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Abstract

Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons
relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of

this study was to determine if cancer could be automatically detected in breast specimens from
mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters
derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered
histologic sections and FLIm data from breast cancer specimens (N = 20) and a support vector
machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose
breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous,
fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well

for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be
used during surgery or on excised specimens. The ability of this technique to simply discriminate
between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from
tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has
great potential to assess breast cancer margins. Identification of positive margins before waiting for
complete histologic analysis could significantly reduce breast cancer re-excision rates.

Introduction

Recentstatisticsindicate thatbreast canceris theleading cause of cancer-related death and the 2nd most diagnosed
cancer for women in the United States and is the most common cancer in women worldwide (Fitzmaurice
et al 2016). Currently, an American woman has a 1 in 9 chance of developing breast cancer during her lifetime
(Fitzmaurice et al 2016). Breast-conserving surgery (lumpectomy) followed by radiation is the standard-of-care
surgical intervention for early-stage cancer and is as effective as mastectomy in many cases (O’Kelly Priddy et al
2015). From a 2009 study, 37.9% of 1459 lumpectomy procedures resulted in positive margins (Morrow et al
2009) and 50% of reoperations due to positive margin findings did not find residual tumor (Azu et al 2010).
Additionally, positive margins are correlated with a significant increase in ipsilateral breast tumor regional
recurrence (Houssami et al 2014) and reoperation is associated with greater physical and emotional trauma to
the patient, a higher incidence of complications, and poorer cosmetic outcomes (St John et al 2017). The most
accurate methods to assess tumor margins are cytology and frozen sections, both of which require significant
time and cost and thus are not commonly performed (St John et al 2017). A fast, cost-effective and accurate way
to assess breast cancer margins intraoperatively or immediately following resection is in high demand.

Optical techniques provide a means to non-destructively probe tissue composition, making them safe for
intraoperative use. Studies have been done to determine the capability of several optical techniques to poten-
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tially diagnose breast cancer specimens. This includes diffuse reflectance spectroscopy (DRS) (Brown et al 2010,
Keller et al 2010, de Boer et al 2016), diffuse optical spectroscopy (DOS) (Nichols et al 2017), Raman spectr-
oscopy (Kong et al 2014), fluorescence spectroscopy (Keller et al 2010), optical coherence tomography (OCT)
(Nguyen et al 2009, Erickson-Bhatt ef al 2015, Zysk et al 2015), optical coherence micro-elastography (Allen
et al 2016), autofluorescence lifetime microscopy (Sharma et al 2012), and photoacoustic microscopy (Wong
etal 2017). Moreover, few of these have been used to assess margins intraoperatively (i.e. DRS, DOS, and OCT),
but none have been widely adopted into regular clinical practice due to inherent limitations. For example, while
fibrous tissue will appear more uniform with OCT than tumor (Erickson-Bhatt et al 2015), OCT still has limited
ability to distinguish between cancerous and fibrous breast tissue due to potentially similar structural features of
these tissue types (Nguyen et al 2009). Also, while a careful study of normal and cancerous breast tissue has been
performed with DRS (Kennedy ef al 2016), an automated method to distinguish cancer based on DRS measure-
ments has not been demonstrated. Furthermore, a recent meta-analysis of intraoperative margin assessment
techniques showed that optical techniques will need to be both improved in accuracy for cancer detection and
more convenient and cost-effective before they will be accepted by the wider clinical community (St John et al
2017). Additionally, new work is being done to achieve pathology-like images through staining resected samples
and performing optical imaging; for instance light-sheet microscopy (Glaser et al 2017) and fluorescence imag-
ing (Davis e al 2013). These show great promise for identifying tumor margins, but in comparison to other opti-
cal techniques, have the drawback of requiring tissue staining prior to imaging.

Taking advantage of the autofluorescence properties of breast tissue, earlier studies have shown that fluo-
rescence intensity-based spectroscopy techniques enable detection of breast cancer with good sensitivity and
specificity (85% and 96%, respectively) (Keller et al 2010). Time-resolved (lifetime) fluorescence spectroscopy
techniques can improve these statistics by providing an additional means to analyze tissue autofluorescence by
separating tissue fluorophores with overlapping fluorescence intensity parameters but distinct fluorescence
lifetimes. Such techniques, however, have only been sparsely explored for diagnosis of breast cancer (Sharma
etal 2012, Gorpas et al 2015). Endogenous fluorophores distinguishable by fluorescence lifetime techniques and
relevant to breast cancer detection include adipose tissue, collagen fibers, nicotinamide adenine dinucleotide
(NADH) and flavin adenine dinucleotide (FAD).

