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Abstract
Prior studies suggest dental caries traits in children and adolescents are partially heritable, but there has been no large-scale
consortium genome-wide association study (GWAS) to date. We therefore performed GWAS for caries in participants aged
2.5–18.0 years from nine contributing centres. Phenotype definitions were created for the presence or absence of treated or
untreated caries, stratified by primary and permanent dentition. All studies tested for association between caries and geno-
type dosage and the results were combined using fixed-effects meta-analysis. Analysis included up to 19 003 individuals
(7530 affected) for primary teeth and 13 353 individuals (5875 affected) for permanent teeth. Evidence for association with car-
ies status was observed at rs1594318-C for primary teeth [intronic within ALLC, odds ratio (OR) 0.85, effect allele frequency
(EAF) 0.60, P 4.13e-8] and rs7738851-A (intronic within NEDD9, OR 1.28, EAF 0.85, P 1.63e-8) for permanent teeth. Consortium-
wide estimated heritability of caries was low [h2 of 1% (95% CI: 0%: 7%) and 6% (95% CI 0%: 13%) for primary and permanent
dentitions, respectively] compared with corresponding within-study estimates [h2 of 28% (95% CI: 9%: 48%) and 17% (95% CI:
2%: 31%)] or previously published estimates. This study was designed to identify common genetic variants with modest
effects which are consistent across different populations. We found few single variants associated with caries status under
these assumptions. Phenotypic heterogeneity between cohorts and limited statistical power will have contributed; these find-
ings could also reflect complexity not captured by our study design, such as genetic effects which are conditional on environ-
mental exposure.

Introduction
Dental caries remains a prevalent public health problem in both
children and adults. Untreated dental caries was estimated to
affect 621 million children worldwide in 2010, with little change
in prevalence or incidence between 1990 and 2010 (1). This prob-
lem is not unique to lower income countries; around 50% of
children have evidence of caries by age 5 in industrialized
nations (2–4). Dental caries results from reduced mineral satura-
tion of fluids surrounding teeth, driven by ecological shifts in
the oral microbiome (5). Many different factors predispose
toward dental caries, of which high sugar consumption, poor
oral hygiene and low socio-economic status are the most noto-
rious (6–8). Over the last decades there has been increasing ap-
preciation for the role of genetic influences in dental caries. The
importance of genetic susceptibility for dental caries experience

was demonstrated in an animal model over 50 years ago, a find-
ing since substantiated in twin studies in humans (9–11). Of par-
ticular relevance to caries traits in children and adolescents,
Bretz et al. (10) analysed longitudinal rates of change in caries
status in children, and found that caries progression and sever-
ity were highly heritable in the primary and permanent
dentition. It has also been suggested that heritability for dental
caries does not depend entirely on genetic predisposition to
sweet food consumption (12). Despite evidence of a genetic con-
tribution to caries susceptibility, few specific genetic loci have
been identified.

Shaffer et al. (13) performed the first GWAS for dental caries
in 2011, studying the primary dentition of 1305 children. They
found evidence for association at novel and previously studied
candidate genes (ACTN2, MTR, EDARADD, MPPED2 and LPO), but
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no individual single-nucleotide polymorphisms (SNPs)
exceeded the genome-wide significance threshold (P� 5.0e-08),
possibly as a consequence of the modest sample size (13).
The first GWAS for dental caries in the permanent dentition in
adults was performed at a similar time by Wang et al. (14). They
included 7443 adults from five different cohorts and identified
several suggestive loci (P-value � 10e-05) for dental caries
(RPS6KA2, PTK2B, RHOU, FZD1, ADMTS3 and ISL1), different
loci from those mentioned above for the primary dentition
and again with no single variants reaching genome-wide
significance.

The next wave of GWAS of caries suggested association at a
range of different loci. Two GWAS used separate phenotype defi-
nitions for pit-and-fissure and smooth tooth surfaces and identi-
fied different loci associated with dental caries susceptibility in
both primary and permanent dentition (15,16). The GWAS in pri-
mary dentition used a sample of approximately 1000 children and
found evidence for association at loci reported in previous stud-
ies, including MPPED2, RPS6KA2 and AJAP1 (13–16). The largest
GWAS for dental caries in permanent dentition was performed in
a Hispanic and Latino sample of 11 754 adults (17). This study
identified unique genetic loci (NAMPT and BMP7) compared with
previous GWAS in individuals of European ancestry. To date, it is
unclear whether the variability in nominated loci reflects true var-
iability in the genetic architecture of dental caries across different
populations, age periods and sub-phenotypic definitions, or
merely represent chance differences between studies given the
modest power in the studies performed to date.

Dental caries is a complex and multifactorial disease, caused
by a complex interplay between environmental, behavioural
and genetic factors. Until now there has been a lack of large-
scale studies of dental caries traits in children and the genetic
basis of these traits remains poorly characterized. This investi-
gation set out to examine the hypothesis that common genetic
variants influence dental caries with modest effects on suscep-
tibility. We anticipated that (a) caries in both primary and per-
manent teeth would be heritable in children and adolescents
aged 2.5–18 years and (b) common genetic variants are likely to
only have small effects on the susceptibility of a complex dis-
ease such as dental caries. Therefore, the aim of this large-
scale, consortium-based GWAS is to examine novel genetic loci
associated with dental caries in primary and permanent denti-
tion in children and adolescents.

