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Breast cancer is the second leading cause of cancer death among women worldwide and besides life style, age and genetic

risk factors, exposure to ionizing radiation is known to increase the risk for breast cancer. Further, DNA copy number altera-

tions (CNAs), which can result from radiation-induced double-strand breaks, are frequently occurring in breast cancer cells. We

set out to identify a signature of CNAs discriminating breast cancers from radiation-exposed and non-exposed female patients.

We analyzed resected breast cancer tissues from 68 exposed female Chernobyl clean-up workers and evacuees and 68

matched non-exposed control patients for CNAs by array comparative genomic hybridization analysis (aCGH). Using a stepwise

forward–backward selection approach a non-complex CNA signature, that is, less than ten features, was identified in the train-

ing data set, which could be subsequently validated in the validation data set (p value<0.05). The signature consisted of

nine copy number regions located on chromosomal bands 7q11.22-11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23-11.21,

1p21.1, 2q35, 2q35, 6p22.2. The signature was independent of any clinical characteristics of the patients. In all, we identified

a CNA signature that has the potential to allow identification of radiation-associated breast cancer at the individual level.

Ionizing radiation is a known risk factor for the development

of breast cancer.1 An association with increased breast cancer

risk has been reported after exposure to ionizing radiation in

the course of medical treatment, after nuclear reactor acci-

dents or by the Japan atomic bombings.2,3 In particular, for

female breast cancer in Chernobyl clean-up workers, who

participated in recovery operation works in 1986–1987 after

the Chernobyl reactor accident, an almost doubled standard-

ized incidence ratio has been reported when compared to the

national sporadic breast cancer incidence.4,5 Furthermore an

increased breast cancer rate could also be detected among the

population of the most contaminated regions of Ukraine and

Belarus.6 So far only associations with genomic instability,

Her2 and c-myc amplification and higher histological grade

have been described for breast cancers that developed in

atomic bomb survivors in Japan.7,8 Results of breast cancers

that developed in women previously irradiated for Hodgkin

Lymphoma are conflicting with some studies suggesting a

Key words: copy number signature, Chernobyl, breast cancer, ionizing radiation

Abbreviations: AIC: Akaike Information Criterion; Array CGH: array comparative genomic hybridization analysis; AUC: area under the

curve; CNAs: genomic copy number alterations; FFPE: formalin-fixed paraffin-embedded; HNSCC: head and neck squamous cell carci-

noma; IHC: immunohistochemistry; NHEJ1: non-homologous end-joining factor 1; NPV: negative predictive value; NST: invasive ductal

carcinomas of no special type; PPV: positive predictive value; PTC: papillary thyroid cancer; qPCR: quantitative real-time polymerase

chain reaction; SVM: support vector machine; TNM: primary tumor, lymph node metastases, distant metastases

Additional Supporting Information may be found in the online version of this article.
†C.M.W. and H.B. contributed equally to this project and should be considered co-first authors

Grant sponsor: Bundesministerium f€ur Umwelt, Naturschutz, Bau und Reaktorsicherheit (BMUB); Grant numbers: 3615S32454,

3611S30019

DOI: 10.1002/ijc.31533

History: Received 18 Oct 2017; Accepted 23 Mar 2018; Online 16 Apr 2018

Correspondence to: Kristian Unger, Research Unit Radiation Cytogenetics, Helmholtz Zentrum M€unchen, German Research Center for

Environmental Health GmbH, Neuherberg, Germany, Tel.: 149-893-1870-3516, E-mail: unger@helmholtz-muenchen.de

T
u
m
o
r
M
ar
k
er
s
an

d
S
ig
n
at
u
re
s

Int. J. Cancer: 143, 1505–1515 (2018) VC 2018 UICC

International Journal of Cancer

IJC

http://orcid.org/0000-0001-8182-4033


higher rate of the basal-like subtype in irradiated women and

others showing a higher rate of Her2 amplification.9,10 How-

ever, no histological or molecular marker has been reported

so far that allows identification of radiation-associated breast

cancers after low-dose exposure. In this study, we aimed to

identify genomic copy number alterations that specifically

allow detection of radiation-associated breast cancers. CNAs

account for 85% of the variation in gene expression and

define key genetic events driving tumorigenesis.11,12 Knowl-

edge of radiation-exposure specific CNAs should therefore

also provide mechanistic insights into radiation-associated

breast carcinogenesis. Breast cancer is a heterogeneous dis-

ease with distinct biological features and clinical behaviour.13

Copy number and gene expression profiling of sporadic

breast cancer has led to the identification of different molecu-

lar subtypes (luminal, Her2, basal-like breast cancer).14

Hence, CNAs represent an important molecular layer in

breast cancer that also bears the potential providing prognos-

tic markers.15 The thyroid is another radiation-sensitive

organ and it has been shown that in papillary thyroid carci-

nomas that developed in patients who were exposed to ioniz-

ing radiation at young age, chromosomal band 7q11.22-11.23

was specifically amplified.16 In this study, a combined for-

ward–backward selection approach was applied on CNA data

in order to identify a CNA-signature with low complexity

that allows the identification of radiation-associated breast

cancers. The approach was applied to a whole genome array

CGH data set on breast cancers from a cohort of female

clean-up workers who were exposed to ionizing radiation

from the Chernobyl reactor accident and non-exposed con-

trols matched for residence, tumor type, age at diagnosis,

TNM classification and histological grading.

