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Abstract

Motivation: Mathematical models are nowadays important tools for analyzing dynamics of cellular

processes. The unknown model parameters are usually estimated from experimental data. These

data often only provide information about the relative changes between conditions, hence, the

observables contain scaling parameters. The unknown scaling parameters and corresponding

noise parameters have to be inferred along with the dynamic parameters. The nuisance parame-

ters often increase the dimensionality of the estimation problem substantially and cause conver-

gence problems.

Results: In this manuscript, we propose a hierarchical optimization approach for estimating the

parameters for ordinary differential equation (ODE) models from relative data. Our approach restruc-

tures the optimization problem into an inner and outer subproblem. These subproblems possess

lower dimensions than the original optimization problem, and the inner problem can be solved ana-

lytically. We evaluated accuracy, robustness and computational efficiency of the hierarchical ap-

proach by studying three signaling pathways. The proposed approach achieved better convergence

than the standard approach and required a lower computation time. As the hierarchical optimization

approach is widely applicable, it provides a powerful alternative to established approaches.

Availability and implementation: The code is included in the MATLAB toolbox PESTO which is

available at http://github.com/ICB-DCM/PESTO

Contact: jan.hasenauer@helmholtz-muenchen.de

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Mechanistic mathematical models are used in systems biology to

improve the understanding of biological processes. The mathem-

atical models most frequently used in systems biology are prob-

ably ordinary differential equations (ODEs). ODE models are,

among others, used to describe the dynamics of biochemical reac-

tion networks (Kitano, 2002; Klipp et al., 2005; Schoeberl et al.,

2009) and proliferation/differentiation processes (De Boer et al.,

2006). The parameters of the underlying processes, e.g. rate con-

stants and initial conditions, are often unknown and need to be

inferred from available experimental data. The inference provides

information about the plausibility of the model topology, and the

inferred parameters might for instance be used to predict latent

variables or the response of the process to perturbations

(Molinelli et al., 2013).

The experimental data used for parameter estimation are pro-

duced by various experimental techniques. Most of these techniques

provide relative data, meaning that the observation is proportional

to a variable of interest, e.g. the concentration of a chemical species.

This is for instance the case for Western blotting (Renart et al., 1979)
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and flow and mass cytometry (Herzenberg et al., 2006). If calibra-

tion curves are generated, the measured intensities can be converted

to concentrations, however, in most studies this is not done due to

increased resource demands.

In the literature, two methods are employed to link relative data

to mathematical models: (i) evaluation of relative changes

(Degasperi et al., 2017) and (ii) introduction of scaling parameters

(Raue et al., 2013). In (i), relative changes between conditions are

compared, and the differences between observed and simulated rela-

tive changes are minimized. While this approach is intuitive and

does not alter the dimension of the fitting problem, the noise distri-

bution is non-trivial and the residuals are not uncorrelated

(Thomaseth and Radde, 2016), which is often disregarded (see, e.g.

Degasperi et al., 2017). This can in principle result in incorrect con-

fidence intervals (see Supplementary Section S6). In (ii), scaling

parameters are introduced to replace the calibration curves. The

scaling parameters are unknown and have to be inferred along with

the remaining parameters of the model, which we refer to as dynam-

ic parameters throughout this manuscript (although they do not

change over time). While this increases the dimensionality of the op-

timization problem [see (Bachmann et al., 2011) for an example in

which the number of parameters is doubled], the noise distribution

is simple and the confidence intervals consistent. To address the

dimensionality increase, Weber et al. (2011) proposed an approach

for estimating the conditionally optimal scaling parameters given

the dynamic parameters. This approach eliminated the scaling

parameters, however, it is only applicable in the special case of addi-

tive Gaussian noise with known standard deviation. Estimating the

noise parameters instead of providing the standard deviations has

been shown to yield a statistically more accurate assessment of the

model (Raue et al., 2013). Unknown noise parameters and outlier-

corrupted data (Maier et al., 2017)—as found in many applica-

tions—cannot be handled by the approach of Weber et al. (2011).