While the potential diagnostic capabilities of fluorescence lifetime techniques have been demonstrated in
pre-clinical studies, many challenges exist for clinical translation including complex instrumentation, time-con-
suming data analysis, and a lack of ability for clinicians to simply obtain fluorescence lifetime data and quickly
display conclusive diagnostic information. Recent advances in fluorescence lifetime imaging (FLIm) instrumen-
tation with a fast and compact scanning fiber-based system (Yankelevich et al 2014, Ma et al 2015) enable acquisi-
tion of FLIm images either during surgery or on excised specimens, in real-time as the FLIm fiber opticis scanned
over the tissue via hand scanning or with an automated mechanical stage. The system is housed in a compact cart
that can be transported easily to operating or pathology rooms. The goals of this study were to demonstrate: (1)
the ability of this compact system to acquire data from breast specimens in scenarios that mimic the intraop-
erative setting, which would require hand scanning during surgery or a mechanical stage for scanning excised
specimens; and (2) the accuracy of a classification algorithm that employs optical parameters derived from FLIm
measurements to automatically output diagnostic information about breast specimens as independently valid-
ated with histology. Our findings show that this FLIm technique may be a contender for reducing breast cancer
re-excision rates due to its ability to accurately and quickly distinguish cancer from normal tissue in a manner
that could identify positive margins intraoperatively either during surgery or on resected tissue specimens.

Methods

Breast specimens

Tissue specimens (N =20) from breast cancer patients (N = 14 total: N=4 lumpectomies, N = 10
mastectomies) were imaged within an hour of resection. Multiple pieces of tissue were imaged from N =5 of
the total patients, which is why there are N = 20 specimens, but only N = 14 patients. All patients provided
informed consent. See table 1 for a summary of patient information. The University of California Davis Health

System Institutional Review Board approved this study.

Imaging protocol

The tissue was assessed by a pathologist and regions thought to contain tumor were cut into sizes that could be
fit in a single tissue processing cassette (~20mm x 20mm X 4-5mm), with slight irregularities in the overall
shape to assist with later co-registration between histology and FLIm data. Ink was used to mark the edges of
the specimen and to assist with co-registration. The samples were placed on an imaging stage and scanned
with the FLIm fiber optic either manually by hand or automatically by a mechanical stage to mimic how this
system could be used either during surgery or following surgery on excised tissue specimens, respectively. High-
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Table 1. Demographicand tumor characteristics of N = 14 patients in this study.

Characteristic Number (%)
Age <50 3(21)
>50 9 (64)
Unknown 2 (14)
Race White, not hispanic or latino 12 (86)
Unknown 2 (14)
Body mass index, kg m? Normal (<25) 5(36)
Overweight, 25-30 5(36)
Obese, >30 2 (14)
Unknown 2(14)
Menopausal status Premenopausal 4(29)
Postmenopausal 10 (71)
Unknown 2 (14)
Radiotherapy No radiotherapy 8(57)
Radiotherapy 2 (14)
Unknown 4(29)
Hormone therapy No 7 (50)
Yes 4(29)
Unknown 3 (21)
Type of surgery Lumpectomy 3(21)
Mastectomy 9 (64)
Unknown 2 (14)
Receptor status Negative 2(14)
Positive 8 (57)
Unknown 4(29)
Cancer stage DCIS 3(21)
Invasive 9 (64)
Unknown 2 (14)

resolution white-light images as well as the video stream of the scanning were also acquired (see videos 1 and 2
(stacks.iop.org/PMB/63/015003/mmedia)). The fluorescence lifetime values derived from FLIm measurements
were augmented with the video stream of the tissue for visualization during imaging and saved for further
analysis. The FLIm system and the process to augment the video stream are described below. Following imaging,
specimens were placed in formalin and processed routinely for histologic analysis.