Material and Methods

Clinical samples and data

We analyzed formalin-fixed paraffin-embedded (FFPE) breast

cancer tissue samples from 68 female Ukrainian patients that

were exposed to ionizing radiation after the Chernobyl reac-

tor accident in 1986. For comparison, a matched set of 68

breast cancer samples from non-exposed patients from

Ukraine was investigated. The exposed and non-exposed

patients included in this study were matched for residence,

tumor type, age at diagnosis, TNM classification and histo-

logical grading. All tumors were diagnosed as invasive

carcinomas of no special type (NST) and were from female

patients younger than 60 years at the time of diagnosis. The

136 breast cancer cases were randomly split into a training

set (n5 68) and validation set (n5 68), while for each of the

sets half of the cases were exposed and the other half were

non-exposed controls. A genomic copy number signature was

developed from the training set data with subsequent perfor-

mance assessment in the validation set.

Out of the 34 patients from the training set, 27 were regis-

tered as clean-up workers, five patients as evacuees and two

patients were registered as both evacuee and clean-up worker.

Seven out of 68 patients of the training set received neoadju-

vant radiotherapy (1–3 days before surgery). The majority (29

out of 34) of patients from the validation set were registered

as clean-up workers. Three patients were registered as evacuees

and two were registered as both evacuee and clean-up worker.

Seven out of 68 patients of the validation set received neoadju-

vant radiotherapy (1–3 days before surgery). The absorbed

doses of the exposed breast cancer patients were reconstructed

by the RADRUE method, which was adapted specifically for

estimation of breast doses.17 The doses showed a large inter-

individual variability ranging from 0.06 to 582.96 mGy

(median 13.07 mGy) in the clean-up workers and from 5.72 to

36.68 mGy (median 18.40 mGy) in the evacuees.18

HER2 genomic copy number status was detected by fluo-

rescence in situ hybridization as published by Wilke et al.

Progesterone and estrogen receptors, C-kit, cytokeratin 5/6,

p53 and Ki67 antigen expression detection was performed by

immunohistochemical staining according to the previously

described protocol.19

An overview of the clinicopathologic characteristics of the

training and validation sets as well as information about age at

time of exposure, age at time of diagnosis and latency is

shown in Table 1. The patient’s individual data are listed in

Supporting Information, Tables S1 and S2. For testing associa-

tions of exposure status with clinical characteristics of the

patients such as estrogen-receptor status, progesterone-receptor

status, cytokeratin-expression status (positive/negative), C-kit-

expression status (positive/negative), Ki67-expression status

(positive/negative), Her2/neu-status, p53-mutation status,

BRCA1/2-mutation status, pT-status, pN-status and histologi-

cal grading, Fisher’s exact test was used. For testing associa-

tions of exposure status with the age at time of diagnosis,

t test was used. Significance was accepted for p values< 0.05.

What’s new?

Exposure to ionizing radiation during medical procedures or following nuclear accidents can increase breast cancer risk by

inducing DNA double-strand breaks that potentially lead to DNA copy number alterations. In this study, the authors identified

a genomic copy number signature associated with radiation exposure in breast cancers in women who were exposed to ioniz-

ing radiation as Chernobyl clean-up workers or accident evacuees. The signature, composed of nine genomic copy number

regions, enabled the calculation of a breast cancer radiation-exposure risk score, which was independent of clinical character-

istics. The findings cast light on a new approach to radiation-induced breast cancer detection.
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Table 1. Patient characteristics of the Chernobyl training and validation set

Training set Validation set

Characteristics Exposed Not exposed p value1 Exposed Not exposed p value1

Number of patients 34 34 34 34

Tumor type, no. (%) Invasive
carcinoma
of no
special type

34 (100) 34 (100) 11 34 (100) 34 (100) 11

Age at diagnosis,
median (years),
(range (years))

51.50
(37.58–59.67)

49.83
(34.67–59.25)

0.472 48.04
(35.33–59.17)

50.96
(35.58–58.50)

0.552

Age at exposure,
median (years),
(range (years))

33.92
(24.17–45.50)

NA 30.58
(18.50-42.58)

NA

Latency, median
(years), (range
(years))

18.83
(10.00–23.83)

NA 19.92 (9.00–29.58) NA

Estrogen-receptor
status, no. (%)

Positive 21 (62) 20 (59) 11 26 (76) 28 (82) 0.771

Negative 13 (38) 14 (41) 8 (24) 6 (18)

Progesterone-receptor
status, no. (%)

Positive 18 (53) 21 (62) 0.621 25 (74) 25 (74) 11

Negative 16 (47) 13 (38) 9 (26) 9 (26)

C-kit status, no. (%) Positive 4 (12) 2 (6) 0.671 4 (12) 5 (12) 11

Negative 30 (88) 32 (94) 30 (88) 29 (88)

