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• Elevated epigenetic age is associated with an altered hemostatic factor profile and 
lower clotting time (aPTT) 
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• DNA methylation age is associated with mRNA levels of fibrinogen in multiple 
tissues 
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Abstract 
 Many hemostatic factors are associated with age and age-related diseases, however 

much remains unknown about the biological mechanisms linking aging and hemostatic 

factors. DNA methylation is a novel means by which to assess epigenetic aging, which is a 

measure of age and the aging processes as determined by altered epigenetic states.  

 We used a meta-analysis approach to examine the association between measures of 

epigenetic aging and hemostatic factors, as well as a clotting time measure. For fibrinogen, we 

used European and African-ancestry participants who were meta-analyzed separately and 

combined via a random effects meta-analysis. All other measures only included participants 

of European-ancestry. We found that 1-year higher extrinsic epigenetic age as compared to 

chronological age was associated with higher fibrinogen (0.004 g/L per year; 95% CI: 0.001, 

0.007; P = 0.01) and plasminogen activator inhibitor 1 (PAI-1; 0.13 U/mL per year; 95% CI: 

0.07, 0.20; P = 6.6x10-5) concentrations as well as lower activated partial thromboplastin time, 

a measure of clotting time. We replicated PAI-1 associations using an independent cohort. To 

further elucidate potential functional mechanisms we associated epigenetic aging with 

expression levels of the PAI-1 protein encoding gene (SERPINE1) and the three fibrinogen 

subunit-encoding genes (FGA, FGG, and FGB), in both peripheral blood and aorta intima-

media samples. We observed associations between accelerated epigenetic aging and 

transcription of FGG in both tissues. Collectively, our results indicate that accelerated 

epigenetic aging is associated with a pro-coagulation hemostatic profile, and that epigenetic 

aging may regulate hemostasis in part via gene transcription. 
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Introduction 

Hemostatic factors are circulating proteins that are critical factors in, or indicators of 

the blood clotting/coagulation process. They include, but are not limited to, fibrinogen, factor 

VII (FVII), factor VIII (FVIII), von Willebrand factor (vWF), plasminogen activator-inhibitor 

1 (PAI-1), and D-dimer. Dysregulation and/or deficiency of hemostatic factors can cause 

bleeding events and thrombotic disorders,1-5 and elevated levels of some hemostatic factors 

are associated with cardiovascular outcomes such as coronary heart disease 6,7, incident and 

recurrent myocardial infarction 8-10, peripheral arterial disease,9,11,12 and venous 

thrombosis.13,14  

Advancing age is often associated with an altered hemostatic factor profile typified by 

heightened plasma concentrations of hemostatic factors such as fibrinogen and coagulation 

factor VII (FVII).15-17 This age-associated “prothrombotic” hemostatic profile may contribute 

to associations between age and cardiovascular disease.18,19 Typically, studies of aging are 

performed by comparing the hemostatic/clinical profiles of patients with their chronological 

age. Though effective, this approach does not inform on the underlying biological changes 

linking aging and altered hemostatic profiles.  

Biomarkers of molecular aging have been developed in recent years using  

epigenetic20,21 and transcriptomic22 data. In the case of epigenetics, these biomarkers appear to 

be weakly correlated with telomere length,23-25 a traditional molecular biomarker of aging, 

and independently associated with both age and mortality.24 Epigenetic age acceleration 

effects are often tissue specific20,26 and associated with a number of clinical outcomes 

including: mortality,24,27 obesity,26 cancer,28,29 cardiovascular disease,29 HIV-1 infection,30 and 

traumatic stress.31 However, the association between epigenetic aging biomarkers and 

hemostatic factors has yet to be investigated.  
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Here, we present the first study into the relationship between epigenetic aging 

biomarkers and hemostatic factors. Accelerated epigenetic aging may underlie the association 

between alterations in the hemostatic profile and aging, and reveal novel mechanisms of 

hemostatic regulation.   