In this study, we propose a hierachical optimization approach

which generalizes the idea of Weber et al. (2011). The proposed

hierarchical approach allows for arbitrary noise distributions, with

known and unknown noise parameters. In this manuscript, we focus

on Gaussian noise, which is most commonly used, and Laplace

noise, which has shown to be beneficial in the presence of outliers

(Maier et al., 2017). For the two noise distributions, Gaussian and

Laplace noise, we provide analytic solutions for the inner optimiza-

tion problem, which boosts the computational efficiency. To illus-

trate the properties of the proposed approach, we present results for

two models of JAK-STAT signaling and a model of RAF/MEK/ERK

signaling.

2 Materials and methods

In this section, we describe the considered class of parameter estima-

tion problems and introduce a hierarchical optimization method for

estimating the parameters of ODE models from relative data under

different measurement noise assumptions.

2.1 Mechanistic modeling of biological systems
We considered ODE models of biological processes,

_x ¼ fðxðt; hÞ; hÞ; xðt0; hÞ ¼ x0ðhÞ; (1)

in which the time- and parameter-dependent state vector xðt; hÞ
2 Rnx represents the concentrations of the species involved in the

process and the vector field f : Rnx � Rnh ! Rnx determines how the

concentrations evolve over time. The vector h 2 Rnh denotes the

parameters of the system, e.g. rate constants. The initial conditions

at time point t0 are given by the parameter-dependent function

x0 : Rnh ! Rnx .

Experimental data provide information about observables

yðt; hÞ 2 Rny . These are obtained by the observation function

h : Rnx � Rnh ! Rny , which maps the states and parameters to the

observables via

yðt; hÞ ¼ hðxðt; hÞ; hÞ: (2)

Due to experimental limitations the experimental data is noise

corrupted,

�yi;k ¼ hiðxðtk; hÞ; hÞ þ ei;k; (3)

with hi denoting the ith component of the observation function h,

and indices k for the time point. In most applications, Gaussian

noise is assumed, ei;k~Nð0;ri;k
2Þ. For outlier-corrupted data, it was

shown that the assumption of Laplace noise, ei;k � Laplaceð0;ri;kÞ,
yields more robust results (see (Maier et al., 2017) and references

therein).

The measurements are collected in a dataset D ¼ f�yk; tkgk. The

vector �yk ¼ ð�y1;k; . . . ; �yny ;k
ÞT comprises the measurements for the

different observables. For the general case including different experi-

ments and conditions, we refer to the Supplementary Section S1.

2.2 Relative experimental data
Many experimental techniques provide data which are proportional

to the measured concentrations. The scaling parameters are usually

incorporated in h, defined in (2). Here, for simplicity and without

loss of generality, we factored-out the scaling parameters from the

function h and write

�yi;k ¼ si;k � hiðxðtk; hÞ; hÞ þ ei;k:

The scaling parameters si,k and the noise parameters ri,k are in the

following combined in the matrices s and r, respectively. To distin-

guish the different parameter types, we refer to the parameters h fur-

ther as dynamic parameters. In the following, we present results for

the case that the scaling si and noise parameters ri are the same for

each time point, but differ between observables. The general case is

presented in the Supplementary Section S1.

2.3 Formulation of parameter estimation problem from

relative data
We used maximum likelihood methods, a commonly used approach

to calibrate mathematical model, to estimate the parameters from

experimental data. The likelihood function is given by

Lðh; s; rÞ ¼
Y
i;k

pð�yi;kjsi � hiðxðtk; hÞ; hÞ;riÞ (4)

with p denoting the conditional probability of �yi;k given the observ-

able yi;k ¼ si � hiðxðtk; hÞ; hÞ. This probability is for Gaussian noise

pð�yi;kjyi;k; riÞ ¼
1ffiffiffiffiffiffi
2p
p

ri

exp �
�yi;k � yi;k

� �2

2r2
i

0
B@

1
CA

with standard deviation ri > 0, and for Laplace noise

pð�yi;kjyi;k; riÞ ¼
1

2ri
exp �

j�yi;k � yi;kj
ri

� �
:

with scale parameter ri > 0.
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2.3.1 Standard approach to parameter estimation

For the standard approach, the dynamic parameters h, the scaling

parameters s, and the noise parameters r are estimated simultan-

eously. For numerical reasons, this is mostly done by minimizing the

negative log-likelihood function,

min
h;s;r

Jðh; s; rÞ with Jðh; s; rÞ ¼ �logLðh; s; rÞ : (5)

The parameters were combined as q ¼ ðh; s;rÞ and the optimization

problem has the dimension: number of dynamic parameters nh þ
number of scaling parameters ns þ number of noise parameters nr.