Results
Single variant results

Meta-analysis of caries in primary teeth in individuals of
European ancestry included 17 037 individuals (6922 affected)
from 22 results files representing all nine coordinating centres.
After final quality control (QC), this meta-analysis included
8 640 819 variants, with mild deflation (genomic inflation factor,
k ¼ 0.994) (Supplementary Material, Fig. S1). Meta-analysis of
caries in primary teeth which included individuals of multiple
ethnicities in the Generation R (GENR) study included 19 003
individuals (7530 affected) from 22 results files representing all
9 coordinating centres. There were 8 699 928 variants after final
QC, with mild deflation in summary statistics (k ¼ 0.986)
(Supplementary Material, Fig. S2). Analysis of caries status in
permanent teeth included 13 353 individuals (5875 affected)
from 14 results files representing 7 coordinating centres. The
sample size was smaller for permanent teeth as two coordinat-
ing centres did not have phenotype data for permanent teeth

(RAINE and GENR), whilst the COPSAC group only had data for
participants in the earlier birth cohort (COPSAC 2000).
There were 8 734 121 variants after final QC, with mild
deflation in summary statistics (k ¼ 0.999) (Supplementary
Material, Fig. S3).

The strongest evidence for association with caries in pri-
mary teeth was seen at rs1594318 [odds ratio (OR) 0.85 for
C allele, EAF 0.60, P¼ 4.13e-08] in the European ancestry meta-
analysis (Figs 1, 2 and 3, Table 1). This variant is intronic within
ALLC on 2p25, a locus which has not previously been reported
for dental caries traits. In the meta-analysis combining individ-
uals of all ancestries this variant no longer reached genome-
wide significance, although suggestive evidence persisted at
rs1594318 (OR 0.868 for C allele EAF 0.60, P¼ 3.78e-07) and other
intronic variants within ALLC in high linkage disequilibrium
(LD) (Fig. 3). For the permanent dentition the strongest statisti-
cal evidence for association was seen between caries status
and rs7738851 (OR 1.28 for A allele, EAF 0.85, P¼ 1.63e-08) (Figs 1,
2 and 4, Table 1). This variant is intronic within NEDD9 on 6p24.

Estimated heritability

Using participant level data in ALSPAC heritability was esti-
mated at 0.28 (95% CI 0.09: 0.48) and 0.17 (95% CI 0.02: 0.31) for
primary and permanent teeth, respectively. Using summary
statistics at the meta-analysis level produced point estimates
near zero heritability, with wide confidence intervals (Table 2).

Cross-phenotype comparisons

Genome-wide mean chi-squared was too low to undertake
genome-wide genetic correlation using the linkage disequilib-
rium score regression (LDSR) method for caries in either primary
or permanent teeth. Hypothesis-free phenome-wide lookup for
rs1594318 included 885 GWAS where either rs1594318 or a proxy
with r2 > 0.8 was present. None of these traits showed evidence
of association with rs1594318 at a Bonferroni-corrected alpha of
0.05. Lookup of rs7738851 and its proxies was performed against
662 traits, where similarly no traits reached a Bonferroni-
corrected threshold. Hypothesis-driven lookup in adult caries
traits revealed no strong evidence for persistent genetic effects
into adulthood (Table 3).

Gene prioritization, gene set enrichment and association
with predicted gene transcription

Gene-based tests identified association between caries status in
the primary dentition and a region of 7q35 containing TCAF1,
OR2F2 and OR2F1 (P¼ 1.91e-06, 1.58e-06 and 1.29e-06, respec-
tively). There were insufficient independently associated loci to
perform gene set enrichment analysis using DEPICT for either of
the principal meta-analyses. Association with predicted gene
transcription was tested but no genes met the threshold for asso-
ciation after accounting for multiple testing. The single greatest
evidence for association was seen between increased predicted
transcription of CDK5RAP3 and increased liability for permanent
caries (P¼ 3.94e-05). CDK5RAP3 is known to interact with PAK4
and p14ARF, with a potential role in oncogenesis (18,19).

Discussion
Dental caries in children and adolescents has not been studied
to date using a large-scale, consortium-based genome-wide
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meta-analysis approach. Based on previous knowledge of the
heritability of caries in young populations and from our under-
standing of other complex diseases, we anticipated that com-
mon genetic variants would be associated with dental caries

risk with consistent effects across different cohorts. We found
evidence for association between rs1594318 and caries in pri-
mary teeth. This variant showed weaker evidence for associa-
tion in the multi-ethnic meta-analysis, potentially relating to

Figure 1. Manhattan plots for each principal meta-analysis. (A) Caries in primary teeth (European ancestry), n samples ¼ 17 036, n variants ¼ 8 640 819, k ¼ 0.9944.

Variants within 500Kb of rs1594318 are highlighted in green. (B) Caries in primary teeth (multi-ethnic analysis), n samples ¼ 19 003, n variants ¼ 8 699 928, k ¼0.9861.