Cytokeratin 5/6
status, no. (%)

Positive 6 (18) 3 (9) 0.481 6 (18) 4 (12) 0.731

Negative 28 (82) 31 (91) 28 (82) 30 (88)

P53 status, no. (%) Positive 18 (53) 14 (41) 0.471 13 (38) 20 (59) 0.151

Negative 16 (47) 20 (59) 21 (62) 14 (41)

Ki-67 status, no. (%) Positive 31 (91) 34 (100) 0.241 30 (88) 30 (88) 11

Negative 3 (9) 0 (0) 4 (12) 4 (12)

BRCA1/2 status,
no. (%)

Positive 4 (12) 4 (12) 11 0 (0) 1 (3) 11

Negative 30 (88) 29 (85) 34 (100) 33 (97)

Not evaluable 0 (0) 1 (3) 0 (0) 0 (0)

Her2 status, no. (%) Positive 4 (12) 7 (21) 0.521 4 (12) 2 (6) 0.431

Negative 27 (79) 27 (79) 29 (85) 32 (94)

Not evaluable 3 (9) 0 (0) 1 (3) 0 (0)

pT stage, no. (%) pT1 13 (38) 15 (44) 0.91 13 (38) 12 (35) 11

pT2 20 (59) 18 (53) 19 (56) 20 (59)

pT3 1 (3) 1 (3) 2 (6) 2 (6)

pN stage, no. (%) pN0 18 (53) 19 (56) 11 17 (50) 17 (50) 11

PN1 14 (41) 15 (44) 17 (50) 17 (50)

pN2 1 (3) 0 (0) 0 (0) 0 (0)

pNx 1 (3) 0 (0) 0 (0) 0 (0)

pM stage, no. (%) M0 34 (100) 34 (100) 11 34 (100) 34 (100) 11

Grade, no. (%) G1 1 (3) 1 (3) 11 3 (9) 3 (9) 11

G2 20 (59) 20 (59) 24 (71) 24 (71)

G3 13 (38) 13 (38) 7 (21) 7 (21)

1The p value was calculated by Fisher’s-exact test.
2The p value was calculated by t test.
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Genomic copy number analysis by array CGH

To characterize genomic copy number alterations in the

post-Chernobyl breast cancer cohorts, array CGH was per-

formed using high-resolution oligonucleotide-based SurePrint

G3 Human 60k CGH microarrays (AMADID 21924, Agilent

Technologies, USA). The workflow is described in the Sup-

porting Information, material and methods part.

Hierarchical cluster analysis of DNA copy number profiles

was performed using correlation distance and method

“Ward.” For testing associations of clusters with exposure

status, estrogen-receptor status, progesterone-receptor status,

cytokeratin-expression status, C-kit-expression status, Ki67-

expression status, Her2/neu-status, p53-mutation status,

BRCA1/2-mutation status, triple negative status, tumor size,

lymph-node status, histological grading, age at exposure,

Fisher’s exact test was used. ANOVA F-test was used for cal-

culating associations of clusters with age at diagnosis, age at

exposure and latency. Significance was accepted for p

values< 0.05.

Generation of CNA signature

To identify a genomic copy number signature that allows the

prediction of radiation exposure we followed a multivariate

logistic regression approach. Logistic regression models the

probabilities P of class membership for each patient (exposed

or non-exposed) directly according to the formula

P5 P(h)5 exp(h)/(11 exp(h)), where h5 ß01 ß1X11. . .

1ßnXn5 log(P/(12 P)) is the logit or logarithmic odds value,

with predictor variables Xi, coefficients ßi and n the number

of variables in the model. The calculated probability P serves

then as risk score for radiation exposure. Tumors with a pre-

diction probability P> 0.5 were classified as radiation associ-

ated. For more details, see James et al.20

Binary copy number alteration states of all altered copy

number regions have been used as variables whilst gains and

losses were treated separately. Thus, for every region gain/no

gain (0/1) and loss/no loss (0/1) were reported. Hence, for

each copy number region gain status and loss status were

treated as independent variables. For the purpose of model fit

and validation, the described training and validation sets

were used. Feature selection was performed by stepwise com-

bined forward–backward selection, using the functions glm

(for generalized linear modelling) and step for Akaike Infor-

mation Criterion (AIC) based selection of the best models

from the R package stats.21 The algorithm of function step

computes the likelihoods of each model fit for a sequential

selection of features, whilst the best performing model was

determined using AIC for the sake of the best trade-off

between bias and variance of the model.20 The negative likeli-

hood, which is a positive value, decreases with increasing

number of features in the model. AIC simply adds twice the

number of features to the negative likelihood, so that it

reaches a minimum, which determines the optimal number

of features. Only CNAs (gains or losses) that occurred at

least 5 times in the training set and with univariate p values

up to 0.25 between exposed and non-exposed tumors (Fish-

er’s exact test) were admitted for the selection algorithm. The

number 5 roughly reflects a standard deviation sqrt(5) (Pois-

son rule) corresponding to a CV< 50%, which makes calcu-

lations more stable. 0.25 is also used as a default entry value

for example in variable selection the SAS procedure PROC

PHREG. Subsequently, the afore-defined risk score, based on

the coefficients defined using the training set, was calculated

for every tumor in the validation set. Finally, a confusion

table was built for the comparison of the true and predicted

exposure states and a p value using one-tailed Fisher’s exact

test was determined.

