

We propose a random effects statistical model for describing model errors:  

 
ij i j ije         (1) 

where 
ije  is error  (observed value for environment j minus value simulated by model i),   is the 

overall bias (error averaged over models and environments), i  is a random model effect with mean 

0 and variance 2

 , 
j  is a random environment effect with mean 0 and variance 2

  and 
ij  is the 

random interaction term, with mean 0 and variance 2

  (Scheffé, 1959). Thus the random effects 

model characterizes a MME and target population using four parameters:  , 2

 , 2

  and 2

 .   

 

If there is bias, this  implies that predictions, averaged over models and environments, are too small 

or too large. For example, if models tended to underestimate potential yield for the cultivars of the 

HSGE data set, this could lead on the average to systematic under-prediction of yield and therefore 

to a positive bias. The bias term contributes equally to all individual models and therefore  also to e-

mean, for all environments of the target population.  The model effect indicates to what extent a 

specific model over- or under- predicts, on the average over environments. The larger 2

 , the larger 

the variability between errors of different models. The environment effect indicates to what extent 

there is over- or under-prediction for individual environments, averaged over models. For example, 
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if all models tended to over-predict specifically  for the highest temperatures of the HSC target 

population, this would lead to an environment effect. The larger  2

 , the larger the variability 

between errors for different environments. Finally, the interaction  effect measures the effect of 

interaction between a specific model and a specific environment on model error.  

 

If it is assumed that models are drawn at random from some underlying distribution of models, and 

that environments are drawn at random from the target population of environments, then all the 

random effects are mutually uncorrelated (Scheffé, 1959).  If there is random measurement error it 

affects the observations of each environment and thus is included in the environment effect. The 

bias and variance components were estimated for each data set using the R package lme4 (Bates, 

Mächler, Bolker, & Walker, 2015; R Core Team, 2012) with the REML option. The variance 

components for yield, calculated with or without the environments that provided yield data for 

calibration, were quite similar (SupplementaryTable S5).  

 

Results  

Empirical results 

Figure 1 shows RMSE relative to e-median (RMSEmodel-RMSEe-median ) for yield for each model and 

each data set.  Models with negative values have smaller RMSE than e-median. It is seen that e-

median is better than all individual models (all individual models have positive values of  RMSE 

relative to e-median) except for the HSGE and AGFACE studies, where there are respectively four 

and two individual models out of 25 that are better than e-median.  E-mean is slightly worse than e-

median (slightly positive RMSE relative to e-median)  except for the HSGE data set. Its worst ranking 

for yield is seventh (among the 25 individual models, e-mean and e-median) . For protein, biomass 
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and maximum LAI, the rankings of e-median and e-mean are more variable. At worst e-median is 

ranked sixth and e-mean tenth. E-median is better than e-mean in 13 out of the 17 combinations of 

data set and output variable (Supplementary Figures S1-S3). Figure 2 shows as an example the fit of 

e-mean, e-median and the individual models to the HSC yield data.  

 

The ranking of e-mean improves more or less systematically as one considers more environments, 

up to the actual number of environments for each data set (Supplementary Figure S4). A final step in 

this progression of averaging over more situations is to average over data sets. When RMSE values 

are averaged across data sets, e-mean is ranked 2, 6, 2 and 3 for the output variables yield, protein, 

biomass and maximum LAI, respectively (Supplementary Table S3). The corresponding ranks for e-

median are 1, 1, 1 and 2.   Among the individual models, the average rankings are more variable. The 

model SQ is systematically quite well ranked (3, 3, 3 and 8 for yield, protein, biomass and maximum 

LAI respectively) but the best individual model for protein has rankings of 13, 2, 18 and 23 for the 

four output variables and the best individual model for maximum LAI has rankings 12, 11, 21 and 1. 

In all cases, both e-mean and e-median are better than the average over individual models (bar 

labeled “ave” in Figure 1 and Supplementary Figures S1-S3). 

 

Figure 1 shows that RMSE using the average of observed values  (bar labeled “ybar”) is appreciably 

larger than RMSE for e-mean or e-median for yield for four of the studies, implying that the 

ensemble predictors have substantial skill values for those studies. However, no model, including e-

mean and e-median, has skill for the HSGE data set (i.e. “ybar” has the smallest RMSE value). Over all 

combinations of study and output variable, e-mean and e-median have no skill in a little over one 

third of the situations (Supplementary Table S4). 
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Figure 3 shows empirical results for the effect of number of models on MSE of e-mean, for predicting 

yield. These results are averages over multiple choices of models, and correspond to choosing the 

models to add to the ensemble at random. There is an almost monotonic decrease in MSE as more 

models are added to the ensemble. Similar behavior is exhibited for the other output variables 

(Supplementary Figure S5).  