(C) Caries in permanent teeth (European ancestry), n samples ¼ 13 353, n variants ¼ 8 734 121, k ¼0.9991. Variants within 500Kb of rs7738851 are highlighted in green.
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different allele frequencies across the different ethnic groups
included in analysis. Frequency of the G allele is reported to
vary between 0.24 in Asian populations and 0.42 in populations
of European ancestry based on 1KGP allele frequencies. ALLC
(Allantoicase) codes the enzyme allantoicase, which is involved
in purine metabolism and whose enzymatic activity is believed
to have been lost during vertebrate evolution. Mouse studies
suggest that this loss of activity relates to low expression levels
and low substrate affinity rather than total non-functionality
(20). Although there is some evidence that ALLC polymorphisms
are associated with response to asthma treatment (21), there is
limited understanding of the implications of variation in ALLC
for human health, and it is possible that rs1594318 tags func-
tionality elsewhere in the same locus.

For permanent teeth, we found evidence for association
between caries status and rs7738851, an intronic variant with
NEDD9 (neural precursor cell-expressed, developmentally
down-regulard gene 9). NEDD9 is reported to mediate integrin-
initiated signal transduction pathways and is conserved from

gnathostomes into mammals (22,23). NEDD9 appears to play a
number of functional roles in disease and normal develop-
ment, including regulation of neuronal differentiation, devel-
opment and migration (22,24–28). One such function involves
regulation of neural crest cell migration (26). Disruption of
neural crest signalling is known to lead to enamel and dentin
defects in animal models (29,30) and might provide a mecha-
nism for variation at rs7738851 to influence dental caries
susceptibility.

Traditionally, risk assessment for dental caries in childhood
has concentrated on dietary behaviours and other modifiable
risk factors (31), with little focus on tooth quality. Although our
understanding of the genetic risk factors for dental caries is in-
complete, authors have noted that the evidence from previous
genetic association studies tends to support a role for innate
tooth structure and quality in risk of caries (32,33). If validated
by future studies, the association with rs7738851 would provide
further evidence for this argument, and may in the future en-
hance risk assessment in clinical practice.

Figure 2. Regional association plots. (A) Regional association plot for rs1594318 and caries in primary teeth (European ancestry meta-analysis). (B) Regional association

plot for rs7738851 and caries in permanent teeth.
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The lookup of lead associated variants against adult caries
traits provided no strong evidence for persistent association in
adulthood. This might imply genetic effects which are specific
to the near-eruption timepoint. An alternative explanation is
that the variants identified in the present study represent false
positive signals as the statistical evidence presented is not irre-
futable and there is no formal replication stage in our study;
yet, we see good consistency of effects across studies.

The meta-analysis heritability estimates were lower than
anticipated from either previous within-study heritability esti-
mates (34) or the new within-study heritability estimates
obtained for this analysis. There are several possible explana-
tions for this phenomenon. First, the methods used in the pre-
sent analysis are SNP based which consistently underestimate

heritability of complex traits relative to twin and family studies
(35). Second, meta-analysis heritability represents the heritabil-
ity of genetic effects which are consistent across populations. In
the event of genuine differences in genetic architecture of den-
tal caries across strata of age, geography, environmental
exposure or subtly different phenotypic meanings, the meta-
heritability estimate is not the same conceptually as the
weighted average of heritability within each study.

More intuitively, genetic influences might be important
within populations with relatively similar environments but not
determine much of the overall differences in risk when compar-
ing groups of people in markedly different environments. This
view is consistent with existing literature from family based
and candidate gene association studies suggesting the genetic

Figure 3. Forest plot for rs1594318 and caries in primary teeth. Effect sizes are expressed on a log OR scale, grouped by geographical location. The summary estimate is

from the fixed-effect meta-analysis of participants of European ancestry.
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architecture of dental caries is complex with multiple interac-
tions. For example, gene–sex interactions are reported which
change in magnitude between the primary and permanent den-
tition (36), genetic variants may have heterogeneous effects on
the primary and permanent dentition (37) and environmental
exposures such as fluoride may interact with genetic effects
(38). Finally, the aetiological relevance of specific microbiome
groups appears to vary between different populations (39), sug-
gesting genetic effects acting through the oral microbiome
might also vary between populations. Unfortunately, this study
lacks statistical power to perform meta-analyses stratified on
these exposures, so does not resolve this particular question.

In line with any consortium-based approach, the need to
harmonize analysis across different collections led to some

compromises. The phenotypic definitions used in this study do
not contain information on disease extent or severity. Loss of
information in creating these definitions may have contributed
to the low statistical power of analysis. Our motivation for using
simple definitions was based on the facts that (a) case-control
status simply represents a threshold level of an underlying con-
tinuum of disease risk, (b) simple binary classifications facilitate
comparison of studies with different assessment protocols and
population risks and (c) simple classifications have been used
successfully in a range of complex phenotypes.

