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Introduction

Recent statistics indicate that breast cancer is the leading cause of cancer-related death and the 2nd most diagnosed 
cancer for women in the United States and is the most common cancer in women worldwide (Fitzmaurice 
et al 2016). Currently, an American woman has a 1 in 9 chance of developing breast cancer during her lifetime 
(Fitzmaurice et al 2016). Breast-conserving surgery (lumpectomy) followed by radiation is the standard-of-care 
surgical intervention for early-stage cancer and is as effective as mastectomy in many cases (O’Kelly Priddy et al 
2015). From a 2009 study, 37.9% of 1459 lumpectomy procedures resulted in positive margins (Morrow et al 
2009) and 50% of reoperations due to positive margin findings did not find residual tumor (Azu et al 2010). 
Additionally, positive margins are correlated with a significant increase in ipsilateral breast tumor regional 
recurrence (Houssami et al 2014) and reoperation is associated with greater physical and emotional trauma to 
the patient, a higher incidence of complications, and poorer cosmetic outcomes (St John et al 2017). The most 
accurate methods to assess tumor margins are cytology and frozen sections, both of which require significant 
time and cost and thus are not commonly performed (St John et al 2017). A fast, cost-effective and accurate way 
to assess breast cancer margins intraoperatively or immediately following resection is in high demand.

Optical techniques provide a means to non-destructively probe tissue composition, making them safe for 
intraoperative use. Studies have been done to determine the capability of several optical techniques to poten-
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Abstract
Re-excision rates for breast cancer lumpectomy procedures are currently nearly 25% due to surgeons 
relying on inaccurate or incomplete methods of evaluating specimen margins. The objective of 
this study was to determine if cancer could be automatically detected in breast specimens from 
mastectomy and lumpectomy procedures by a classification algorithm that incorporated parameters 
derived from fluorescence lifetime imaging (FLIm). This study generated a database of co-registered 
histologic sections and FLIm data from breast cancer specimens (N  =  20) and a support vector 
machine (SVM) classification algorithm able to automatically detect cancerous, fibrous, and adipose 
breast tissue. Classification accuracies were greater than 97% for automated detection of cancerous, 
fibrous, and adipose tissue from breast cancer specimens. The classification worked equally well 
for specimens scanned by hand or with a mechanical stage, demonstrating that the system could be 
used during surgery or on excised specimens. The ability of this technique to simply discriminate 
between cancerous and normal breast tissue, in particular to distinguish fibrous breast tissue from 
tumor, which is notoriously challenging for optical techniques, leads to the conclusion that FLIm has 
great potential to assess breast cancer margins. Identification of positive margins before waiting for 
complete histologic analysis could significantly reduce breast cancer re-excision rates.
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tially diagnose breast cancer specimens. This includes diffuse reflectance spectroscopy (DRS) (Brown et al 2010,  
Keller et al 2010, de Boer et al 2016), diffuse optical spectroscopy (DOS) (Nichols et al 2017), Raman spectr
oscopy (Kong et al 2014), fluorescence spectroscopy (Keller et al 2010), optical coherence tomography (OCT) 
(Nguyen et al 2009, Erickson-Bhatt et al 2015, Zysk et al 2015), optical coherence micro-elastography (Allen 
et al 2016), autofluorescence lifetime microscopy (Sharma et al 2012), and photoacoustic microscopy (Wong 
et al 2017). Moreover, few of these have been used to assess margins intraoperatively (i.e. DRS, DOS, and OCT), 
but none have been widely adopted into regular clinical practice due to inherent limitations. For example, while 
fibrous tissue will appear more uniform with OCT than tumor (Erickson-Bhatt et al 2015), OCT still has limited 
ability to distinguish between cancerous and fibrous breast tissue due to potentially similar structural features of 
these tissue types (Nguyen et al 2009). Also, while a careful study of normal and cancerous breast tissue has been 
performed with DRS (Kennedy et al 2016), an automated method to distinguish cancer based on DRS measure-
ments has not been demonstrated. Furthermore, a recent meta-analysis of intraoperative margin assessment 
techniques showed that optical techniques will need to be both improved in accuracy for cancer detection and 
more convenient and cost-effective before they will be accepted by the wider clinical community (St John et al 
2017). Additionally, new work is being done to achieve pathology-like images through staining resected samples 
and performing optical imaging; for instance light-sheet microscopy (Glaser et al 2017) and fluorescence imag-
ing (Davis et al 2013). These show great promise for identifying tumor margins, but in comparison to other opti-
cal techniques, have the drawback of requiring tissue staining prior to imaging.

Taking advantage of the autofluorescence properties of breast tissue, earlier studies have shown that fluo-
rescence intensity-based spectroscopy techniques enable detection of breast cancer with good sensitivity and 
specificity (85% and 96%, respectively) (Keller et al 2010). Time-resolved (lifetime) fluorescence spectroscopy 
techniques can improve these statistics by providing an additional means to analyze tissue autofluorescence by 
separating tissue fluorophores with overlapping fluorescence intensity parameters but distinct fluorescence 
lifetimes. Such techniques, however, have only been sparsely explored for diagnosis of breast cancer (Sharma 
et al 2012, Gorpas et al 2015). Endogenous fluorophores distinguishable by fluorescence lifetime techniques and 
relevant to breast cancer detection include adipose tissue, collagen fibers, nicotinamide adenine dinucleotide 
(NADH) and flavin adenine dinucleotide (FAD).