 

Methods: 

Participating Cohorts: 

A total of 11 studies from the Cohorts for Heart & Aging Research in Genomic 

Epidemiology (CHARGE) Hemostasis Working Group participated in these analyses 

(Supplemental Table 1).32 The Framingham Heart Study (FHS) and Cardiovascular Health 

Study (CHS) contributed multiple sets of data which were analyzed separately. Datasets from 

CHS were non-overlapping in participants, whereas data from FHS was longitudinal and 

collected over the course of 3 consecutive examinations of the Offspring cohort (1991-1995, 

1995-1998, & 1998-2001). Plasma levels of five hemostatic factors and one measure of 

clotting time were examined (units used for analysis given in parentheses): fibrinogen (g/L), 

PAI-1 (U/mL), D-dimer (ng/mL), FVII (%), vWF (%), and activated partial thromboplastin 

time (aPTT; s); selected based on their availability in at least three independent cohorts. 

Fibrinogen and PAI-1 were also assessed in an independent sample of 1,427 individuals from 

the FHS Generation 3 (FHS Gen3) cohort, which were held out of discovery analyses to be 

used for replication. These samples were treated and analyzed in an identical manner as the 

discovery FHS samples. A complete description of each study and the methods used to 

measure each hemostatic factor are given in the Supplemental Materials. 

Epigenetic Aging Assessment: 

All cohorts assessed DNA methylation via the Illumina Infinium 

HumanMethylation450 array using methods described in the Supplemental Materials. In order 
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to assess epigenetic aging, an online calculator was used, https://dnamage.genetics.ucla.edu/, 

which takes as input methylation beta values, chronological age, sex, and tissue type and 

estimates multiple epigenetic aging measures.20 We primarily used two epigenetic measures 

for this analysis, both of which assess deviations of epigenetic age from chronological age: 

Extrinsic Epigenetic Age Acceleration Difference (EEAD) and Intrinsic Epigenetic Age 

Acceleration Difference (IEAD). IEAD is a blood-specific measure of aging which adjusts the 

“standard” tissue agnostic measure20 for the following blood immune cell counts imputed 

from methylation data: naïve CD8+ T cells, exhausted CD8+ T cells, plasma B cells, CD4+ T 

cells, natural killer cells, monocytes, and granulocytes.33 EEAD is calculated by weighting the 

global epigenetic age measure by imputed blood immune cell counts, and is thus designed to 

track aging of the immune system as assessed by DNA methylation changes. The term 

“difference” in IEAD and EEAD refers to taking the difference between the epigenetic aging 

measures and chronological age. Differences between epigenetic and chronological age are 

associated with outcomes such as mortality,34 and may indicated accelerated aging. Cell 

counts for IEAD and EEAD were estimated based on methylation data following the 

Houseman35 and Horvath36 methods.  

As EEAD and IEAD are blood-specific measures, we used age acceleration difference 

(AAD) to assess differences between epigenetic and chronological age in non-blood tissues, 

i.e. aorta intima-media. AAD is calculated as the difference between the original, tissue 

agnostic DNA methylation age measure20 and chronological age. AAD and IEAD are 

correlated in blood.27 For AAD, EEAD, and IEAD the cohorts performed a common filtering 

approach used in previous meta-analyses of epigenetic aging measures.27 This approach 

removed individuals whose sex from their epigenetic profile differed from their reported sex 

and samples where the estimated cell type was not peripheral blood, and samples whose 

correlation with internal standards used by the online calculator was < 0.80.  
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Statistical Analyses: 

We used two models to understand the relationship between our measures of 

epigenetic aging and hemostatic factors. For each model the hemostatic factor was the 

outcome while the epigenetic aging measure was the predictor. The first model was a basic 

model which adjusted for chronological age, (chronological age)2, and sex. The second (full) 

model adjusted for the basic model terms plus body mass index (BMI, kg/m2), physical 

activity (active vs inactive), and smoking status (current, former, never). The terms in the full 

model were chosen to provide an adjustment for potential confounders from lifestyle without 

including alternative cardiovascular outcomes of interest, such as blood pressure or history of 

cardiovascular disease, as including these colliders could introduce bias.37 For studies that did 

not have a specific variable (e.g. physical activity), it was left out of the model. The basic 

model was our primary model and all cohorts had the complete covariate information 

necessary for this model. 