Between participating centres there are differences in char-
acteristics such as age at participation, phenotypic assessment
and differences in the environment (such as nutrition, oral hy-
giene and the oral microbiome) which might influence dental

Figure 4. Forest plot for rs7738851 and caries in permanent teeth. Effect sizes are expressed on a log OR scale, grouped by geographical location. The summary estimate

is from fixed-effect meta-analysis.
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caries or its treatment, as reflected in the wide range of caries
prevalence between different study centres. Varying phenotypic
characteristics do not necessarily result in heterogeneous ge-
netic effects, as this variability may be uncorrelated with ge-
netic effects. There was little evidence for heterogeneity in the
top associated loci reported, however, the test for heterogeneity
in genetic effects (I2) is limited by the small number of

participating studies in meta-analysis (40) and wide confidence
intervals for within-study genetic effect estimates. Given these
limitations, it is possible that heterogeneity contributed to low
study power and prevented more comprehensive single variant
findings.

In the ALSPAC study we made extensive use of question-
naire derived data. This will systematically under-report true

Table 1. Lead associated single variants

Phenotype Variant Position Effect
allele

Other
allele

EAF Beta (SE) Odds
ratio

P-value N I2 P-value for
heterogeneity

Annotation

Caries in primary
teeth (European
ancestry analysis)

rs1594318 chr2: 3733944 C G 0.60 �0.165 (0.030) 0.848 4.13e-08 16 994 0.0 0.69 Intronic,
ALLC

Caries in primary
teeth (multi-
ethnic analysis)a

rs1594318 chr2: 3733944 C G 0.60 �0.142 (0.028) 0.868 3.78e-07 18 960 0.0 0.61 Intronic,
ALLC

Caries in primary
teeth(multi-ethnic
analysis)a

rs872877 chr2: 3735826 A G 0.59 �0.142 (0.028) 0.868 4.18e-07 18 958 17.5 0.68 Intronic,
ALLC

Caries in permanent
teeth

rs7738851 chr6: 11241788 A T 0.85 0.248 (0.044) 1.28 1.63e-08 13 353 13.3 0.20 Intronic,
NEDD9

aNo single variants were associated with dental caries status at the genome-wide level in the multi-ethnic analysis of primary teeth, however two variants are dis-

cussed in Results section and are included here for reference.

Table 2. Within-sample and meta-analysis heritability estimates

Phenotype Method Estimated h2 (95% CI) N

Caries in primary teeth GCTA GREML 0.28 (0.09: 0.48) 7230
LDSR All participants 0.01 (0.00: 0.06) 19 003

European ancestry only 0.01 (0.00: 0.07) 17 036
Caries in permanent teeth GCTA GREML 0.17 (0.02: 0.31) 6657

LDSR 0.06 (0.00: 0.12) 13 353

Table 3 Lookup of lead associated variants

Variant Discovery trait Risk increasing
allele (discovery)

Cross trait lookup P-value Effect per caries
risk increasing
allele (se)

N

rs1594318 Caries in primary
teeth (European
ancestry
meta-analysis)

G Adult caries
traits

DMFS (standard deviation of residuals
of caries-affected surfaces)

0.87 �0.0015 (0.0092) 26 790

Number of teeth (inverse normal
transformed residuals)

0.60 0.0051 (0.0098) 27 947

Standardized DFS (inverse normal
transformed residuals)

0.033 �0.0195 (0.0091) 26 532

Hypothesis free (No traits meeting threshold for multiple testing)
rs7738851 Caries in

permanent teeth
A Adult caries

traits
DMFS (standard deviation of residuals

of caries-affected surfaces)
0.57 �0.007 (0.011) 26 791

Number of teeth (inverse normal
transformed residuals)

0.63 �0.0064 (0.013) 27 949

Standardized DFS (inverse normal
transformed residuals)

0.65 �0.0054 (0.012) 26 531

Hypothesis free (No traits meeting threshold for multiple testing)

Adult caries traits were defined as follows. DMFS—a count of the number of decayed, missing or filled tooth surfaces. This count was residualized after regression on

age and age-squared and standard deviations of residuals calculated. Number of teeth—a count of the number of teeth in the mouth. This count was residualized after

regression on age and age-squared and residuals underwent inverse normal transformation. Standardized DFS. The number of decayed and filled surfaces was divided

by the total number of tooth surfaces in the mouth. This ratio was residualized after regression on age and age-squared and residuals underwent inverse normal

transformation.
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caries exposure compared with other studies as children or
their parents are unlikely to be aware of untreated dental caries
which would be evident to a trained assessor. We have explored
some of these issues previously and shown that self-report
measures at scale can be used to make meaningful inference
about dental health in childhood (41). We believe that misclassi-
fication and under-reporting in questionnaire data would tend
to bias genetic effect estimates and heritability toward the null.
Despite this we show evidence for heritability using these defi-
nitions and effect sizes at lead variants are comparable with ef-
fect sizes obtained using clinically assessed data (Figs 3 and 4).