We solved the optimization problem using multi-start local opti-

mization (see, e.g. Raue et al. 2009). In each iteration the objective

function and its gradient were computed. If the objective function

for this parameters fulfills certain criteria, e.g. the norm of the gradi-

ent was below a certain threshold, the optimization was stopped,

otherwise the parameter was updated and the procedure was contin-

ued (Fig. 1A).

2.3.2 Hierarchical approach to parameter estimation

Since the optimization problem (5) often possess a large number of

optimization variables and can be difficult to solve, we exploited its

structure. Instead of solving simultaneously for h; s, and r, we con-

sidered the hierarchical optimization problem (Fig. 1B–D)

min
h

Jðh;bsðhÞ; brðhÞÞ (6)

with ðbsðhÞ; brðhÞÞ ¼ argmin
s;r

Jðh; s; rÞ: (7)

The inner problem (7) provides the optimal values bsðhÞ and brðhÞ of s

and r given h. These optimal values were used in the outer subpro-

blem to determine the optimal value for h denoted by bh. It is

apparent that a locally optimal point of the standard optimization

problem (5) is also locally optimal for the hierarchical optimization

problem (6, 7), if the point is within the allowed parameter bounda-

ries for the optimization.

The formulation (6) might appear more involved, however, it

possesses several properties which might be advantageous:

1. The individual dimensions of the inner and outer subproblems

(6, 7) are lower than the dimension of the original problem (5).

2. The optimization of the inner subproblem does not require the

repeated numerical simulation of the ODE model.

3. For several noise models, e.g. Gaussian and Laplace noise, the

inner subproblem can be solved analytically.

If an analytical solution for the inner subproblem is available,

the scaling parameters s and also the noise parameters r can be cal-

culated directly and the amount of parameters that need to be opti-

mized iteratively reduces to nh, which corresponds to alternative 2 in

Figure 1D. In the following two sections, the analytic expressions

for the Gaussian and Laplace noise are derived. For this, let observ-

able index i be arbitrary but fixed.

Analytic expressions for the optimal scaling and noise parameters

for Gaussian noise

In this study, we evaluated the scaling and noise parameters for

Gaussian noise analytically. To derive the analytic expression

for the optimal parameters, we exploited that the objective function

for Gaussian noise,

Jðh; s; rÞ ¼ 1

2

X
i;k

log ð2pr2
i Þ þ

�yi;k � si � hiðxðtk; hÞ; hÞ
ri

� �2

:

is continuously differentiable, and that the gradient of J at a local

minimum is zero. For the inner subproblem this implies

A B C

D

Fig. 1. Visualization of standard and hierarchical optimization schemes. (A) Local optimization in the standard approach with parameters q ¼ ðh; s; rÞ. A single iter-

ation includes the numerical simulation of the ODE model for h, the evaluation of the objective function and its gradient, the evaluation of stopping criteria, e.g.

local optimality, and the termination of the local optimization or the updating of the parameters. (B) Outer local optimization in the hierarchical approach with

parameters h. A single iteration includes the numerical simulation of the ODE model for h. the evaluation of the objective function and its gradient with respect to

h using the results of the inner optimization problem. The iteration also includes the evaluation of stopping criteria, and the termination of the local optimization

or the updating of parameters. (C, D) Inner (local) optimization in the hierarchical approach to find the optimal scaling and noise parameter bs and br for given dy-

namic parameters h. (C) Iterative local optimization to determine bs and br. This does not require the numerical simulation of the model. (D) Calculating optimal

parameters bs and br using analytic expressions for common noise distributions
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rsJðh; s; rÞjŝ ;r̂ ¼ 0 and rrJðh; s; rÞjŝ ;r̂ ¼ 0:

These equations can be solved analytically (see Supplementary

Section S1), which yields the unique optimal values

bsiðhÞ ¼
P

k�yi;k � hiðxðtk; hÞ; hÞP
k hiðxðtk; hÞ; hÞ2

br2
i ðhÞ ¼

1

nk

X
k

�yi;k � bsiðhÞ � hiðxðtk; hÞ; hÞ
� �2

with number of time points nk. Consistent with the structure of the

hierarchical problem (6), both formulas depend only on the dynamic

parameters h.