Fisher’s exact test was also used to test the binary associa-

tions of the risk score with any clinical characteristics of the

patients such as estrogen-receptor status, progesterone-receptor

status, cytokeratin-expression status (positive/negative), C-kit-

expression status (positive/negative), Ki67-expression status

(positive/negative), Her2/neu-status, p53-mutation status,

BRCA1/2-mutation status and intrinsic subtypes. Significance

was accepted for p values< 0.05.

Quantitative PCR (qPCR)

For technical validation of the CNAs detected by aCGH, the

copy number status of genes representative for the copy

number regions included in the CNA-signature, was deter-

mined by genomic copy qPCR. The workflow of the genomic

copy number qPCR is described in the Supporting Informa-

tion, material and methods part.

The calculated copy number state was used as the basis

for further calculations in R. Values smaller than 1.5 were

considered as losses and values >2.5 were considered as

gains. The thresholds were taken from the CopyCaller soft-

ware. As reference assay Life Technologies recommend to use

a gene that is known to exist in two copies in a diploid

genome and is being unaffected in all of the experimental

samples. It was not possible to extract a gene showing no

CNA in the whole data set. From the most commonly used

reference genes, the RNaseP gene showed the lowest number

of CNAs over all experimental samples. Therefore, we

decided to use copy number reference assay for this gene as

reference. To make results comparable between qPCR and

aCGH, we also corrected the aCGH copy number states with

that of the appropriate locus covering the RNaseP gene. The

copy number state as determined by array CGH and qPCR

were summarized in a confusion table and subjected to Fish-

er’s exact test. p values <0.05 indicated confirmation of the

array CGH results by qPCR.

Dose–response analysis

Logistic-regression analysis was performed in order to test

for relation between radiation dose and the occurrence of sig-

nature CNAs. The workflow is described in the Supporting

Information, material and methods part.
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Results

This study aimed at the identification of radiation-associated

DNA copy number changes in a cohort of breast cancers

from post-Chernobyl clean-up workers and evacuees from

highly contaminated territories. For this purpose, copy num-

ber profiles of exposed and non-exposed control cases were

generated and a radiation-exposure CNA-signature was

established.

Hierarchical clusters reveal association with radiation

exposure

High-resolution aCGH profiles of 136 breast cancer samples

were generated in order to characterize genomic copy num-

ber patterns of radiation-associated breast cancer. Supporting

Information, Figure S1 shows all genomic copy number pro-

files after unsupervised hierarchical clustering with annotated

parameters exposure status, estrogen-receptor status,

progesterone-receptor status, cytokeratin-expression status,

C-kit-expression status, Ki67-expression status, Her2/neu-sta-

tus, p53-mutation status, BRCA1/2-mutation status, triple

negative status, tumor size, lymph-node status and histologi-

cal grading. The two main clusters C1 and C2 of the hierar-

chical cluster analysis consisted of 33 and 103 cases,

respectively, the subclusters of C2 consisted of 36 cases

(C2.1) and 67 cases (C2.2), respectively, and the sub-sub

clusters of C2.2 consisted of 22 cases (C2.2.1) and 45 cases

(C2.2.2), respectively. In general DNA losses and gains

occurred more frequently in cluster C1 compared to clusters

C2.1, C2.2.1 and C2.2.2. Furthermore, C2.2.1 in general

showed a lower number of aberrations compared to clusters

C1, C2.1 and C2.2.2. From all tested parameters exposure

status (p5 0.019), histological grading (p5 0.03), estrogen-

receptor status (p5 0.04), cytokeratin-expression status

(p5 0.04), Her2/neu-status (p5 0.01), BRCA1/2-mutation

status (p5 0.04), age at diagnosis (F-test, degrees of numera-

tor dn5 3, degrees of denominator dd5 132, p5 0.03) and

tumor size (p5 0.02) were differentially distributed across

C1, C2.1, C2.2.1 and C2.2.2 (Supporting Information, Table

S3). With regard to exposure status all clusters showed equal

distributions except cluster C2.1, which contained signifi-

cantly more non-exposed than exposed cases (26 out of 36,

72%). Further, no association of exposure status with age at

diagnosis or other clinical characteristics of the patients was

detected (Table 1). Large tumors (pT2 and pT3) were associ-

ated with clusters C1, C2.1 and C2.2.2 (76 out of 83, 92%).

Within clusters C2.2.1 and C2.2.2 significantly less G3

tumors (12 out of 40, 30%) were included. In addition aCGH

profiles from estrogen-receptor negative cases were underrep-

resented in clusters C2.2.1 and C2.2.2 (13 out of 41, 32%).