As our power calculations showed, the sample size was suf-
ficient to detect the identified variants associated at a genome
wide significant level with caries in the primary teeth
(rs1594318) and in permanent teeth (rs872877), where we ob-
served relatively large effect sizes. For smaller effect sizes we
were underpowered to identify association, and did not detect
any variants with effect sizes (expressed as per-allele increased
odds) smaller than 15% or 17% in the primary and permanent
teeth, respectively. Caries is highly influenced by environmental
factors and it is likely that its susceptibility is polygenic in na-
ture (32) with individual genetic variants conferring small effect
sizes, as seen in other comparable complex traits (42).
Furthermore, some of the included studies had major differen-
ces in their caries prevalence, likely acting as a proxy for fea-
tures affecting risk of caries. This may have introduced
heterogeneity and reduced power to detect association, as dis-
cussed further below.

One area of interest in the literature is the ability of genetics
to guide personalized decisions on risk screening or identifying
treatment modalities, and this is also true in dentistry. The ge-
netic variants identified in this study are unlikely to be useful
on their own in this context, given the modest effect sizes and
low total heritability observed in our meta-analysis. We would
suggest clinicians should continue to consider environment
and aggregate genetic effects (e.g. knowledge of disease pat-
terns of close relatives) rather than specific genetic variants at
this moment in time. Nevertheless, the findings of our study
contribute to a better understanding of the genetic and biologi-
cal mechanisms underlying caries susceptibility.

Materials and Methods
Study samples

We performed genome-wide association (GWA) analysis for
dental caries case/control status in a consortium including nine
coordinating centres. Study procedures differed between these
centres. We use the term ‘clinical dental assessment’ to mean
that a child was examined in person, whether this was in a den-
tal clinic or a study centre. We use the term ‘examiner’ to refer
to a dental professional, and use the term ‘assessor’ to refer to
an individual with training who is not a dental professional, for
example a trained research nurse.

The Avon Longitudinal Study of Parents and Children
(ALSPAC) is a longitudinal birth cohort which recruited pregnant
women living near Bristol, UK with an estimated delivery date be-
tween 1991 and 1992. Follow-up has included clinical assessment
and questionnaires and is ongoing (43). A subset of children
attended clinics including clinical dental assessment by a trained
assessor at age 31, 43 and 61 months of age. Parents were asked
to complete questionnaires about their children’s health regu-
larly, including comprehensive questions at a mean age of 5.4
and 6.4 years. Parents and children were asked to complete

questionnaires about oral health at a mean age of 7.5, 10.7 and
17.8 years. Please note that the study website contains details
of all the data that are available through a fully searchable data
dictionary (www.bristol.ac.uk/alspac/researchers/access; date last
accessed June 2018). Both clinical and questionnaire derived data
were included in this analysis, with priority given to clinical data
were available (Supplementary Material, Table S3).

The Copenhagen Prospective Studies on Asthma in
Childhood includes two population-based longitudinal birth
cohorts in Eastern Denmark. COPSAC2000 recruited pregnant
women with a history of asthma between 1998 and 2001 (44).
Children who developed wheeze in early life were considered
for enrolment in a nested randomized trial for asthma preven-
tion. COPSAC2010 recruited pregnant women between 2008 and
2010 and was not selected on asthma status. Both COPSAC2000
and COPSAC2010 studies included regular clinical follow-up.
Within Denmark clinical dental assessment is routinely offered
to children and adolescents until the age of 18 years and sum-
mary data from these examinations are stored in a national reg-
ister. These data were obtained via index linkage for
participants of COPSAC2000 and COPSAC2010 and used to per-
form joint analysis across both cohorts.

The Danish National Birth Cohort (DNBC) is a longitudinal
birth cohort which recruited women in mid-pregnancy from
1996 onwards (45). For this analysis, index linkage was per-
formed to obtain childhood dental records for mothers partici-
pating in DNBC. As with the COPSAC studies, these data were
originally obtained by a qualified dentist and included surface
level dental charting.

The Generation R study (GENR) recruited women in early
pregnancy with expected delivery dates between 2002 and 2006
living in the city of Rotterdam, the Netherlands. The cohort is
multi-ethnic with representation from several non-European
ethnic groups. Follow-up has included clinical assessment visits
and questionnaires and is ongoing (46). Intra-oral photography
was performed as a part of their study protocol, with surface
level charting produced by a dental examiner (a specialist in
paediatric dentistry) (47). Analysis in GENR included (a) a multi-
ethnic association study including all individuals with genetic
and phenotypic data (48) and (b) analysis including only individ-
uals of European ancestry.

The GENEVA consortium is a group of studies which under-
take coordinated analysis across several phenotypes (49).
Within GENEVA, the Center for Oral Health Research in rural
Appalachia, West Virginia and Pennsylvania, USA (COHRA), the
Iowa Fluoride Study in Iowa, USA (IFS) and the Iowa Head Start
(IHS) study participated in analysis of dental traits in children
(15). COHRA recruited families with at least one child aged be-
tween 1 and 18 years of age, with dental examination performed
at baseline (50). IFS recruited mothers and new-born infants in
Iowa between 1992 and 1995 with a focus on longitudinal fluo-
ride exposures and dental and bone health outcomes. Clinical
dental examination in IFS was performed by trained assessors
aged 5, 9, 13 and 17 years (51). IHS recruited children participat-
ing in an early childhood education program which included a
one-time clinical dental examination (13).