In many studies (e.g. Bachmann et al., 2011), observation func-

tions of the form log ð�yi;kÞ ¼ log ðsihiðxðtk; hÞ; hÞÞ þ �i are used. In

the Supplementary Section S2, we provide the derivation of the cor-

responding optimal parameters.

Analytic expressions for the optimal scaling and noise parameters

for Laplace noise

For Laplace noise the negative log-likelihood function is

Jðh; s; rÞ ¼
X
i;k

log ð2riÞ þ
j�yi;k � si � hiðxðtk; hÞ; hÞj

ri
: (8)

This objective function is continuous but not continuously differenti-

able. In this case, a sufficient condition for a local minimum is that the

right limit value of the derivative is negative and the left limit value is

positive. The derivative of (8) with respect to si can be written as

@J

@si
¼ � 1

ri
�
X

k

jhiðxðtk; hÞ; hÞj � sgn
�yi;k

hiðxðtk; hÞ; hÞ
� si

� �� �
;

As ri is positive, the locations of kinks in the objective function and

the corresponding jumps in the derivative are independent of ri

(Fig. 2). Accordingly, the problem of finding bsi reduced to checking

the signs of the derivative before and after the jump points

si;k ¼ �yi;k=hiðxðtk; hÞ; hÞ. We sorted si,k in increasing order and eval-

uated the derivatives at the midpoints between adjacent jumps, a

procedure which is highly efficient as the ODE model does not have

to be simulated. Given bsi, the unique optimal noise parameter br i fol-

lows from the work of Norton (1984) as

br iðhÞ ¼
1

nk

X
k

jhiðxðtk; hÞ; hÞj �
���� �yi;k

hiðxðtk; hÞ; hÞ
� bsiðhÞ

����
� �

:

Both derived formulas depend only on the dynamic parameters h, in

consistence with the structure of the hierarchical problem (6). In

summary, we reformulated the original optimization problem (5) as

a hierarchical optimization problem (6, 7), and provided an analytic

solution to the inner subproblem (7) for several relevant cases. Using

the analytic solutions, the kinetic parameters can be inferred by solv-

ing a lower-dimensional problem.

3 Results

To study and compare the performance of parameter estimation

from relative data using the standard approach and our hierarchical

approach, we applied both to three published estimation problems.

3.1 Models and experimental data
The considered models describe biological signaling pathways, name-

ly, the JAK-STAT (Bachmann et al., 2011; Swameye et al., 2003) and

the RAF/MEK/ERK signaling pathway (Fiedler et al., 2016).

3.1.1 JAK-STAT signaling I

The first application example we considered is the model of Epo-

induced JAK-STAT signaling introduced by Swameye et al. (2003)

(Fig. 3A). Epo yields the phosphorylation of signal transducer and

activator of transcription 5 (STAT5), which dimerizes, enters the nu-

cleus to trigger the transcription of target genes, gets dephosphory-

lated, and is transported to the cytoplasm. We implemented the

model which describes the phosphorylated Epo receptor concentra-

tion as a time-dependent spline (Schelker et al., 2012). For further

details on the model, we refer to Supplementary Section S5.1.

The model parameters were estimated using immunoblotting

data for the phosphorylated Epo receptor (pEpoR), phosphorylated

STAT5 (pSTAT5) and the total amount of STAT5 in the cytoplasm

(tSTAT5) (Fig. 3B). In total 46 data points are available for 16 dif-

ferent time points. Since immunoblotting only provides relative

data, the scaling parameters for the observables need to be estimated

from the data. As proposed by Schelker et al. (2012), the scaling

parameter for pEpoR has been fixed to avoid structural non-

identifiabilities (Raue et al., 2009). The model with the reduced par-

ameter vector is structurally identifiable. This yields in total 16

parameters, which comprise nh ¼ 11 dynamic parameters (see

Supplementary Section S5.1), ns ¼ 2 scaling parameters and nr ¼ 3

noise parameters.