Cases with Her2/neu-status positive and Cytokeratin 5/6-

expression positive were associated with clusters C1, C2.1

and C2.2.2 (Cytokeratin 5/6-expression positive: 19 out of 19,

100%, Her2/neu-status positive 17 out of 17, 100%). Cases

with a BRCA1/2-mutation were enriched in cluster C2.1 (6

out of 9, 67%).

Moreover, patients of cluster C2.1 were significantly youn-

ger at age of diagnosis (mean: 47.08 years) compared to cases

of cluster C1 (mean: 50.79 years), cluster C2.2.1 (mean: 51.66

years) and cluster C2.2.2 (mean: 50.04 years).

Identification of a nine-genomic CNA-signature predicting

radiation exposure

In the first step, univariate testing was used as a preselection

step for selection of highly discriminating copy number

changes. Admitted for the selection algorithm were only

gains or losses that occurred at least five times in the training

set and that showed univariate p values <0.25 (see Material

and Methods and Supporting Information, Table S4). This

resulted in 144 out of 910 CNA regions. In a next step, the

most discriminating features (i.e., CNA regions) were selected

by stepwise combined forward and backward selection and

the optimal number of features was determined by Akaike

Information Criterion (AIC, see Material and Methods) to

avoid overfitting. This approach revealed a CNA-signature

composed of nine altered genomic copy number regions

located on chromosomal bands 7q11.22–11.23 (7:70899666–

72726548), 7q21.3 (7:97597612–97749420), 16q24.3 (16:894

72538–90111178), 17q21.31 (17:44210733–44231916), 20p11.

23–11.21 (20:20226791–24223097), 1p21.1 (1:105300245–10

5546898), 2q35 (2:220499593–220503940), 2q35 (2:219083470

–220474362), 6p22.2 (6:26033303–26234636) in the Cherno-

byl training set. The parameter values of the features are

shown in Table 2. Further, as explained in Material and

Methods, the model, defined by the calculated parameters,

was evaluated in the validation set. For every tumor, the

probability P was calculated as a risk score according to the

model formula. The score values P appeared to be strongly

clustered. 22 values were <1.0 3 1027, 11 times 0.833, 33

times >(1–1027) and two values 0.355 and 0.667. After

rounding to a few decimal digits, 5 uniquely different values

remained. Tumors were then predicted as exposed if P> 0.5

or as non-exposed if P< 0.5. The results of the prediction

performance assessment of the CNA-signature on the valida-

tion set are shown in Figure 1. Of the 68 cases, 45 were pre-

dicted to be exposed and 23 non-exposed (predicted positive

and predicted negative, right and left side in the three panels

of Figure 1, respectively). From the lower panel in Figure 1

performance parameters can be read. The 45 positive pre-

dicted split into 27 true and 18 false positives, the 23 negative

predicted into 16 true and 7 false negatives. We found a sig-

nificant binary association of the risk score with radiation

exposure status, which means that among the positive pre-

dicted cases we found an enrichment of exposed cases

(PPV5 27/435 0.60, lower panel, right side) compared to

exposed cases on the left side (12NPV5 7/235 0.304, lower

panel, right side, one-tailed Fisher’s-exact test, p value5 0.0

2). Under the given conditions (34 exposed, 34 non-exposed),

this is equivalent to say that the true positive rate
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(sensitivity5 27/345 0.794) is higher than false positive rate

(12 specificity5 18/345 0.529). The overall prediction error

is 0.368. The foregoing analysis could be done with any other

cutoff level of the probability score, yielding for each cutoff a

pair of specificity and sensitivity values. These are shown in

the ROC curve, Figure 2. Due to the discrete distribution of

the rounded scores, the ROC contains only 4 points. One of

these points, corresponding to a level of about P5 0.70

(between scores to avoid boundary ambiguities) shows a

slightly better specificity (0.50) and prediction error (0.353),

PPV5 0.614. However, this is in good agreement with the

level of P5 0.50 which corresponds to the smallest expected

prediction error bases on theoretical probabilistic consider-

ations. The AUC (area under the curve) amounted to 0.617.

Technical validation of the nine-CNA-signature by qPCR

The copy number status of the nine signature CNAs, which

was initially determined by array CGH, was technically vali-

dated by qPCR (p< 0.05) (Table 2 and Supporting Informa-

tion, Figure S2). For this purpose, aliquots of the same

genomic DNA samples that were used in array CGH analysis

were analyzed by qPCR. All nine representative genes/regions

from the copy number regions of the CNA-signature showed

similar copy number changes compared to array CGH, con-

firming the initial finding (p< 0.05).

Association of the nine-CNA-signature with clinical and

histological data

The risk score derived from the CNA-signature (7q11.22–

11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23–11.21, 1p21.1,

2q35, 2q35, 6p22.2) was not associated with any clinical char-

acteristics of the patients such as estrogen-receptor status,

progesterone-receptor status, cytokeratin-expression status

(positive/negative), C-kit-expression status (positive/negative),

Ki67-expression status (positive/negative), Her2/neu-status,

p53-mutation status, BRCA1/2-mutation status and intrinsic

subtypes in the Chernobyl training or the Chernobyl valida-

tion set. This suggests an independent association of the dis-

covered nine-CNA-signature with radiation exposure of

patients.