Histology

Tissue sections were cut parallel to the imaging plane, thus each histologic section corresponded to one entire
field of view of a FLIm dataset. The sections were stained with hematoxylin and eosin (H&E) and scanned
with an Aperio Digital Pathology Slide Scanner (Leica Biosystems). The pathologist (M.D.) traced regions of
fibrous tissue, normal ducts and lobules, fat, invasive cancer and ductal carcinoma in situ (DCIS) using Aperio
ImageScope (Leica Biosystems). The FLIm interrogation depth is ~300 pm (Ghosh et al 2001, Palmer et al
2006) and the depth of a single histologic tissue section was 4 yum. To determine how much the breast tissue
composition changed within the 300 ym depth, in N = 2 cases multiple 4 ym sections were cut within the
300 pm imaged volume. Matlab (The Mathworks, Inc.) software was used for selecting regions of interest (ROIs)
in the FLIm images and for image analysis.

Region of Interest Selection

Pathologist tracings from the histology sections were exported from the Aperio software and co-registered with
the white light images of the breast tissue, using the shape of the tissue sections and ink as fiducial markers. ROIs
were drawn within the tracings, with a 0.5 mm margin to account for errors in co-registration. See figure 1.

FLIm system

The imaging setup consisted of a prototype point scanning FLIm instrumentation and an aiming beam module
(Gorpas et al 2016). The aiming beam detection scheme allowed the FLIm images to be reconstructed from
the scanning point measurements in real time. The FLIm system is based on a pulse-sampling fluorescence
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Figure 1. Representative breast specimen automatically scanned on the mechanical stage. (A) White light image of a breast
specimen scanned on a mechanical stage. (B) White light image augmented with FLIm data from spectral channel 2; (C) white light
image augmented with classification results when this specimen was left out of the training set. (D) Corresponding H&E histology
section. Cancer is outlined in red, adipose in blue and fibrous in green. Scale bar = 4 mm. (E) Zoomed in histology section from
black dashed line in (D) with ROIs included in the study shown with the filled-in shapes (red for cancer, blue for adipose, green for
fibrous). Scale bar = 0.5 mm. These regions are overlayed with the breast specimen in (F).

lifetime measurement technique and has been described previously (Yankelevich et al 2014, Gorpas et al 2016).
Fluorescence excitation was produced with a micro Q-switched laser frequency tripled to 355 nm with a 2 KHz
repetition rate (Teem Photonics, France). The resulting fluorescence emission from the tissue specimens was
sequentially spectrally resolved into four channels: 390/40 nm (channel 1), 466/40 nm (channel 2), 542/50 nm
(channel 3),and 629/53 nm (channel 4) (Yankelevich et al 2014). Each channel was connected to an optical fiber
of varying length that allowed all 4 signals generated from a single laser pulse to arrive sequentially at distinct time
points at the detector, a single microchannel plate photomultiplier tube (MCP-PMT, R3809U-50, Hamamatsu,
45 ps FWHM). The signals were then increased by an RF amplifier (AM-1607-3000, 3 GHz bandwidth, Miteq,
USA) and temporally resolved (80 ps intervals) by a high sampling frequency digitizer (PXIe-5185, National
Instruments, 12.5 GS/s sampling rate). A continuous-wave solid state laser (450 nm, 50 mW, World Star Tech,
Canada) coupled into the second channel allowed the aiming beam (power ~ 3 mW) to be projected onto the
tissue in the same location as the fluorescence excitation beam. An external camera (Point Grey Chameleon3 1.3
MP Color USB3 Vision with Fujinon HF9HA-1B 2/3” 9mm lens) recorded the entire specimen, including the
aiming beam, during the scanning procedure. The video images were converted to the HSV color space and the
blue aiming beam was segmented by thresholding the hue channel, providing co-registration between the FLIm
measurements and the video of the tissue. Once the location of the aiming beam is determined, the FLIm data
acquired from that location was augmented in real time with the video display of the scanning procedure. Thus
as the tissue was scanned, an image of the FLIm data was reconstructed within the video stream of the tissue
visualized on the FLIm system computer monitor, creating an augmented view of the tissue overlayed with the
FLIm values.(Gorpas et al 2016) This can be observed in figures 1 and 2 and videos 1 and 2.

FLIm parameters

Following the acquisition of the fluorescence decay signal, constrained least-squares deconvolution based on the
Laguerre expansion method was performed to determine the fluorescence response of the tissue (Liu et al 2012).
From the deconvolved fluorescence decay, the average lifetimes and intensity ratios were derived. The average
lifetime is the average amount of time a fluorophore spends in the excited state. The probability distribution of
detected photons is obtained by normalizing the deconvolved fluorescence intensity decay. The average lifetime
is then defined as the expected value of this distribution (Lakowicz 1999). Intensity ratios were computed by
taking the ratio of the fluorescence intensity at each channel divided by the sum of all four intensity channels.
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Figure2. Representative breast specimen manually scanned by hand. (A) H&E histology section from breast specimen overlayed
with pathologist tracings and the ROIs selected for the study (filled-in shapes). Scale bar = 4 mm. (B) The corresponding white light
image of the breast specimen augmented with the ROIs identified by the pathologist tracings. (C) White light image augmented with
FLIm data from detection channel 2; (D) white light image augmented with the classification results when this specimen was left out
of the training set.