3.1.2 JAK-STAT signaling II

The second application example is the model of JAK-STAT signaling

introduced by Bachmann et al. (2011). This model provides more

details compared to the previous one. It includes, for instance, gene

expression of cytokine-inducible SH2-containing protein (CIS) and

A

B

Fig. 2. Illustration of the computation of an optimal scaling parameter bs i for

Laplace noise. (A) Objective function J for fixed h and different values of ri,

showing that the kinks, i.e. the points of non-differentiability, indicated by the

dashed lines are independent of ri. (B) Derivative of the objective function

with respect to the scaling parameter which is not defined at the kinks. The

light red and dark red lines indicate the computed scaling parameter and the

true optimal scaling parameter, respectively
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Fig. 3. Models and experimental data. (A, B) JAK-STAT I. (A) Illustration of the model according to Swameye et al. (2003). Arrows represent biochemical reactions,

and the observables of the model used are highlighted by boxes. (B) Experimental data and fitted trajectories for the best parameter found with multi-start local

optimization with 100 starts. The results are shown for the standard (dotted lines) and hierarchical (solid lines) approach for optimization for Gaussian and

Laplace noise. (C, D) JAK-STAT II. (C) Illustration of the model according to Bachmann et al. (2011). (D) Experimental data and fitted trajectories for the best par-

ameter found with multi-start local optimization for 100 and 200 starts for Gaussian and Laplace noise, respectively. 33 out of 541 data points are shown. (E–G)

RAF/MEK/ERK. (E) Illustration of the model according to Fiedler et al. (2016). (F, G) Experimental data and fitted trajectories for the best parameter found with

multi-start local optimization for 500 and 1000 starts for Gaussian and Laplace noise, respectively. Different markers indicate the different blots. The data is scaled

according to the estimated scaling parameters, yielding different visualizations for different parameters, as obtained with the Gaussian and the Laplace noise as-

sumption. (F) Fitted trajectories for Gaussian noise for the standard (dotted line) and hierarchical (solid line) approach for optimization. (G) Fitted trajectories for
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suppressor of cytokine signaling 3 (SOCS3), and possesses more

state variables and parameters (Fig. 3C).

The model parameters were estimated using 541 data points

collected by immunoblotting, qRT-PCR and quantitative mass spec-

trometry (Fig. 3D and Supplementary Fig. S4). To model the observ-

ables Bachmann et al. (2011) used ns ¼ 43 scaling parameters, and

nr ¼ 11 noise parameters, yielding nh ¼ 58 parameters of the outer

subproblem of in total 112 parameters. Some scaling and noise

parameters are shared between experiments and some are shared be-

tween observables. For this model, most of the observables were

compared at the log10 scale (see Supplementary Section S5.2).

3.1.3 RAF/MEK/ERK signaling

The third application example we considered is the model of RAF/

MEK/ERK signaling introduced by Fiedler et al. (2016). The model

describes the phosphorylation cascade and a negative feedback of

phosphorylated ERK on RAF phosphorylation (Fig. 3E).

Fiedler et al. (2016) collected Western blot data for HeLa cells for

two observables, phosphorylated MEK and phosphorylated ERK,

with four replicates at seven time points giving 72 data points (Fig. 3F

and G). Each observable and replicate was assumed to have different

scaling and noise parameters, yielding 16 additional parameters and

in total 28 parameters in the standard approach (Fig. 4A).

3.2 Evaluation of the approaches
We performed parameter estimation for the application examples

using the standard and the hierarchical approach. For each example,

the case of Gaussian and Laplace noise was considered. The result-

ing optimization problems were solved with the MATLAB toolbox

PESTO (Stapor et al., 2018), using multi-start local optimization, an

approach which was previously found to be computationally effi-

cient and reliable (Raue et al., 2013). Initial points were sampled

uniformly within their parameter boundaries and local optimization

was performed using the interior point method implemented in the

MATLAB function fmincon.m for both noise distributions.