In FHS, CHS, and ARIC the epigenetic age measures were based on methylation 

assessed at a different examination than the hemostatic factor measurement thus an age 

difference term was calculated as the difference between the chronological age at methylation 

assessment and chronological age when the hemostatic factors were assessed. Linear and 

quadratic age difference terms were added to the models. We evaluated the effect of this 

approach on the observed associations by comparing the association between epigenetic age 

at a single time point and the same hemostatic factor assessed over multiple time points in 

FHS. Since FHS had hemostatic measures taken at multiple time points but DNA methylation 

data only at a single time point (FHS exam 8), we used the assessment closest to the 

methylation assessment. For CHS and ARIC there was a single assessment of DNA 

methylation and a single assessment of the hemostatic factors available, each done at a 

different time point. For cohorts with family data only independent probands were used. The 
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exception to this is the French-Canadian Family study on Factor V Leiden Thrombophilia 

(F5L) which is a study sample composed of 5 large multigenerational families. For this cohort 

family structure was adjusted for in the models via a variance components models 

implemented in the pedigreemm package in R.38   

We used the metafor package39 in R40 to perform meta-analyses. We required that 

hemostatic factors have at least 3 cohorts reporting for the meta-analysis. For all outcomes 

except PAI-1 we had both European and African ancestry cohorts (Supplemental Table 1), 

however fibrinogen was the only outcome with at least 3 cohorts reporting for both 

ethnicities, thus fibrinogen was the only hemostatic factor for which we performed race-

specific meta-analyses. Initial analyses suggested there was some heterogeneity in the 

European ancestry fibrinogen estimates (Cochran’s Q P-value < 0.05), thus for fibrinogen we 

used a random-effects meta-analysis for the European-ancestry and combined ethnicity meta-

analyses. For all other analyses a fixed-effects meta-analysis was used as little evidence of 

heterogeneity was observed. To facilitate comparison with the fixed effects models for other 

outcomes, we also performed a fixed effects meta-analysis for fibrinogen as a sensitivity 

analysis. We considered associations statistically significant after a Bonferroni correction but 

also report associations that achieved a nominal statistical significance level of P < 0.05 as 

these may also be of interest. Previous analyses have observed sex-specific associations with 

epigenetic aging.27 We used a multiplicative interaction model to determine if there was an 

interaction between sex and epigenetic aging measures. 

Associations with peripheral blood gene expression 

 To better understand the role of transcriptional regulation in our associations, we used 

data from the Cooperative Health Research in the Region of Augsburg S4 examination 

(KORA S4) and the Rotterdam Study (RS) to examine the association between our epigenetic 

aging measures and the peripheral blood expression of genes for the significant hemostatic 
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factors. For KORA41 and RS gene expression was assessed on the Illumina HumanHT-12v3 

and Illumina HT-12v4 Expression BeadChip arrays, respectively. Both studies isolated RNA 

from whole blood using PAXGene Blood RNA kits (Qiagen; Hilden, Germany). For both 

cohorts, samples with a RNA quality score < 7 were excluded from amplification and 

analysis, and the final gene expression values were log2-transformed. A total of 731 gene 

expression samples passed quality control and had epigenetic aging assessed in RS, while 439 

samples were included in the analysis for KORA S4. Full details are available in the 

Supplemental Materials. In addition to the cross-sectional gene expression analyses done 

using gene expression from KORA S4 and RS, we performed a prospective gene expression 

analysis using KORA F4, since prospective analyses are less influenced by reverse 

confounding. In this analysis we examined the association between epigenetic aging measures 

assessed in KORA S4 samples and gene expression from the same individuals measured 

during the follow-up KORA F4 study. 

We used the same variables for confounder adjustment, in basic and full models, as 

previously described for all gene expression analyses, and additionally included terms for 

RNA integrity number and amplification plate. The log2-transformed gene expression was the 

outcome in all models. For the cross-sectional analyses in KORA S4 and RS we examined the 

results from a fixed-effects meta-analysis. Given the limited number of genes assessed and the 

high correlation between probes for the same gene, associations were considered significant at 

the P < 0.05 level. We refer to the gene expression results according to the study in which the 

gene expression was assessed, thus KORA F4 gene expression results refer exclusively to the 

prospective gene expression analyses, while KORA S4 gene expression results refer 

exclusively to the cross-sectional analyses using KORA S4 gene expression and epigenetic 

aging measures. 