Dose–response analysis

No statistically significant association of the occurrence of

each of the nine signature CNAs with reconstructed radiation

dose was detected. Moreover, no significant influence of

radiation-dose on the occurrence of each of the nine signa-

ture CNAs could be found in logistic-regression analysis.

Discussion

In this study, we identified a genomic copy number signature

that predicts radiation exposure in post-Chernobyl breast

cancer. Previous studies reported that even at low doses, ion-

ising radiation alters gene expression as a result of induced

CNAs and thus is capable of driving the process of carcino-

genesis.22 In young patients who were exposed to radiation atTa
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very young age, copy number gain of the chromosomal band

7q11.22–11.23 has been identified as a marker of radiation

exposure in papillary thyroid carcinomas.16 As for thyroid

cancer, ionizing radiation is also known to be a risk factor

for the development of breast cancer; however, radiation-

specific markers in these tumors are yet undiscovered.1,4–6

Initial studies on gene alterations in breast cancers from the

Atomic bomb survivors in Japan revealed a higher frequency

of Her2 and c-myc oncogene amplifications as well as a

higher histological grading in these radiation-associated

tumors.7,8 However, we did not detect an association of Her2

and c-myc amplification and high histological grade with

breast cancer of patients from the exposed group in our

study (Table 1). This could be due to the fact that patients in

our study were exposed to different radiation conditions

compared to those the Atomic bomb survivors were exposed

to. Clean-up workers of the Chernobyl accident were exposed

to more heterogenous conditions in contrast to the rather

homogenous conditions the Atomic bomb survivors were

exposed to. In addition, women in our study were younger at

time of diagnosis (under 60 years old). Furthermore, exposed

and non-exposed samples were matched for histological grad-

ing in the present study. For the identification of radiation-

specific copy number changes, we used an exploratory

approach on whole genome profiling of genomic copy num-

ber alterations of resected breast cancer tissues from exposed

and matched non-exposed patients.

So far, CNAs are very well described in sporadic breast

cancer while frequently observed CNAs include gain of chro-

mosomal bands 1q, 3q, 4p, 8q, 11q, 17q and 20q and losses

of chromosomal bands 1p, 8p, 11p, 13q, 16q, 17p, 19p and

22q.15,23–25

Figure 1. Heatmap of the 9-CNA-signature of 68 breast cancer patients of the validation set composed of 34 exposed and 34 non-exposed

cases. Copy number gains are represented by green color, losses by red color (top panel). The middle panel shows the risk score on the

probability scale calculated according to the formular described in Material and Methods. Samples (columns) are sorted in ascending order

of the risk score. Cases with probabilities �0.5 are predicted as exposed, otherwise as non-exposed (middle panel, right and left side,

respectively). Given exposure status is shown in the lower panel, thus on the right orange cases mark true positives, blue cases mark false

positives. On the left side orange cases mark false negatives, blue cases mark true negatives.

Figure 2. ROC curve calculated by applying a logistic regression

model fitted on the training set and evaluated on the validation

set. Each point (circles) corresponds to a probability cutoff level

decreasing from left to right, given by the steps visualized in Figure

1. Points are connected by straight lines.
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All these CNAs are in good agreement with CNA-profiles

of this study, which substantiates the plausibility of our

results. Similar findings have been observed in breast cancers

associated with exposure to ionizing radiation in the course

of medical treatment.10 Other cytogenetic studies on breast

cancer have identified CNAs that are associated with clinical

parameters and overall survival.15,24–26 Of special interest is

an association of histological grading and estrogen-receptor

status with specific DNA copy number patterns derived from

primary breast cancers.24 These estrogen-receptor and histo-

logical grading specific patterns, such as gain of 1q and loss

of 16q which are associated with lower histological grading

and estrogen-positive tumors, could also be confirmed in our

study after unsupervised clustering of array-CGH profiles

(Supporting Information, Figure S1). Overall, unsupervised

hierarchical clustering separated the breast cancer CNA pro-

files into four main clusters that correlate with histological

grading, estrogen-receptor status, Her2/neu-status, BRCA1/2-

mutation status, cytokeratin-expression status, age at diagno-

sis and tumor size (Supporting Information, Figure S1 and

Table S3). In addition, the profiles of exposed and non-

exposed cases were differentially distributed between observed

clusters suggesting a radiation-exposure-specific signal within

the genomic copy number profiling data. However,

delineation of copy number alterations determining the clus-

tering is not trivial and might not result in radiation-

exposure specific copy number alterations since an influence

of the other cluster-associated parameters is likely. However,

these findings from the unsupervised cluster analysis moti-

vated us to develop a low-complex CNA-signature predicting

radiation exposure. From mRNA and miRNA expression

data, signatures have been already generated predicting clini-

cal outcome or estrogen-, progesteron-receptor-status and

Her2-status in sporadic breast cancer but there is no such

prediction rule at the genomic copy number level.27,28 Com-

pared to results from association testing, prediction models

come with the advantage that they provide both biological

mechanistic insights and, moreover, bare the potential of

being used as diagnostic or prognostic tools. In the context

of radiation-associated breast cancer a prediction rule could

allow identification of breast cancer tissues that developed

after exposure of patients to ionizing radiation. In order to

generate such a prediction rule we deployed stepwise com-

bined forward–backward selection in combination with mul-

tivariate logistic regression. Signature modeling approaches

using copy number alterations were applied earlier by Pro-

nold et al. and by Sung et al. who applied other statistical

approaches.29,30 Pronold et al. used nearest shrunken

Table 3. Cancer-related candidate genes and miRNAs located in the chromosomal regions of the nine-CNA-signature predicting radiation
exposure in breast cancer