 

Rather than building the MME by adding models chosen at random, suppose that one starts from 

the model with smallest RMSE and then adds models in the order of increasing RMSE. The general 

result of doing so is an initial decrease in RMSE and then a trend of increasing RMSE as the number 

of models in the ensemble increases. In 12 out of 17 combinations of data set and output, minimum 

RMSE is reached with 2-6 models in the ensemble (Figure 3 and Supplementary Figure S5).  

 

Theoretical results 

In the following we focus only on e-mean, which is more amenable to theoretical treatment than e-

median. The analysis is based on eq. (1), which separates model error into a bias component and 

model, environment and model x environment interaction effects.  The estimated values of  , 2

 , 

2

  and 2

   for each data set and output variable are shown in Supplementary Tables S5-S8.  The 

results are that squared bias 
2  is usually much smaller than any of the variance components. That 

is, model error  averaged over models and environments for each data set is small. The contributions 

of the other variance components are quite variable. Depending on the data set and the variable 

that is predicted, the major variability can arise from the variability in errors between models (e.g. 

maximum LAI prediction for  the C3-GEM data set), the variability in errors between environments 

(e.g. biomass prediction for the AGFACE data set) or from the interaction (e.g. prediction of protein 

for the HSC data set).  
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MSEP of e-mean based on a MME of size n is  

2

1 1

( ) (1/ ) (1/ )
n n

e mean i j ij

i i

MSEP n E n n   

 

   
     

   
     (2) 

Using the properties of the random effects model, this leads directly to  

 
2 2 2 2( ) / /e meanMSEP n n n                                                                                (3) 

Letting n tend toward infinity, it is seen that in the limit of a very large MME 

 2 2

e meanMSEP      (4) 

On the other hand, the expectation of MSEP over individual models ( MSEP ) is   

  
2

2 2 2 2

i j ijMSEP E                     (5) 

Thus MSEP  is always as large as or larger than e meanMSEP  . This is a generalization of the empirical 

results in Figure 1 and Supplementary Figures S1-S3, which show that e-mean has smaller RMSE than 

the average over models (the bar labeled “ave”) in all the cases considered.  

Assuming the ia  values have a normal distribution, we can also obtain results for the probability 

that e-mean is better than any individual model.  A model with random effect i a   has an MSEP 

value of  

  
22 2 2( | )i j ij iE a a                    (6) 

If the ia  have a normal distribution, then in the limit of a very large MME, the probability that an 

individual model will have MSEP less than or equal to emeanMSEP  is 
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  2 2 2 2 2 2 2 2( ) /P a P a                         (7) 

where  
2

'a  is distributed as a noncentral chi squared variable with 1 degree of freedom and non-

centrality parameter 2 2/   (Supplementary Figure S6). If 2 2

   (interaction variance greater 

than squared bias), then in the limit of a very large MME this probability is 0. The result just depends 

on the relative values of squared bias and interaction variance, and not on how good the individual 

models are. The inequality is satisfied for every data set and output variable here, implying that in 

the limit of many models and averaged over environments, e-mean should be better than every 

model in the ensemble. This is an extension of the empirical results, which concern a finite number 

of models and environments. Those results show that there are relatively few models that are better 

than e-mean.  

 

Equation (4)  shows that emeanMSEP is not necessarily small, even in the limit of a very large MME. It 

will only be small if both 
2  and 2

  are small. In the limit of large MME, the model effect and the 

interaction effect cancel out between models and thus don’t contribute to e meanMSEP  . Empirically, 

it is found that 
2 is always relatively small, but this is not the case for 2

 . As a result there are 

several cases where e-mean has no skill.   