The ‘German Infant study on the influence of Nutrition
Intervention plus air pollution and genetics on allergy devel-
opment’ (GINIplus) is a multi-centre prospective birth cohort
study which has an observational and interventional arm which
conducted a nutritional intervention during the first 4 months
of life. The study recruited new born infants with and without
family history of allergy in the Munich and Wesel areas,
Germany between 1995 and 1998 (52,53) .The ‘Lifestyle-related
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factors, Immune System and the development of Allergies in
East and West Germany’ study (LISA) is a longitudinal birth co-
hort which recruited between 1997 and 1999 across four sites in
Germany (52,54). For participants living in the Munich area, fol-
low-up used similar protocols in both GINIplus and LISA, with
questionnaire and clinic data including clinical dental examina-
tion by trained examiners at age 10 and 15 years. Analysis for
caries in GINIplus and LISA was therefore performed across
both studies for participants at the Munich study centre.

The Physical Activity and Nutrition in Children (PANIC)
Study is an ongoing controlled physical activity and dietary in-
tervention study in a population of children followed retrospec-
tively since pregnancy and prospectively until adolescence.
Altogether 512 children 6–8 years of age were recruited in 2008–
2009 (55). The main aims of the study are to investigate risk fac-
tors and pathophysiological mechanisms for overweight, type 2
diabetes, atherosclerotic cardiovascular diseases, musculoskel-
etal diseases, psychiatric disorders, dementia and oral health
problems and the effects of a long-term physical activity and di-
etary intervention on these risk factors and pathophysiological
mechanisms. Clinical dental examinations were performed by a
qualified dentist with tooth level charting.

The Cardiovascular Risk in Young Finns Study (YFS) is a
multi-centre investigation which aimed to understand the
determinants of cardiovascular risk factors in young people in
Finland. The study recruited participants who were aged 3, 6, 9,
12, 15 and 18 years old in 1980. Eligible participants living in spe-
cific regions of Finland were identified at random from a na-
tional population register and were invited to participate.
Regular follow-up has been performed through physical exami-
nation and questionnaires (56). Clinical dental examination was
performed by a qualified dentist with tooth level charting.

The Western Australian Pregnancy Cohort (RAINE) study is a
birth cohort which recruited women between 16th and 20th
week of pregnancy living in the Perth area, Western Australia.
Recruitment occurred between 1989 and 1991 with regular fol-
low-up of mothers and their children through research clinics
and questionnaires (57). The presence or absence of dental car-
ies was recorded by a trained assessor following clinical dental
examination at the year 3 clinic follow-up.

Further details of study samples are provided in Supplementary
Material, Table S1.

Medical Ethics
Within each participating study written informed consent was
obtained from the parents of participating children after receiv-
ing a full explanation of the study. Children were invited to give
assent where appropriate. All studies were conducted in accor-
dance with the Declaration of Helsinki.

Ethical approval for the ALSPAC study was obtained from
the ALSPAC Ethics and Law Committee and the Local Research
Ethics Committee. Full details of ethical approval policies and
supporting documentation are available online (http://www.bris
tol.ac.uk/alspac/researchers/research-ethics/; date last accessed
June 2018). Approval to undertake analysis of caries traits was
granted by the ALSPAC executive committee (B2356).

The COPSAC2000 cohort was approved by the Regional
Scientific Ethical Committee for Copenhagen and Frederiksberg
(KF 01-289/96) and the Danish Data Protection Agency (2008-41-
1574). The 2010 cohort (COPSAC2010) was approved by the
Danish Ethics Committee (H-B-2008-093) and the Danish Data
Protection Agency (2008-41-2599).

The DNBC study of caries was approved by the Scientific Ethics
Committee for the Capital City Region (Copenhagen), the Danish
Data Protection Agency and the DNBC steering committee.

Each participating site in the GENEVA consortium caries
analysis received approval from the local university institu-
tional review board (federal wide assurance number for
GENEVA caries project: FWA00006790). Within the COHRA arm
local approval was provided by the University of Pittsburgh
(020703/0506048) and West Virginia University (15620B), whilst
the IFS and IHS arms received local approval from the
University of Iowa’s Institutional Review Board.

The GENR study design and specific data acquisition were
approved by the Medical Ethical Committee of the Erasmus
University Medical Center, Rotterdam, The Netherlands (MEC-
2007-413).

The GINIplus and LISA studies were approved by the ethics
committee of the Bavarian Board of Physicians (10 year follow-
up: 05100 for GINIplus and 07098 for LISA, 15 year follow-up
10090 for GINIplus, 12067 for LISA).

The PANIC study protocol was approved by the Research
Ethics Committee of the Hospital District of Northern Savo. All
participating children and their parents gave informed written
consent.

The YFS study protocol was approved by local ethics com-
mittees for contributing sites.

The RAINE study was approved by the University of Western
Australia Human Research Ethics Committee.