However, alternatively other optimization methods can easily be

employed. Numerical simulation and forward sensitivity analysis

for gradient evaluation was performed using the MATLAB toolbox

AMICI (Fröhlich et al., 2017), which provides an interface to

CVODES (Serban and Hindmarsh, 2005). To improve convergence

and computational efficiency, log10-transformed parameters were

used for the optimization.

3.2.1 Qualitative comparison of optimization approaches for

different noise distributions

As the standard and hierarchical approach should in principle be

able to achieve the same fit, we first studied the agreement of trajec-

tories for the optimal parameters. We found that they coincide for

the JAK-STAT model I and II, for both noise distributions, and the

RAF/MEK/ERK using Gaussian noise. This indicates that the hier-

archical approach is able to find the same optimal likelihood value

as the standard approach (Fig. 3B and D). Also the best likelihood

values which were found by the two approaches are the same

(Fig. 4B and Supplementary Fig. S5). For the RAF/MEK/ERK model

A C

B D

E

Fig. 4. Evaluation of the standard and hierarchical approach for three application examples. (A) Number of optimization variables in the outer subproblem.

(B) Likelihood waterfall plot for the JAK-STAT model I. The ascendingly sorted negative log-likelihood values are shown for both approaches (standard and

hierarchical) and noise distributions (Gaussian and Laplace). (C–E) Comparison of the two optimization approaches and two noise distribution for the three

models. (C) Percentage of converged starts over all performed local optimizations. (E) CPU time needed per converged start
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with the assumption of Laplace distributed measurement noise, the

fitted trajectories between the experimental data slightly deviate

(Fig. 3F), which can be explained by convergence issues and broad

confidence intervals of the parameters (Supplementary Fig. S8). As

expected, there are differences between the results obtained with

Gaussian and Laplace noise, which is visible in the trajectories and

the corresponding likelihood values.

3.2.2 Convergence of optimizers

As the performance of multi-start local methods depends directly on

the convergence of the local optimizers, we assessed for how many

starting points the local optimizer reached the best objective func-

tion value found across all runs. This was done by studying the like-

lihood waterfall plots (Fig. 4B). The number of converged starts is

the number of starts for which the final objective function value is

close to the best found objective function value (across all starts and

optimization methods). The statistical threshold is defined according

to a likelihood ratio test (Hross and Hasenauer, 2016). We found

that the proposed hierarchical approach achieved consistently a

higher fraction of converged starts than the standard approach

(Fig. 4C). Local optimization using the hierarchical approach con-

verged on average in 29.3% of the runs while the standard approach

converged on average in 18.4% of the runs.

The application examples vary with respect to the total number

of parameters and in the number of parameters which correspond to

scaling or noise parameters (Fig. 4A). While for the JAK-STAT

model I only five parameters could be optimized analytically, for the

JAK-STAT model II almost half of the parameters correspond to

scaling or noise parameters. Interestingly, even when the dimension

of the outer optimization problem was only reduced by few parame-

ters by solving the inner problem analytically, we observed a sub-

stantial increase of the percentage of converged multi-starts

(Fig. 4C).

3.2.3 Computational efficiency

As computation resources are often limiting, we finally analyzed the

computation time per converged start. We found that on average the

computation time per start was lower for the hierarchical approach

than for the standard approach (Fig. 4D). The hierarchical approach

is faster than the standard approach for a high fraction of the starts

(Supplementary Fig. S1C). In combination with the improved con-

vergence rate, this resulted in a substantially reduced computation

time per converged start, aka a start which reached the minimal

value observed across all starts (Fig. 4E). Given a fixed computation-

al budget, the hierarchical approach achieved on average 5.06 times

more optimization runs which reached the best objective function

values than the standard approach. The expected improvement in

terms of CPU time per converged start when using the hierarchical

approach is in average 3:4� 103; 5:8� 102 and 6:5� 104 seconds

for JAK-STAT I, JAK-STAT II and RAF/MEK/ERK, respectively.