Consider now the effect of the size of the MME. Eq. (3) shows that ( )e meanMSEP n  decreases as 

1/n, going from 2 2 2 2

         when there is a single model to 2 2

   when there are 

infinitely many models. This assumes that models in the ensemble are chosen at random from the 

distribution of models. Figure 3 and Supplementary Figure S5 show how  ( )e meanMSEP n  decreases 

with the size of the MME, based on the estimated variance components and eq. 3.  The results 

generalize the empirical results to prediction for the target population.  
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Eq. (3) also helps understand the empirical behavior of MSE of e-mean when the ensemble is built 

from successively worse models. Suppose that one starts from a sample of size n from some 

population P1 of models, for which MSEP of e-mean is  

  2 2 2 2

( 1) ( 1) ( 1) ( 1)( 1) (1/ )e mean P P P PMSEP P n           (8) 

To obtain an MME of size n+1, one must enlarge the sampled population to P2, with say  

  2 2 2 2

( 2) ( 2) ( 2) ( 2)( 2) (1/ ( 1))e mean P P P PMSEP P n             (9) 

Since models are added in order of increasing MSEP, 2 2 2 2

         is larger for P2 than for P1. 

However, the contribution of the term 2 2

    is divided by n for P1 and by n+1 for P2, which can 

offset the increase in 2 2 2 2

        , especially for small n. The empirical result is a minimum in 

MSE of e-mean for some value of n almost always larger than 1. 

 

Discussion  

There have been several publications that have documented the  good performance of e-mean and 

e-median for crop models, including for the same data sets considered here (Asseng et al., 2014; 

Martre et al., 2015) and also for other crops than wheat (Bassu et al., 2014; Fleisher et al., 2017; Li et 

al., 2015; Rötter et al., 2012).  However, here for the first time we analyze the results using MMEs 

for five different data sets, each representing a different range of environmental variability, in a 

common framework.  
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Empirical evidence is essential, but necessarily limited. It is important to complement the empirical 

evidence with theoretical results. The theoretical framework that we propose helps explain and 

generalize the empirical results. The framework assumes that there is some essentially infinite 

underlying distribution of crop models, from which the models in the MME are sampled at random. 

This assumption could be questioned, on the basis that there are in fact a limited number of existing 

crop models. However, it has been found that even crop models derived from the same underlying 

model but differing in parameterization can give quite different results (Folberth et al., 2016), 

implying that the number of effectively different crop models is in fact essentially infinite.  

 

The theoretical results are based on variance components, which are simple to calculate. It may be 

worthwhile doing so systematically for MME studies, because the random effects model then 

provides a diagnostic tool for relating results to the characteristics of the MME and also a tool for 

extrapolating to the target population of environments and to different numbers of models.  

 

The theoretical results all concern the simple mean of the values simulated by the individual models. 

It might be possible to improve the performance of e-mean by weighting different models 

depending on agreement with observations, using for example Bayesian model averaging (Raftery, 

Balabdaoui, Gneiting, & Polakowski, 2003). This is however difficult for crop models, because each 

environment involves growing a crop for a full season and as a consequence there are in general 

relatively few data available for estimating the weighting coefficients.  Simple averaging is also often 

used for climate model ensembles (for example Wang et al., 2009). 

 

 



A
cc

ep
te

d
 A

rt
ic

le

This article is protected by copyright. All rights reserved. 

The empirical results show that MSE of e-median and e-mean are always smaller than the average 

MSE of the individual models in the MME. This has also been observed with respect to climate 

models (Wang et al., 2009). The theoretical results show that this will always be true for  MSEP of e-

mean compared to MSEP averaged over models, for any size of the MME. The advantage of e-mean 

will increase as the ensemble size increases. Thus theory and empirical results agree that it is better 

(less prediction error) to use e-mean than a model chosen at random from the population of models, 

on average over the chosen model. The statistical basis for the superiority of e-mean is that the 

model and interaction effects cancel out between models. One possible modeling explanation could 

be that different models have different errors in the parameters, and averaging over models 

averages out the parameter errors. A similar mechanism has been suggested for climate models 

(Wang et al., 2009). 

The empirical results show that e-median often has smaller MSE values than even the best individual 

model, and if not, it has an MSE value quite close to that of the best model.  E-mean is not as highly 

ranked, but also is always close to the best MSE value. The theoretical results show that in the limit 

of a very large MME, MSEP of e-mean will be smaller than MSEP of the best model when squared 

bias is smaller than the variance of the interaction effect. The bias refers to error averaged over 

models, and thus bias contributes to MSEP of e-mean. An individual model however may have a 

model effect that is the negative of the bias, which is simply to say that the best individual model 

may have very small or zero error averaged over environments. Thus the existence of bias tends to 

make e-mean a worse predictor than the best model. A large interaction variance implies that model 

error is sometimes small, sometimes large for different environments. The average over models of 

the interaction term however tends to zero for large MMEs, for each environment. Thus the 