Phenotypes

Primary teeth exfoliate and are replaced by permanent teeth
between 6 and 12 years of age. We aimed to separate caries sta-
tus in primary and permanent teeth wherever possible using
clinical information or age criteria, in line with our expectation
that the genetic risk factors for dental caries might differ be-
tween primary and permanent dentition. For children in the
mixed dentition we created two parallel case definitions, whilst
in younger or older children a single case definition was
sufficient.

All study samples included a mixture of children with dental
caries and children who were caries-free, with varying degrees
of within-mouth or within-tooth resolution. To facilitate com-
parison across these differing degrees of resolution all analysis
compared children who were caries-free (unaffected) or had
dental caries (affected). Missing teeth could represent exfolia-
tion or delayed eruption rather than the endpoint of dental car-
ies and therefore missing teeth were not included in classifying
children as caries-free or caries affected.

In children aged 2.50 years to 5.99 years, any individual with
1 or more decayed or filled tooth was classified as caries af-
fected, with all remaining individuals classified as unaffected.
In children aged 6.00 years to 11.99 years of age, parallel defini-
tions were determined for the primary dentition and permanent
dentition, respectively. Any individual with at least 1 decayed
or filled primary tooth was classified as caries affected for pri-
mary teeth, while all remaining participants were classified as
unaffected. In parallel, any individual with at least 1 decayed or
filled permanent tooth was classified as caries affected for per-
manent teeth, while all remaining individuals were classified as
unaffected. In children and adolescents aged 12.00 to 17.99
years of age, any individual with 1 or more decayed or filled
tooth or tooth surface (excluding third molar teeth) was classi-
fied as caries affected, with remaining individuals classified as
unaffected.
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Analysis was conducted in cross-section, meaning a single
participant could only be represented in a single phenotype defi-
nition once. Where multiple sources of dental data were available
for a single participant within a single phenotype definition win-
dow, the first source of data was selected (reflecting the youngest
age at participation), in line with our expectation that caries sta-
tus would be most heritable in the near-eruption period.

The sources of data used to create these phenotypic defini-
tions are given in Supplementary Material, Table S3. Within
ALSPAC only, questionnaire responses were used to supple-
ment data from clinical examination. The questions asked did
not distinguish between primary and permanent teeth. Based
on the age at questionnaire response we derived variables
which prioritized responses from questionnaires before 6.00
years of age (thought to predominantly represent caries in pri-
mary teeth), and responses after 10.00 years of age (which might
predominantly represent caries in permanent teeth). The final
data sweep considered in this analysis targeted adolescents at
age 17.50 years. Some participants responded to this after their
18th birthday. Data derived from this final questionnaire sweep
were not included in the principal meta-analyses but were in-
cluded in the GCTA heritability analysis.

Genotypes and imputation

All participating studies used genetic data imputed to a compre-
hensive imputation panel. The 1000 genomes phase 1 version 3
panel (1KG phase 1 v3) was used as a common basis across six
centres (GINIplus/LISA, GENR, GENEVA, YFS, PANIC, RAINE)
(Supplementary Material, Table S1). In ALSPAC, DNBC,
COPSAC2000 and COPSAC 2010 the haplotype reference consor-
tium (HRC v1.0 and v1.1) imputation panels were used
(Supplementary Material, Table S1).

Each study performed routine QC measures during genotyp-
ing, imputation and association testing (Supplementary
Material, Table S2). Further pre-meta-analysis QC was per-
formed centrally using the EasyQC R package and accompany-
ing 1KG phase1 v3 reference data (58). Minor allele count (MAC)
was derived as the product of minor allele frequency (MAF) and
site-specific number of alleles (twice the site-specific sample
size). Variants were dropped which had a per-file MAC of 6 or
lower, a site-specific sample size of 30 or lower, or an impute
INFO score of less than 0.4. Sites which reported effect and non-
effect alleles other than those reported in 1KG phase 1 v3 refer-
ence data were dropped. Following meta-analysis, sites with a
weighted MAF of less than 0.005were dropped, along with var-
iants present in less than 50% of the total sample.

Statistical analysis

Association testing
Each cohort preformed GWA analysis using an additive genetic
model. Caries status was modelled against genotype dosage
whilst accounting for age at phenotypic assessment, age
squared, sex and cryptic relatedness. Sex was accounted for by
deriving phenotypic definitions and performing analysis sepa-
rately within male and female participants, or by including sex
as a covariate in association testing. Each study adopted
approaches to account for cryptic relatedness and population
stratification, as described in Supplementary Material, Table S2.
In the GENR study parallel analyses were conducted for partici-
pants of European ancestry (using the approach described in
Supplementary Material, Table S2) and the entire study

population, using a previously published method (48). The soft-
ware and exact approach used by each study is shown in
Supplementary Material, Table S2.

Meta-analysis
Results of GWA analysis within each study were combined in
two principal meta-analyses, representing caries status in pri-
mary teeth and caries status in permanent teeth. For primary
teeth, parallel meta-analyses were performed, one using results
of multi-ethnic analysis in the GENR study and the other using
results of European ancestry analysis in the GENR study. The
GENR study did not have phenotypic data for permanent teeth,
therefore the analysis of permanent teeth contained only indi-
viduals of European ancestry. Fixed-effects meta-analyses was
performed using METAL (59), with genomic control of input
summary statistics enabled and I2 test for heterogeneity.
Meta-analysis was run in parallel in two centres and results
compared. All available studies with genotype and phenotypic
information were included in a one-stage design, therefore
there was no separate replication stage.