Aortic intima-media expression 
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 We also examined the association between epigenetic aging and gene expression in 

aortic intima-media samples to 1) validate peripheral blood associations and 2) evaluate 

tissue-specific associations. We used samples from 22 patients with overlapping methylation 

and gene expression from the Advanced Study of Aortic Pathology biobank (ASAP). 

Methylation was assessed on the Illumina Infinium HumanMethylation450 array, and gene 

expression was assayed using the Affymetrix GeneChip® Human Exon 1.0 ST array from 

RNA isolated using the RNeasy Mini Kit (QIAGEN).42 Full details for ASAP are available in 

the Supplemental Materials. The same adjustment models as before were used with the 

exception that amplification plate and RNA Integrity Number were not included, smoking 

was assessed as current, former, or never, and physical activity was assessed as the number of 

days exercised per week. Smoking and physical activity were included as linear variables. 

Clinical covariates for all gene expression analyses are given in Supplemental Table 2. 

 

Results 

Baseline characteristics of all studies are given in Supplementary Table 1. For the 

discovery analyses, each of the 5 hemostatic factors examined we had between 3 and 11 

cohorts participating in the meta-analyses. PAI-1 was the only hemostatic factor not measured 

in any of the African-ancestry studies. Distributions of the hemostatic factors were 

comparable across the ancestries except for the African Americans in ARIC who had higher 

D-dimer values and lower FVII values. The age range of participating studies was from 36.9 y 

to 79.1 y and studies varied from 28.6 to 60.7 in percentage of male participants. The sample 

size for each of the assessed outcomes ranged from 3,875 (aPTT) to 16,545 (fibrinogen). For 

the replication in the 3rd Generation Framingham Heart Study (FHS Gen3) the mean age was 

45.5 y and 48.6% of the cohort were males. The two hemostatic factors assessed in FHS Gen3 

were fibrinogen (n = 1,388) and PAI-1 (n = 1,402). In using FHS to evaluate the assessment 

For personal use only.on August 2, 2018. by guest  www.bloodjournal.orgFrom 

http://www.bloodjournal.org/
http://www.bloodjournal.org/site/subscriptions/ToS.xhtml


13 

 

of epigenetic age at different time points from the hemostatic factor, exam closest in time to 

the hemostatic measurement had the strongest (by magnitude of the effect estimate) 

association, but the confidence intervals for all estimates largely overlapped (Supplemental 

Figure 1). 

 

Associations between epigenetic aging and hemostasis measures 

We examined six outcomes and two measures of epigenetic aging in the analyses, 

thus, the Bonferroni cutoff was set at P < 0.0042 (0.05/12). Results for all outcomes are given 

in Supplemental Tables 3 and 4, which also contain summary statistics of regressions of the 

hemostatic factors on AAD for reference purposes. The basic model was considered the 

primary model on which we based determinations of statistical significance. 

PAI-1 was significantly associated with both epigenetic age acceleration measures in 

both the basic and full models (Table 1, Figure 1). Fibrinogen was the most widely available 

hemostatic factor with both European (8 cohorts, n = 13,183) and African-ancestry (3 cohorts, 

n = 3,362) cohorts represented. We observed significant associations between both measures 

of blood DNA methylation age and fibrinogen in the African-ancestry cohorts (Supplemental 

Tables 3, 4). In the combined-ethnicity analyses we observed a significant association for 

EEAD and fibrinogen in the basic model which was attenuated slightly in the full model. 

(Figure 2, Table 1). To facilitate comparison with fixed-effects models used for the other 

hemostatic factors we also performed fixed-effects meta-analysis for fibrinogen for both 

EEAD and IEAD (Supplemental Table 5). Results mirrored the random effects meta 

analyses with slightly smaller standard errors and evidence of heterogeneity in some models. 

The clotting time measure aPTT was significantly associated with EEAD in the basic model. 