existence of interaction tends to make e-mean a better predictor than any model. Overall then, the 

relative values of squared bias and interaction variance determine whether there will be individual 

models better than e-mean.  
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Based on the estimated variance components, squared bias is smaller than the variance of the 

interaction effect for all the data sets  and outputs considered here. Together, the empirical and 

theoretical results suggest that in a wide variety of cases, e-mean or e-median will be a better choice 

as predictor than any individual model, with e-median seeming to be empirically somewhat better 

than e-mean. The fact that the ensemble predictors out-perform most or all models not only for 

yield but also for protein, biomass and maximum LAI, suggests that they are useful not only for 

predicting final yield but also for prediction of the growth trajectory and quality of the crop.  

 

The value of e meanMSEP is not necessarily small; it is equal to the sum of squared bias and the 

variance of the environment effect. Since e meanMSEP  can be large,  the skill of e-mean can be poor. 

It is thus essential to verify, for each application of crop models, that e-mean is indeed sufficiently 

skillful for the application intended.  Model improvement, to the extent that it reduces bias and/or 

leads to models which track the effects of environment more closely (i.e. reduces the variance of the 

environment effect) will reduce e meanMSEP  . Thus model improvement is not only important in its 

own right, but can also be a path to improved prediction by e-mean, as shown in (Maiorano et al., 

2016) where improving wheat models by calibration and/or taking better account of heat stress 

improved prediction accuracy of e-median. Simply making models more similar, in the absence of 

improvement, reduces the variance of the model effect, but this does not reduce e meanMSEP  . It is 

easy to show that according to the mixed model, the covariance between errors of two different 

models for a given environment is equal to 
2

 , the variance of the environment effect. Thus, 

everything else being equal,  the smaller the covariance (the less the model outputs are related), the 

smaller e meanMSEP  will be.  The fact that bias is small for all the data sets here might be partially a 

consequence of calibration. The calibration data allow modelers to verify that their simulated values 

are close to reality for at least some environments.     
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The effect of number of models in a MME is of practical importance, and has received attention in 

several studies. For example, Li et al. (Li et al., 2015) suggested that eight models would be sufficient 

to obtain errors of e-mean below 10% of observed yield. The results here shed further light on this 

question. Our results indicate that the behavior of e meanMSE  as a function of ensemble size depends 

on how the MME is created. If models are added at random, then ( )e meanMSEP n  depends on n, the 

number of models, through the term 2 2( ) / n   , which decreases monotonically with n. In this 

case, a larger ensemble size always leads in expectation to a smaller value of ( )e meanMSE n . Even 

going from 1 to 2 models is of interest, since it reduces that term by half. With five models, one 

obtains 80% of the potential improvement from adding more models. Note that the theoretical 

reduction in e meanMSE   with n is in expectation, not for each sample of models. Wang et al. (2009) 

similarly found that improvement of a MME of climate models was very slight beyond 5-6 models.  

 

If, instead of choosing models at random, one is capable of identifying the best models and builds 

the MME by successively adding models with larger prediction error, then the empirical results show 

that ( )e meanMSE n  has a minimum at some small number of models, almost always greater than 1. 

That is, even if the best model is assumed to be known, it is almost always found to be advantageous 

to create at least a small MME by including less well-performing models. The theoretical results 

show that this is due to cancellation of  errors between models which reduces the model effect and 

interaction contributions to ( )e meanMSEP n . In this case it is not advantageous to make the MME as 

large as possible. Adding increasingly poorly performing models eventually increases ( )e meanMSE n . 

To take advantage of this behavior, one would need to identify the best models (to be included in 

the MME) and/or the worst models (to be excluded). However, the empirical results show that 

identifying the best models can be very difficult, since all models had a wide range of rankings for fit 

to the observations. Thus actually creating an MME which contains only the best models or at least 
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avoids the worst models is a challenge. We examined here the rather simple strategy of adding 

models in inverse order of MSE. For climate models, it has been suggested that the optimal choice of 

models should take into account both the skill of the individual models (high skill better) and their 

degree of dependency (less dependency better) (Yoo & Kang, 2005).  

 

The practical conclusion of this study is that predicting with e-mean or e-median of a fairly small 

MME of around five models which have been shown to be well-suited to the predictions of interest, 

will often be a good strategy. If the models are chosen in a way that is equivalent to choosing models 

at random, then this ensemble size captures, in expectation, most of the cancellation of errors that 

arises from having multiple models. If this includes only the best models, then this size is consistent 

with the number of models that empirically gives smallest error for e-mean.  