Table 2. Results from leave-one-out cross validation with a Gaussian SVM (numbers of pixels per group imbalanced).

Sensitivity analysis Specificity analysis
No. No.
Accuracy” PPV* SE* TP FN Sp? TN Fp
Cancer 99.0 (99.0-99.1) 98.5 (98.4-98.5) 100.0 (100.0-100.0) 70555 1 97.4 (97.3-97.5) 40819 1093
Adipose  99.3 (99.3-99.4) 99.9 (99.9-100.0) 97.2(97.1-97.3) 25250 723 100.0 (100.0-100.0) 86479 16
Fibrous  99.7 (99.6-99.7)  100.0 (100.0-100.0) 97.6 (97.5-97.7) 15552 387 100.0 (100.0-100.0) 96527 2

Abbreviations: PPV, positive predictive value; SE, sensitivity; TP, true positive; FN, false negative; SP, specificity; TN, true negatives;
FP, false positives.
* Value expressed as: % (95% CI).

Statistics

Support vector machines (SVM) with a RBF kernel (Chang and Lin 2011) were used to classify FLIm data into
three groups based on training from histology: adipose, fibrous and cancerous. The feature vector included
average fluorescence lifetime from channels 1-4. Multiclass classification was realized through the ‘one-against-
one’ strategy (Hsu and Lin 2002). The cancerous regions included both invasive cancer and DCIS. Sensitivity,
specificity, positive predictive value and negative predictive value were calculated with leave one out cross-
validation. This involved sequentially leaving data from a single patient out of the training set, then testing the
classification accuracy on that single patient for all patients. Since multiple specimens were imaged for N = 5
patients, the leave one out cross-validation was performed per patient rather than per specimen. The leave
one out cross-validation was performed twice, first with the numbers of pixels per group in the training set
imbalanced and next with balanced numbers between groups. The numbers of pixels per group were forced
to be balanced by randomly sampling 31 pixels per group from each sample, the size of the smallest group per
sample in the dataset (Chawla et al 2004). Average fluorescence lifetime values are presented as mean =+ standard
deviation. To remove dependence between pixels, the median from each patient from each group was used as the
outcome variable and a non-parametric Kruskal-Wallis test was performed to determine statistical significance
between groups because the data was not normally distributed, as determined with a Kolmogorov—Smirnov
test. Post-hoc Mann—Whitney U-tests were performed to determine the p values for the outcome variables
(median values) from each set of groups. Image analysis, classification and statistical analyses were performed
using MATLAB (The Mathworks, Inc.). The classification algorithm and results (tables 2 and 3) only included
data from a 0.5 mm border within the pathologist tracings of the histology. Data that was scanned by hand was
thresholded to remove artifacts that occur at the edges of the specimen (see figure 2). The classification algorithm
was validated for the ROIs carefully co-registered with histology, however classification was also performed for
all pixels acquired for each specimen (figures 1(C) and 2(D)).

Results

Seevideos 1 and 2 for a demonstration of data being recorded and simultaneously displayed on the video feed of
samples imaged by hand and by the automated stage, respectively. ROIs were selected from each of the specimens
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Table 3. Results from leave-one-out cross validation with a Gaussian SVM (numbers of pixels per group balanced with 31 pixels per group
from each sample).

Sensitivity analysis Specificity analysis
No. No.
Accuracy® PPV* SE* TP FN Sp* TN FP
Cancer 97.8 (96.9-98.5) 93.1 (91.7-94.4) 100.0 (99.7-100.0) 434 0 96.9 (95.8-97.7) 991 32
Adipose  99.9 (99.6-100.0) 100.0 (100.0-100.0) 99.8 (99.4-100.0) 526 1 100.0 (99.7-100.0) 930 0
Fibrous  97.7 (96.8-98.4) 99.8 (99.3-100.0) 93.5 (92.1-94.7) 464 32 99.9 (99.5-100.0) 960 1