This association was somewhat attenuated in the full model (Table 1).  
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A summary of all associations is given in Table 2. Overall, accelerated epigenetic 

aging was associated with higher clotting factor concentration (fibrinogen and PAI-1) and 

decreased clotting time (aPTT). For fibrinogen and aPTT, associations were attenuated in the 

confounder-adjusted full model. As a sensitivity analysis, we removed all cohorts with 

hemostatic measures and DNA methylation arrays not performed on the same sample. This 

restriction removed all the African-American ancestry cohorts and left 7 European-ancestry 

cohorts with fibrinogen measured (N = 6,461) and three European-ancestry cohorts with PAI-

1 measured (N = 767). The results were basically unchanged in this sensitivity analysis 

(Supplemental Figures 2 and 3). Despite ARIC having higher values of D-dimer and lower 

values of FVII than the other cohorts, little to no heterogeneity was seen in the meta-analyses 

of these outcomes (Supplemental Tables 3 and 4). Though all epigenetic aging measures 

were strongly associated with sex (Supplemental Table 6), there were no significant sex-

interactions in the meta-analysis after a multiple test correction (Supplemental Table 7).  

Replication in FHS Gen3 

We used an independent cohort of individuals from FHS Gen3 to attempt to replicate 

associations with PAI-1 and fibrinogen. We successfully replicated the PAI-1 associations 

with IEAD and EEAD, but fibrinogen was not associated with epigenetic aging in FHS Gen3 

(Table 3). 

Gene expression analyses 

 Given the observed associations with fibrinogen and PAI-1, we examined associations 

between epigenetic aging measures and whole blood gene expression for the three genes 

(FGA, FGB, FGG) which encode the fibrinogen subunits, as well as SERPINE1, which 

encodes PAI-1. In a meta-analysis of cross-sectional associations from KORA S4 and RS, we 

observed associations for FGA and SERPINE1.  EEAD was associated with FGA gene 
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expression for both the basic and full models while SERPINE1 was negatively associated with 

IEAD in the basic model (Table 4a).  

 Given the potential for reverse causation when examining epigenetics and gene 

expression, we examined, in a prospective model, the association between epigenetic aging 

assessed in KORA S4 with gene expression measured in KORA F4, a follow-up survey of 

KORA S4 participants. We did not observe associations with FGA or SERPINE1 in the 

prospective model but did observe an association between IEAD and FGG (Table 4b). 

 To understand the tissue specificity of the associations, we examined associations 

between gene expression and epigenetic aging in aortic intima-media, a second tissue type we 

had access to that had the necessary DNA methylation and hemostatic factor measurements. 

All of the genes considered are primarily expressed in tissues other than whole blood as 

indicated by data from the human genotype tissue expression consortium,43,44 Supplemental 

Figure 4.  We only examined AAD in these tissue samples since EEAD and IEAD are blood-

specific measures due to their dependence on blood immune cell counts. We observed an 

association between AAD and both FGG and FGB gene expression, though the association 

with FGB was negative. The FGG association was similar to prospective KORA F4 

associations with IEAD (Table 4b).  

Discussion 

 Hemostatic factors, such as fibrinogen and PAI-1, are risk factors for multiple adverse 

cardiovascular outcomes.7,9,10,14 As hemostatic factors measures are associated with age, it is 

possible that age-related biological mechanisms influence the regulation and thus 

concentration of hemostatic factors. Here, our results show that higher epigenetic age as 

compared with chronological age is associated with higher concentrations of fibrinogen and 

PAI-1 and decreased clotting time. These associations mirror the alterations in the hemostatic 

profile seen with advancing age. Although coagulation and thrombosis is a balance between 
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pro- and anti-coagulation, as well as pro- and anti-thrombolysis, higher fibrinogen and PAI-1, 

along with lower clotting time, may indicate a shift towards a “prothrombotic” hemostatic 

profile. 

PAI-1 

 PAI-1 is a serine protease inhibitor which slows the cleavage of plasminogen to 

plasmin by inhibiting urokinase plasminogen activator. PAI-1 is a risk factor for 

cardiovascular disease and thrombosis45. In mice PAI-1 deficiencies are protective against 

liver fibrosis and carotid artery atherosclerosis progression.46,47 However, in humans, 

individuals homozygous for a PAI-1 frame-shift mutation experienced abnormal bleeding but 

no other abnormalities. Heterozygous individuals did not experience abnormal bleeding 

events.48. Like other hemostatic factors, PAI-1 is strongly associated with age, and may partly 

underlie associations between advanced age and cardiovascular outcomes18. All epigenetic 

biomarkers of accelerated aging we examined were associated with higher PAI-1 

concentrations. We did not find evidence that the epigenetic regulation of PAI-1 is influenced 

by the regulation of mRNA levels of SERPINE1, its coding gene, as none of the accelerated 

epigenetic aging measures were associated with SERPINE1 gene expression in peripheral 

blood or in aortic intima-media. However, this may be due to SERPINE1 being only 

moderately expressed in blood as compared to other tissues such as endothelial cells, and 

arteries, and thus blood transcriptomic levels may not properly reflect PAI-1 regulation. 