 

While the emphasis here has been on ensemble predictors, it should be noted that there are other 

objectives of ensemble studies (Wallach, Mearns, Ruane, Rötter, & Asseng, 2016). A major objective 

is to obtain information on model uncertainty, based on the spread between models. Another 

important objective is to foster collaboration between modeling groups. Those objectives could lead 

to different considerations concerning ensemble size. Also, it is important to emphasize that using 

ensemble predictors is not a substitute for model improvement. Both model improvement and use 

of ensemble predictors, either singly or in combination, could contribute to extending the usefulness 

of crop models.  
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Table 1 

 Environments Data furnished for Calibration References 

AgMIP-
Wheat Pilot 
(4) 

Four global sites, corresponding to four different mega-
environments. 
3 spring cultivars (Gamenya, HD 2009, and Oasis), 1 winter 
cultivar (Arminda) 
Yields 2.5-7.5 t ha-1 

Anthesis and maturity date, all 
environments 

Asseng et al. (2016); 
Martre et al. (2015) 

HSC 
(15) 

Maricopa, Arizona.  Gradient of mean growing season 
temperature from 15.0°C to 33.4°C created by varying sowing 
date and artificial heating. 
1 spring cultivar (Yecora Rojo) 
Yields 0-8 t ha-1 

Detailed crop measurements   
for one environment (average 
temperature of 15.4°C). 
Phenology parameters used previously 
in one model.  
 

Asseng et al. (2014) 

HSGE 
(34) 

6 high temperature global sites, two years, one or two planting 
dates. Number of days with Tmax>31°C ranged from 28 to 74.  
2 spring cultivars (Bacanora 88 and Nesser) 
Yields 1.9-8.0 t ha-1 

Detailed crop measurements for four 
environments at one location (Obregan, 
Mexico).  
Anthesis and maturity dates for all other 
environments.  
 

Asseng et al. (2014); 
Martre et al. (2017) 

C3-GEM 
(10) 

Control and heat shock environments in outdoor controlled 
environment chambers. Heat shock of Tmax=38°C for 4 hours 
for 2 or 4 days during the lag or linear grain filling period or 
both.   
1 winter cultivar (Récital) 
Yields 5.6-8.4 t ha-1 

Detailed crop measurements for the 3 
control environments.  

Majoul-Haddad, 
Bancel, Martre, Triboi, 
& Branlard (2013) 
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AGFACE 
(18) 

Elevated free air CO2 concentration experiment, over three 
years, early or late sowing, CO2 concentrations of 385 or 550 
ppm, rain-fed or irrigated. 
1 spring cultivar (Yitpi) 
Yields 1.1-4.6 t ha-1 

Detailed crop measurements for one 
environment (385 ppm C02, early 
sowing, irrigated).  
Parameters used previously in  6 
models.   
. 

O’Leary et al. (2015) 

 

Table 1.  

Data sets. The five wheat data sets that provided the empirical evidence. *The number  of environments in the data set is given in parentheses.
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Figure legends 

Figure 1.   

RMSE relative to RMSE of e-median (RMSEmodel-RMSEe-median) for each data set.  A negative value 

means that the model has smaller RMSE than e-median. The two letter codes represent different 

crop models, see Table S1 for model identification information. “ybar” refers to the predictor that 

uses the same predicted value, equal to the average of observed values for the data set, for all 

environments. Models with relative RMSE values larger than "ybar" have no skill. Relative RMSE for  

“ave” is obtained by averaging MSE over all individual models, taking the square root and 

subtracting RMSEe-median.    

 

 Figure 2 

Fit of models to HSC yield data. Each environment number corresponds to a different sowing date, 

either without (“C”) or with (“H”) supplementary heating. Solid diamonds are observed yields. Circles 

and triangles show respectively e-mean and e-median. Values simulated by the 25 individual models 

are connected by thin dotted lines.   

 

Figure 3.  

Effect of ensemble size on root mean squared error (RMSE) of e-mean for yield.  Left panel. Effect of 

ensemble size on RMSE of e-mean for yield when models are chosen at random. Each point is the 

RMSE of e-mean averaged over 100 samples of n (n=1,...,25) models drawn at random, without 

replacement, from the models of the original MME. The lines are based on equation 3, using the 

variance components estimated for each data set. Right panel. Effect of ensemble size on RMSE of e-

mean for yield when models are added from best (smallest RMSE) to worst.  
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