In summary, the application of our hierarchical approach to par-

ameter estimation from relative data to the models shows consistent-

ly that our approach yields parameter values of the same quality as

the standard method, while achieving better convergence and reduc-

ing the computation time substantially.

4 Conclusion

The statistically rigorous estimation of model parameters from rela-

tive data requires non-standard statistical models (Thomaseth and

Radde, 2016) or scaling parameters (Raue et al., 2013).

Unfortunately, the former is not supported by established toolboxes

and the latter increases the dimensionality of the estimation prob-

lem. In this manuscript, we introduced a hierarchical approach

which avoids the increase of dimensionality and is applicable to a

broad range of noise distributions. For Gaussian and Laplace noise

we provided analytic expressions. The approach can be used for

combinations of relative and absolute data, and for different opti-

mization methods, including least-squares methods or global opti-

mization methods such as particle swarm optimization (Vaz and

Vicente, 2009) (see Supplementary Fig. S3) or GLSDC (Kimura and

Konagaya, 2003). While the method effectively reduces the dimen-

sionality of the optimization problem, optimal parameter values and

parameter identifiability remains unchanged. Accordingly, it has to

be kept in mind that the presence of scaling factors often results in

structural non-identifiabilities and this problem is not solved by the

hierarchical approach for optimization.

We evaluated the performance of our hierarchical approach and

compared it to the standard approach for three models, which vary

in their complexity. For all applications, we found that our hierarch-

ical approach yielded fits of the same or better quality. In addition,

convergence was improved and the computation time was shortened

substantially. We demonstrated that our approach can also be used

when relative and absolute data are modeled together in an experi-

ment, and when several observables or experiments share scaling

and/or noise parameters. This renders our approach applicable to a

wide range of mathematical models studied in systems and computa-

tional biology. We provided a generic implementation of the object-

ive function for the hierarchical approach for Gaussian and Laplace

noise. The objective function is provided in the Supplementary

Information (along with the rest of the code) and included in the

MATLAB toolbox PESTO (Stapor et al., 2018). As the hierarchical

approach proposed in this study can easily be integrated in existing

toolboxes, not only optimization but also profile calculation can be

improved (Supplementary Figs S4 and S8).

For the considered models, we observed that the fraction of con-

verged local optimization runs decreases as the model dimension

increases. Potential reasons are that for larger models the region of

attraction of the global optimum might be smaller and there might

be more local minima. We also observed that fraction of converged

starts is lower for Laplace noise than for Gaussian noise. This most

probably occurs due to non-differentiabilities in the objective func-

tion, which complicate the optimization procedure. When using

Laplace priors for parameters, the optimization routine can be

adapted (Steiert et al., 2016), however, this approach is not easily

transferable to the use of Laplace noise as the switching points de-

pend on the numerical solution of the ODE. Thus, further work

should be directed towards implementing and testing appropriate

optimization routines. Amongst others, local direct search optimiz-

ers (De La Maza and Yuret, 1994; Nelder and Mead, 1965), which

are not gradient-based and therefore do not require differentiability,

should be considered.

In addition to the scaling and noise parameters, also other

parameters which only contribute to the mapping from the states to

the observables, could be optimized analytically. This includes offset

parameters, which are used to model background intensities or un-

specific binding. Extending our approach to also calculate these

parameters analytically would decrease the number of parameters in

the outer optimization even more.

When using gradient-based optimization, further improvements

could be achieved by extending the approach to scalable approaches

to calculate the objective function gradient. In this manuscript, we

employed forward sensitivities for the calculation of the objective
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function gradient. However, it has been shown that for large-scale

models with a high number of parameters, adjoint sensitivities can

reduce the computation time needed for simulation (Fröhlich et al.,

2017). Thus, a further promising approach would be the combin-

ation of both complementary approaches for the handling of large-

scale models.

To summarize, employing our hierarchical approach for optimiza-

tion yielded more robust results and speed up the computation time.

This renders the approach valuable for estimating parameters from

relative data. The proposed approach might facilitate the handling of

large-scale models, which possess many measurement parameters.
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