Chromosomal
location Start of region1,2 End of region1,2

Cancer-related candidate genes
and miRNAs Type of aberration

7q21.3 97597612 97749420 OCM2, LMTK2 Gain

6p22.2 26033303 26234636 HIST1H1C, HIST1H1T, HIST1H1E,
HIST1H1D,
HIST1H2AB, HIST1H2AC,
HIST1H2AD,
HIST1H2BB, HIST1H2BC,
HIST1H2BD, HIST1H2BE,
HIST1H2BF, HIST1H2BG,
HIST1H4C, HIST1H4D, HIST1H4E
HFE

Loss

17q21.31 44210733 44231916 KANSL1 Gain

2q35 219083470 220474362 ARPC2, TMBIM1, GPBAR1, AAMP,
PNKD, SLC11A1, USP37, TTLL4
RQCD1, CYP27A1, WNT6,
WNT10A, IHH, NHEJ1, ATG9A,
PTPRN, STK36,
hsa-miR-26b-5p, hsa-miR-375

Loss

1p21.1 105300245 105546898 No tumor-related candidate gene Loss

16q24.3 89472538 90111178 ANKRD11, SPG7, RPL13, CPNE7,
DPEP1, CHMP1A, CDK10,
FANCA, MC1R, TUBB3, C16orf3

Gain

20p11.23-11.21 20226791 24223097 INSM1, RALGAPA2, PAX1, XRN2,
NKX2-2, FOXA2, SSTR4, CD93

Gain

7q11.22-11.23 70899666 72726548 CALN1, STAG3L3, SBDSP1 Gain

2q35 220499593 220503940 SLC4A3 Loss

1Number of clones determined by CGH regions start5 position of first, end5 position of last clone region identifier according to CGH regions.
2According to annotation GRCh37.
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centroids applied to sums of log2-ratios within common

copy number variation segments to predict human ancestry

of healthy individuals.29 Sung et al. applied a 1-norm support

vector machine (SVM) to binary copy number alteration data

for a binary classification of histological subtypes of endome-

trial cancer.30 In our study, logistic regression for a binary

classification of radiation exposure status was chosen for two

reasons: First, called copy number data should preferentially

represent raw or segmented log2-ratios because of the reduc-

tion of noise, interpretability and downstream analysis

according to Van Wieringen et al.31 Second, logistic regres-

sion allows to provide a risk score on the individual level

which is directly associated to the class probabilities.32 Our

approach resulted in a CNA-signature predicting radiation

exposure in breast cancer that is composed of nine genomic

copy number regions located on chromosomal bands

7q11.22–11.23, 7q21.3, 16q24.3, 17q21.31, 20p11.23–11.21,

1p21.1, 2q35, 2q35 and 6p22.2 (Figure 1 and Table 2). The

signature allowed calculating a breast cancer radiation expo-

sure risk score on the probability scale (Figure 1), which was

statistically not associated with any clinical characteristics.

This suggests the signature being an independent prognosti-

cator of radiation exposure of patients. At this point one lim-

itation factor is, that we do not have data on lifestyle factors

such as obesity (in postmenopausal women) and alcohol con-

sumption, which are known to increase the risk for develop-

ing a breast cancer.33 Therefore, we cannot address any

potential influence of these in our analysis. Moreover,

although having information on the smoking status of

patients, we considered working out potential influence of

smoking as not meaningful since most of the patients were

non-smokers.34

Furthermore, no dose–response or statistical association of

the occurrence of CNAs of the signature regions could be

detected. This might be due to another limitation, which is

that dose estimates by RADRUE were only available for a

subset of patients. In addition, an important fact is the uncer-

tainty of dose estimation. The intrinsic uncertainty is mostly

influenced by the uncertainty of dose rates. Another impor-

tant component is the ‘human factor uncertainty,’ which

includes intentional or unintentional mistakes of recollection

and description of the clean-up activities.35 In case of the

female clean-up workers included in this study, this factor is

less pronounced due to the relative simplicity of individual

histories and their operation away from highly heterogeneous

dose rate fields. Furthermore, a small proportion of patients

received very small irradiation doses (0.06 mGy) according to

the RADRUE dose estimation. Although it is possible that

such low doses have no biological effects the samples were

not excluded since we aimed at the identification of a robust

CNA signature for which we preferred a heterogeneous data

set over a homogeneous one. A further limitation point of

this study is, that some of the patients received neoadjuvant

radiotherapy one to three days prior surgery. However, it is

unlikely that over this short period clonal expansion of cells

harboring the same CNAs occurs. Therefore, we would not

expect detectable CNAs that developed in the course of the

neoadjuvant radiotherapy treatment.