Meta-analysis heritability estimates
For each principal meta-analysis population stratification and
heritability were assessed using LDSR (60). Reference LD scores
were taken from HapMap3 reference data accompanying the
LDSR package.

Within-sample heritability estimates
For comparison, heritability within the ALSPAC study was
assessed using the GREML method (61), implemented in the
GCTA software package (62), using participant level phenotype
data and a genetic relatedness matrix estimated from common
genetic variants (with MAF> 5.0%) present in HapMap3.

Hypothesis-free cross-trait lookup
We used PLINK 2.0 (63) to clump meta-analysis summary statis-
tics based on LD structure in reference data from the UK10K
project. We then performed hypothesis-free cross-trait lookup
of independently associated loci using the SNP lookup function
in the MRBase catalogue (64). Proxies with an r2 of 0.8 or higher
were included where the given variant was not present in an
outcome of interest. We considered performing hypothesis-free
cross-trait genetic correlation analysis using bivariate LD score
regression implemented in LDhub (65).

Lookup in previously published paediatric caries GWAS
Previously published caries GWAS was performed within the
GENEVA consortium, which is also represented in our meta-
analysis. We therefore did not feel it would be informative to under-
take lookup of associated variants in previously published results.

Lookup in GWAS for adult caries traits
This analysis was planned and conducted in parallel with
analysis of quantitative traits measuring lifetime caries expo-
sure in adults (manuscript in draft).The principal trait studied
in the adult analysis was an index of decayed, missing and filled
tooth surfaces (DMFS). This index was calculated from results of
clinical dental examination, excluding third molar teeth. The
DMFS index was age-and-sex standardized within each partici-
pating adult study before GWAS analysis was undertaken.
Study-specific results files were then combined in a fixed-
effects meta-analysis. In addition to DMFS, two secondary
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caries traits were studied in adults, namely number of teeth
(a count of remaining natural teeth at time of study participa-
tion) and standardized DFS (derived as the number of decayed
and filled surfaces divided by the number of natural tooth surfa-
ces remaining at time of study participation). After age-and-sex
standardization these secondary traits had markedly non-
normal distribution and were therefore underwent rank-based
inverse normal transformation before GWAS analysis and
meta-analysis. We performed cross-trait lookup of lead associ-
ated variants in the paediatric caries meta-analysis against
these three adult caries traits. As the unpublished analysis also
contains samples which contributed to previously published
GWAS, we did not feel it would be informative to undertake ad-
ditional lookup in published data.

Gene prioritization, gene set enrichment and association with
predicted gene transcription
Gene-based testing of summary statistics was performed using
MAGMA (66) with reference data for LD correction taken from
the UK10K project and gene definitions based on a 50 kb window
either side of canonical gene start: stop positions. Gene set en-
richment analysis was considered using the software package
DEPICT (67). Tests for association between phenotype and pre-
dicted gene transcription were performed using S-PrediXcan (68),
which is a summary-statistic implementation of the PrediXcan
method. This method aims to assess the effects of tissue-specific
gene transcription on phenotypes. Gene transcription models are
trained in datasets with transcriptomic data, then used to predict
gene expression in datasets with phenotypic data. This method
was applied using the MetaXcan standalone software (https://
github.com/hakyimlab/MetaXcan; date last accessed June 2018)
and a transcription prediction model trained in whole blood
(obtained from the PedictDB data repository at http://predictdb.
org/; date last accessed June 2018). Bonferroni correction was ap-
plied on the basis of approximately 7000 independent gene-based
tests for two caries traits, giving an experiment-wide significance
level of approximately P< 3.6e-06.

Power calculations
Post-hoc power calculations were performed using the free,
web-based tool Genetic Association Study (GAS) Power
Calculator and the software utility Quanto (v1.2.4) (https://csg.
sph.umich.edu/abecasis/gas_power_calculator/index.html,
http://biostats.usc.edu/Quanto.html; date last accessed June
2018) (69). Using the sample size and caries prevalence of the fi-
nal meta-analysis samples, we calculated the minimum effect
size required to have 80% discovery power at a significance level
of 5.0e-08 for variants with MAF between 0.05 and 0.50. For pri-
mary teeth (17 037 individuals, 6922 caries affected, prevalence
40.6%) we were able to detect variants with a minimal effect
size (OR) between 1.13 and 1.37 for variants with MAF of 0.50
and 0.05, respectively (1.15 for MAF of 0.40) (Supplementary
Material, Figs S4 and S5). For permanent teeth (13 353 individu-
als of which 5875 were caries-affected, prevalence 44.0%) we
had 80% power to detect variants with a minimal effect size
(OR) between 1.15 and 1.43 for variants with MAF of 0.50 and
0.05, respectively (1.17 for MAF of 0.40) (Supplementary
Material, Figs S4 and S5).

Supplementary Material
Supplementary Material is available at HMG online.
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