Fibrinogen 

 Fibrinogen is an essential hemostatic factor and primary phase inflammation marker. 

As such, fibrinogen dysregulation plays a causal role in multiple bleeding disorders49,  is a 

risk factor for cardiovascular disease,6,7 and is associated with mortality.7,50 Fibrinogen was 

associated with multiple measures of accelerated epigenetic aging, most strongly and 

consistently with EEAD, which strongly correlates with epigenetic aging of the immune 
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system. We also found evidence that accelerated epigenetic aging was associated with 

transcription of the fibrinogen gene cluster (FGA, FGB, FGG). As with PAI-1, the 

associations observed here would be proxies as fibrinogen is primarily expressed in the liver 

(Supplemental Figure 4). In a study of liver biopsy samples from German individuals with 

non-alcoholic fatty liver disease and controls (biopsy samples from exclusion of liver 

malignancy) there was no association between FGA, FGB, or FGG gene expression and 

Horvath epigenetic age acceleration.26 However, this should still be examined in a population 

free of disease as non-alcoholic fatty liver disease is known to affect hemostasis.51,52 In a 

prospective analysis, higher baseline IEAD was associated with higher levels of FGG 

transcription at follow-up. This association mirrored cross-sectional associations in aortic 

tissue where higher AAD, a tissue agnostic epigenetic aging measure correlated with IEAD, 

was also associated with higher FGG transcription. Given that mortality and other health 

outcomes have associations with both accelerated epigenetic aging and fibrinogen, future 

studies should evaluate if associations between epigenetic aging and health outcomes are 

partially mediated by fibrinogen. 

Strengths and Limitations 

 A strength of these analyses is the large sample size of the discovery datasets. For the 

analysis of fibrinogen, 11 cohorts participated, which included both European and African-

ancestry individuals. For the other outcomes we were limited to European-ancestry 

individuals. Future meta-analyses should include cohorts representing a diverse array of 

ethnicities, particularly underrepresented ancestry groups. Another limitation is the cross-

sectional design, which is not robust to reverse confounding like a prospective design would 

be. However, we demonstrated associations between epigenetic aging and the transcription of 

FGG using a prospective design that is robust to reverse confounding, suggesting that our 

observations are not entirely driven by bias introduced from reverse confounding effects. 
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Estimates of the association between epigenetic aging and the hemostatic factors were in 

many cases modest. This is to be expected given other modest associations between DNA 

methylation age and outcomes such as mortality,27 though it does not eliminate the possibility 

of substantial increased population health burden from modest individual effects, or large 

individual effects for persons with severe epigenetic aging. 

 Another strength of this study was our ability to evaluate associations between 

accelerated epigenetic aging and gene expression in multiple human tissues. This yielded 

important clues into the links between accelerated epigenetic aging and transcriptomic 

regulation of the genes for PAI-1 and fibrinogen. Notably, we were also able to use 

prospective analyses, which are robust to reverse confounding, to show that associations in 

blood are similar to those observed in aortic intima-media tissue. We were limited in our 

analysis of epigenetic aging in aorta intima-media tissue as we had only a few samples (N = 

22). Expanding both the number of samples and the diversity of tissues should be a key focus 

for future studies, particularly given the tissue-specific nature of both DNA methylation and 

gene expression. These studies should particularly collect tissue samples where the hemostatic 

measures are primarily expressed, such as liver for fibrinogen. 