However, like many statistical methods, the application of

the signature as a classifier has its own limitations. The best

performance values calculated on the validation set were a

sensitivity of about 80% (0.794) and an NPV (negative pre-

dictive value) of 70% (0.70, given a prevalence of 0.50, that

is, 34 exposed and 34 non-exposed). The PPV (positive pre-

dictive value) was 61.7% (0.617). Often, in diagnostic prac-

tice, one tries to improve the PPV by increasing the cutoff

level of the risk score at the cost of sensitivity. This assumes

a continuous relationship between the score and the PPV.

Using the highest discriminating probability cutoff level in

the data (P � 0.9) yields a PPV of 19/335 0.576 (Figure 1).

Modeled probabilities higher than 0.9 were clustered close to

1.0. They correspond to linear score values h larger than 20.0

up to 300.0. From a post hoc logistic regression of exposure

status (lower panel in Figure 1) with the linear score values h

as independent variable, a smoothed estimate of the PPV

could be achieved, approaching values up to 0.74; however,

this continuous dependency was not significant (results not

shown). Fisher’s exact test showed a significant binary associ-

ation between exposure status and the risk score, using a

probability of 0.5 as decision cutoff. The optimal cutoff (0.7)

determined by ROC analysis (Figure 2) appeared to be

slightly better (one case different); however, from Bayesian

decision theoretic considerations 0.5 is the cutoff with the

smallest expected prediction error. A continuous association

between a risk score given by a signature of CNA and expo-

sure status can also not be expected, because CNA are binary

features. This is one reason for the discrete appearing proba-

bility scores (middle panel in Figure 1 and ROC curve Figure

2). Many of the signature patterns (heatmap, Figure 1) have

frequency 1 and one cannot interpolate between different

combinations of CNA. On the other hand, dosimetric uncer-

tainties may add to the noise seen in the lower panel of

Figure 1. Also and most importantly, it cannot be expected

to predict a complex biological process such as tumorigenesis

with only one parameter such as the signature risk score. The

ability to partly explain the variance of tumorigenesis with a

prediction model is scientifically important.

To get insights into the potential functional impact of the

nine-CNA-signature we extracted all tumor-associated genes

and miRNAs that are mapped to the signature regions (Table

3 and Supporting Information, Table S5). Interestingly, one

region of the CNA-signature overlaps largely with the chro-

mosomal band 7q11.22–11.23 which was gained in the

majority of patients that have been classified as exposed.

7q11.22–11.23 has been reported to be exclusively gained in

papillary thyroid carcinomas of patients who were exposed to

ionizing radiation at very young age in aftermath of the

Chernobyl reactor accident.16 This finding suggests that gain

of the chromosomal band 7q11.22–11.23 could be a radiation

marker of low doses of ionizing radiation, independent of the

T
u
m
o
r
M
ar
k
er
s
an

d
S
ig
n
at
u
re
s

Wilke et al. 1513

Int. J. Cancer: 143, 1505–1515 (2018) VC 2018 UICC



tumor type. Another region of the signature, which is located

on chromosomal band 16q24.3 and overexpression of the

gene FANCA, which is located in this region, predicts

reduced clinical outcome of radiotherapy-treated patients

with head and neck squamous cell carcinoma (HNSCC).36,37

FANCA is a key regulator of the Fanconi anemia (FA)/breast

cancer (BRCA) pathway and controls homology-directed

DNA repair.38 Besides FANCA, many of the genes located

within the copy number regions of the signature are known

to be involved in DNA-damage response and repair (Sup-

porting Information, Table S5). A very prominent gene in

this context is the non-homologous end-joining factor 1 gene

(NHEJ1), which is located on chromosomal band 2q35.

NHEJ1 is required for the non-homologous end-joining path-

way of DNA repair.39 In addition, members of the Histone

H1, H2A, H2b and H4 family, all of which located in the

region of the CNA-signature that covers chromosomal band

6p22.2, were also known to be involved in these processes.40

These findings point to chromosomal instability as a major

consequence of deregulated DNA repair processes, which is a

well-known feature of cells exposed to ionizing radiation.41

Interestingly, copy number loss of the signature region on

2q35 contains miRNA hsa-miRNA-26b-5p, which recently

was published as a breast cancer radiation marker.19 Hsa-

miRNA-26b-5p expression was significantly reduced in cases

showing the loss, indicating, that its expression is mainly

determined by the copy number of the underlying miRNA

gene (Supporting Information, Figure S3).

In summary, our study presents a novel approach to pre-

dict the radiation exposure status of breast cancer patients

using a genomic copy number signature composed of nine

genomic copy number regions. The identified CNA-signature

may allow the detection of radiation-induced breast cancers

and could serve as a diagnostic marker for radiation exposure

in breast cancer. In further studies, an integration of copy

number data with transcriptome data would be desirable to

in-depth investigate if radiation-induced breast cancers repre-

sent a potential new molecular subtype.
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