Abbreviations: PPV, positive predictive value; SE, sensitivity; TP, true positive; FN, false negative; SP, specificity; TN, true negatives;
FP, false positives.
* Value expressed as: % (95% CI).

for a total of N = 14 688 pixels associated with fibrous tissue, N = 67 465 associated with cancerous tissue and

N = 24311 associated with adipose tissue. Average spatial resolution was approximately 60 points mm 2,

Average fluorescence lifetime

The mean average lifetime values for each spectral detection channel from within 0.5mm borders of the
pathologist tracings on the FLIm images co-registered with histology (figure 3) were computed. Average
fluorescence lifetime from detection channel 1 identifies fibrous regions with the highest values and adipose
with lowest values. For spectral channels 2—4 the lifetimes from adipose are highest, fibrous in the middle and
cancer the lowest. Figures 1 and 2 demonstrate representative examples. The Kruskal-Wallis test found that the
fluorescence lifetimes were significantly different (p < 0.001). Additionally, the rank sum test found that the
differences in all detection channels between all groups were statistically significantly different (p < 0.001) for all
groups excluding fibrous compared to cancer in channel 1 (p = 0.64).

Classification results

The sensitivity, specificity, positive and negative predictive values for discriminating between adipose, cancerous
and fibrous tissue are summarized in table 2. When groups were forced to be balanced by randomly sampling
N = 31 points per group per sample, the results were slightly different, as summarized in table 3. The SVMs for
lifetime values of each set of groups (adipose versus fibrous, adipose versus cancer, fibrous versus cancer) and
scatter plots of the fluorescence lifetime data can be seen in figure 4.

Histology co-registration

The pathologist (M.D.) compared histology sections from 3 levels within the 300 ym imaged region and found
that the breast tissue did not vary significantly in these N = 2 samples to warrant cutting multiple levels from
each sample. Thus for the remaining N = 18 samples, the first complete section from the paraffin block was used
to interpret the results of the entire 300 ym imaged volume.

Discussion

This study demonstrates that spectroscopic features derived from FLIm images are capable of being used to
distinguish between adipose, fibrous and cancerous regions in breast specimens from women undergoing
lumpectomies and mastectomies. The system is compatible with intraoperative applications. It allows for hand
scanning the surgical bed with a fiber optic or automatic scanning of resected ex vivo tissue specimens on a
mechanical stage. Fluorescence lifetime information is displayed as the scanning is conducted and a classification
algorithm was developed to automate distinction between these three tissue types. The classification algorithm
worked equally well for data acquired via hand scanning and automated stage scanning. The classification is able
to be performed fast enough that it could be implemented in real time as the measurements are acquired, which
shows the potential of this technology as an intraoperative tool either during surgery or on resected specimens
for tumor margins assessment.

The ability of this FLIm technique to distinguish between breast tissue types is due to the endogenous fluo-
rescence of the fluorophores that comprise those tissues, specifically: fat cells, collagen fibers, NADH and FAD.
Adipose tissue is connective tissue predominantly composed of fat cells. From our histologic co-registration,
we see that the adipose tissue tends to fluoresce with long lifetimes at the longer wavelengths detected in spec-
tral channels 2—4 of the FLIm apparatus (figure 3), as is consistent with previous studies of adipose tissue fluo-
rescence (Swatland 1987, Datta et al 2015). Fibrous tissue is composed of bundles of collagen fibers, and fluo-
resces with a lifetime longer than cancer, but shorter than adipose tissue, based on our histologic co-registration
(figure 3).Importantly, this FLIm technique can clearly distinguish between fibrous and cancer, unlike some other

6
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Figure 3. Average fluorescence lifetime from adipose, fibrous and cancerous breast tissue. This plot includes all data from the
ROIs co-registered with histology and included in the classification algorithm. Fibrous: green circles, adipose: blue squares, and
cancerous: red diamonds. Fluorescence lifetime (ns) can be seen to vary between the 3 breast tissue types. P < 0.001 except for
between fibrous and cancer in channel 1.
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Figure4. SVM plots demonstrating discrimination between groups. These plots demonstrate the SVMs that separate the three
groups: (A) adipose (blue) and fibrous (green), (B) fibrous and cancer (red), (C) adipose and cancer. The axes represent fluorescence
lifetime (ns) in detection channels 1-3.

optical techniques (figures 3 and 4(B)). Cancer cells have altered NADH and FAD metabolism in comparison
to normal tissue according to the Warburg theory (Druzhkova et al 2016). Free NADH and bound FAD have
relatively short lifetimes and fluoresce predominantly in the wavelengths detected by channels 2—4, which may
explain the shorter lifetimes of cancerous breast tissue in these channels, though we cannot determine NADH
and FAD presence with histologic methods (Skala et al 2007). While the trends in fluorescence lifetime detected
in spectral channel 1 were also statistically significant, channels 2—4 exhibit the greatest amount of separation
between groups.