Conclusion 

In conclusion, we observed multiple associations between epigenetic markers of accelerated 

aging and hemostatic factors, which together suggest that accelerated epigenetic aging is 

associated with a prothrombotic hemostatic profile. Advanced age has long been associated 

with a prothrombotic state, which may underlie associations between age and clinical 

outcomes, and these analyses suggest that DNA methylation may play an important role in 

understanding associations between aging, hemodynamics, and clinical outcomes. In the case 

of fibrinogen, we found evidence that accelerated aging drives gene transcription in multiple 

tissue types. Given these observations, as the overlap between the outcomes associated with 
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hemostatic factors and those associated with epigenetic aging increase, researchers should 

evaluate if altered hemostatic regulation is a means by which epigenetic aging associates with 

adverse health outcomes. 
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Table 1. Meta-analysis associations between accelerated epigenetic aging and hemostatic factors.  

Basic and full model associations for hemostatic factor – epigenetic aging associations which were Bonferroni significant, P < 4.16x10-3, in the 

basic model associations. Effect estimates (Beta) are given per one year higher epigenetic age as compared to chronological age. Basic model 

adjusted for age, age2, and sex. Full model adjusted for age, age2, sex, body mass index, physical activity, and smoking. For fibrinogen estimates are 

given for the random effects meta-analysis. aPTT = accelerated partial thromboplastin time; Beta = effect estimate; CI = 95% confidence interval; 

EA = European ancestry population; EEAD = extrinsic epigenetic age acceleration difference; IEAD = intrinsic epigenetic age acceleration 

difference; PAI-1 = plasminogen activator inhibitor-1; P(Q) = heterogeneity (Cochran’s Q) P-value; SE = standard error * = combined-race meta-

analysis  

Table 1. Significant associations 

  Basic     Full     

Outcome Aging Measure (y) Beta SE CI P P(Q) Beta SE CI P P(Q) 

PAI-1 (U/mL) EEAD 0.18 0.04 0.11, 0.25 2.4x10-7 0.10 0.13 0.03 0.07, 0.20 6.6x10-5 0.18 

PAI-1 (U/mL) IEAD 0.18 0.05 0.09, 0.27 1.4x10-4 0.78 0.16 0.04 0.07, 0.25 2.6x10-4 0.79 

Fibrinogen* 
(g/L) 

EEAD 0.01 0.002 0.002, 0.009 0.002 0.004 0.004 0.002 9.5E-04, 0.007 0.01 0.03 

aPTT (s) EEAD -0.02 0.01 -0.04, -0.007 0.003 0.08 -0.02 0.01 -0.03, -0.006 0.005 0.12 
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Table 2. Summary of associations with P < 0.05.  

Table 2 gives an overall summary of associations with those Bonferroni significant in either 

the basic or full model marked. Blank cells indicate outcomes which did not achieve 

Bonferroni significance in either the basic or full model. Associations which were Bonferroni 

significant in the basic model but only nominally (P < 0.05) significant in the full model are 

marked with a single “+” or “-“. A blank cell indicates that the observed association had P > 

0.05. Effect estimates and p-values for all associations are given in Supplemental Tables 3 

and 4. AA = African ancestry population; aPTT = activated partial thromboplastin time; EA = 

European ancestry; EEAD = extrinsic epigenetic age acceleration difference; FVII = Factor 

VII; IEAD = intrinsic epigenetic age acceleration difference; PAI-1 = plasminogen activator 

inhibitor-1; RE = combined ancestry random effects model; vWF = von Willebrand Factor 

++ (--) = bonferonni significant positive (negative) association; + (-) = nominal (P < 0.05) 

significant positive (negative) association; * = combined race random effects meta-analysis  

 Basic  Full  
 EEAD IEAD EEAD IEAD 
Fibrinogen* ++  +  
PAI-1 ++ ++ ++ ++ 
D-dimer     
FVII     
vWF     
aPTT --  -  
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Table 3. Results from replication of fibrinogen and PAI-1 in FHS Generation 3 cohort. All 

aging measures were assessed in years while fibrinogen was measured in g/L and PAI-1 in 

U/mL. Replicated associations are given in bold. Basic model adjusted for age, age2, and sex. 