The margin of healthy tissue around the lumpectomy specimens necessary for negative margins has been con-
troversial. As recently as 2013, standard of care required breast cancer margins to be 1-2 mm in depth, depend-
ing on the cancer type and surgeon. However, recent studies demonstrated that a ‘no ink on tumor’ margin
for lumpectomy specimens leads to patient outcomes equivalent to those from the previous 1-2 mm guideline
(Moran etal 2014). The ‘no ink on tumor’ guideline defines negative cancer margins as occurring when there are
no tumor cells touching the ink used to mark the entire lumpectomy specimen. The 355 nm FLIm imaging sys-
tem excitation light penetrates approximately 300 microns into the breast tissue and thus will identify cancer cells
right at the surface, in the same region as the ‘no ink on tumor’ guideline suggests. Thus this FLIm system can
probe the same region of tissue important for determining margin status based on current clinical guidelines.

The scanning speed of the FLIm system can be varied based on parameters input to the mechanical stage or
by the person performing the hand scanning. Two representative speeds can be seen in videos 1 and 2. While
mechanical stage scanning is slower in this case, the resolution is higher in comparison to the hand scanning,
which is faster but with lower resolution. Thus we anticipate hand scanning would be performed to identify posi-
tive margins in the operating room or frozen section room immediately following tissue resection and mechani-
cal stage scanning would be reserved for cases where higher resolution is necessary, such as if in the future it is
determined that FLIm can be used to study specifics of cancer type as well as positive or negative margins. How-
ever, the limiting factor of the slow mechanical stage scanning was the stage itself; with an improved stage, the
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FLIm system would be capable of operating at much faster speeds that could allow for the higher resolution scans
to be obtained from both the operating room and frozen section room.

We acknowledge that a limitation to this study is the fact that only small regions of tissue within the traced
outlines of each tissue type were included in the classification analysis (see figures 1(F) and 2(A)). This study
design was used to reduce errors caused by co-registration between the FLIm data and histology that are pre-
dominantly caused by: (1) tissue shrinkage and warping during histological processing, (2) the use of a single
4 pm histology section to represent the entire imaged volume and (3) the use of a computer mouse to trace the
relevant tissue types, which does not allow for very detailed lines to be drawn with the Aperio software. Our
work currently does not take into account the ways that multiple light scattering events may affect fluorescence
lifetime, however our excitation-collection geometry and fast temporal resolution reduce the possibility that
scattering affects our fluorescence lifetime measurements. In the future, this could be thoroughly studied with a
technique such as lifetime tomography (Gao et al 2008, Cai et al 2016). Additionally, while we hypothesize that
NADH and FAD allow us to distinguish cancerous from fibrous and adipose tissue based on known fluorescence
lifetime properties of these molecules, we cannot verify this without chemical analysis. Since our specimens are
ex vivo, this also only allows us to assess the state that the NADH and FAD were in following tissue resection in
comparison to the true state they existed in in living tissue. We also acknowledge that these results will need to be
validated in alarger cohort, and we aim to move to entire lumpectomy specimens rather than sections of lumpec-
tomy and mastectomy specimens for this work. A larger cohort will also enable the study of whether DCIS and
invasive cancer can be distinguished using this technique. In the current study, nevertheless, cancerous tissue,
regardless of cancer type, was discriminated from normal breast tissue (both fibrous and adipose).

In conclusion, normal fibrous and adipose tissue was able to be distinguished from cancerous breast tis-
sue with accuracy >97% with a classification algorithm designed using FLIm derived parameters. The FLIm
measurements can be acquired within minutes either by hand or automated scanning of a fiber optic, without
the need for contrast agents or dyes and without damaging tissue. Additionally, the FLIm signal is generated
from the region of breast specimens appropriate for current guidelines for determining tumor margin status. All
combined, these results indicate that the current technique has great potential for further application in the field
of surgical breast oncology to reduce rates of re-excision by determining tumor margin status intraoperatively
either during surgery or on resected tissue specimens.
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