Full model adjusted for age, age2, sex, body mass index, smoking, and physical activity 

(where available). Additional linear and quadratic time difference terms were included in both 

models to represent the time between sample collection for the hemostatic factor assessment 

and assessment of DNA methylation. Effect estimates (Beta) are given per one year higher 

epigenetic age as compared to chronological age. AAD = age acceleration difference; Beta = 

effect estimate; EEAD = extrinsic epigenetic age acceleration difference; IEAD = intrinsic 

epigenetic age acceleration difference; LCI = lower 95% confidence interval; PAI-1 = 

plasminogen activator inhibitor-1; SE = standard error; UCI = upper 95% confidence interval 

Aging 
measure  

Hemostatic 
Factor 

Model Beta SE LCI UCI P 

EEAD Fibrinogen  Basic 6.4x10-3 3.4x10-3 -3.0x10-4 1.3x10-2 0.06 

IEAD Fibrinogen Basic 4.0x10-3 4.5x10-3 -4.7x10-3 1.3x10-2 0.37 

EEAD Fibrinogen Full -8.6x10-5 3.2x10-3 -6.4x10-3 6.2x10-3 0.98 

IEAD Fibrinogen Full -8.6x10-5 4.2x10-3 -8.3x10-3 8.1x10-3 0.98 

EEAD PAI-1 Basic 0.17 0.05 0.07 0.28 0.001 
IEAD PAI-1 Basic 0.16 0.07 0.03 0.29 0.01 
EEAD PAI-1 Full 0.05 0.05 -0.04 0.14 0.27 

IEAD PAI-1 Full 0.09 0.06 -0.03 0.20 0.16 
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Table 4. Association between epigenetic aging and gene expression. We examined the 

association between epigenetic age acceleration and gene expression using both cross-

sectional (4a, 4c) and prospective (4b) models in both peripheral blood (4a, 4b) and aorta 

intima-media samples (4c). Participating cohort abbreviated names are given in parentheses in 

the sub-table headings. In table 4a we give estimates from the meta-analysis of the cross-

sectional associations between epigenetic age acceleration and log2-transformed gene 

expression for KORA and RS. Both cohorts used different version of the same gene 

expression microarray which contained identical gene expression probe designs allowing for 

direct comparisons. For the prospective associations (4b), accelerated epigenetic aging was 

estimated in baseline (KORA S4) samples and gene expression measured in samples collected 

during follow-up 4-5 years later (KORA F4). Only associations with P < 0.05 in the full (age, 

age2, sex, body mass index, smoking, and physical activity) adjusted model are shown. Effect 

estimates (Beta) are given per one year higher epigenetic age as compared to chronological 

age. AAD = age acceleration difference; EEAD = extrinsic age acceleration difference; IEAD 

= intrinsic epigenetic age acceleration difference; P(Q) = P-value for heterogeneity; SE = 

standard error 

a. Cross-sectional meta-analysis (KORA F4 + RS) 

Gene Aging 
Measure 

Estimate SE P Adjustment P(Q) 

FGA EEAD 0.002 0.001 0.05 Full 0.10 

SERPINE1 IEAD -0.002 0.001 0.04 Full 0.57 

b. Prospective associations (KORA S4) 

Gene Aging 
Measure 

Estimate SE P Adjustment  

FGG IEAD 0.004 0.002 0.04 Full  

c. Aorta intima-media (ASAP) 

Gene Aging 
Measure 

Estimate SE P Adjustment  

FGG AAD 0.009 0.004 0.046 Full  
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Figure 1. Association between epigenetic aging and PAI-1. Sample sizes are given in 

parentheses next to the abbreviated cohort names. 

Effect estimates (Estimate) represent the association per one year higher epigenetic age as 

compared to chronological age as observed in the full model. AAD = epigenetic age 

acceleration difference; EEAD = extrinsic epigenetic age acceleration difference; IEAD = 

intrinsic epigenetic age acceleration difference; FE = fixed effects. 

 

Figure 2. Association between epigenetic aging and fibrinogen. Sample sizes are given in 

parentheses next to the abbreviated cohort names.  

Effect estimates (Estimate) represent the association per one year higher epigenetic age as 

compared to chronological age as observed in the full model. AAD = epigenetic age 

acceleration difference; EEAD = extrinsic epigenetic age acceleration difference; IEAD = 

intrinsic epigenetic age acceleration difference; FE = fixed effects; RE = random effects. 
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