While the potential diagnostic capabilities of fluorescence lifetime techniques have been demonstrated in 
pre-clinical studies, many challenges exist for clinical translation including complex instrumentation, time-con-
suming data analysis, and a lack of ability for clinicians to simply obtain fluorescence lifetime data and quickly 
display conclusive diagnostic information. Recent advances in fluorescence lifetime imaging (FLIm) instrumen-
tation with a fast and compact scanning fiber-based system (Yankelevich et al 2014, Ma et al 2015) enable acquisi-
tion of FLIm images either during surgery or on excised specimens, in real-time as the FLIm fiber optic is scanned 
over the tissue via hand scanning or with an automated mechanical stage. The system is housed in a compact cart 
that can be transported easily to operating or pathology rooms. The goals of this study were to demonstrate: (1) 
the ability of this compact system to acquire data from breast specimens in scenarios that mimic the intraop-
erative setting, which would require hand scanning during surgery or a mechanical stage for scanning excised 
specimens; and (2) the accuracy of a classification algorithm that employs optical parameters derived from FLIm 
measurements to automatically output diagnostic information about breast specimens as independently valid
ated with histology. Our findings show that this FLIm technique may be a contender for reducing breast cancer 
re-excision rates due to its ability to accurately and quickly distinguish cancer from normal tissue in a manner 
that could identify positive margins intraoperatively either during surgery or on resected tissue specimens.

Methods

Breast specimens
Tissue specimens (N  =  20) from breast cancer patients (N  =  14 total: N  =  4 lumpectomies, N  =  10 
mastectomies) were imaged within an hour of resection. Multiple pieces of tissue were imaged from N  =  5 of 
the total patients, which is why there are N  =  20 specimens, but only N  =  14 patients. All patients provided 
informed consent. See table 1 for a summary of patient information. The University of California Davis Health 

System Institutional Review Board approved this study.

Imaging protocol
The tissue was assessed by a pathologist and regions thought to contain tumor were cut into sizes that could be 
fit in a single tissue processing cassette (~20 mm  ×  20 mm  ×  4–5 mm), with slight irregularities in the overall 
shape to assist with later co-registration between histology and FLIm data. Ink was used to mark the edges of 
the specimen and to assist with co-registration. The samples were placed on an imaging stage and scanned 
with the FLIm fiber optic either manually by hand or automatically by a mechanical stage to mimic how this 
system could be used either during surgery or following surgery on excised tissue specimens, respectively. High-

Phys. Med. Biol. 63 (2018) 015003(9pp)
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resolution white-light images as well as the video stream of the scanning were also acquired (see videos 1 and 2  
(stacks.iop.org/PMB/63/015003/mmedia)). The fluorescence lifetime values derived from FLIm measurements 
were augmented with the video stream of the tissue for visualization during imaging and saved for further 
analysis. The FLIm system and the process to augment the video stream are described below. Following imaging, 
specimens were placed in formalin and processed routinely for histologic analysis.

Histology
Tissue sections were cut parallel to the imaging plane, thus each histologic section corresponded to one entire 
field of view of a FLIm dataset. The sections were stained with hematoxylin and eosin (H&E) and scanned 
with an Aperio Digital Pathology Slide Scanner (Leica Biosystems). The pathologist (M.D.) traced regions of 
fibrous tissue, normal ducts and lobules, fat, invasive cancer and ductal carcinoma in situ (DCIS) using Aperio 
ImageScope (Leica Biosystems). The FLIm interrogation depth is ~300 µm (Ghosh et al 2001, Palmer et al 
2006) and the depth of a single histologic tissue section was 4 µm. To determine how much the breast tissue 
composition changed within the 300 µm depth, in N  =  2 cases multiple 4 µm sections were cut within the  
300 µm imaged volume. Matlab (The Mathworks, Inc.) software was used for selecting regions of interest (ROIs) 
in the FLIm images and for image analysis.

Region of Interest Selection
Pathologist tracings from the histology sections were exported from the Aperio software and co-registered with 
the white light images of the breast tissue, using the shape of the tissue sections and ink as fiducial markers. ROIs 
were drawn within the tracings, with a 0.5 mm margin to account for errors in co-registration. See figure 1.

FLIm system
The imaging setup consisted of a prototype point scanning FLIm instrumentation and an aiming beam module 
(Gorpas et al 2016). The aiming beam detection scheme allowed the FLIm images to be reconstructed from 
the scanning point measurements in real time. The FLIm system is based on a pulse-sampling fluorescence 

Table 1.  Demographic and tumor characteristics of N  =  14 patients in this study.

Characteristic Number (%)

Age <50 3 (21)

>50 9 (64)

Unknown 2 (14)

Race White, not hispanic or latino 12 (86)

Unknown 2 (14)

Body mass index, kg m2 Normal (<25) 5 (36)

Overweight, 25–30 5 (36)

Obese, ⩾30 2 (14)

Unknown 2 (14)

Menopausal status Premenopausal 4 (29)

Postmenopausal 10 (71)

Unknown 2 (14)

Radiotherapy No radiotherapy 8 (57)

Radiotherapy 2 (14)

Unknown 4 (29)

Hormone therapy No 7 (50)

Yes 4 (29)

Unknown 3 (21)

Type of surgery Lumpectomy 3 (21)

Mastectomy 9 (64)

Unknown 2 (14)

Receptor status Negative 2 (14)

Positive 8 (57)

Unknown 4 (29)

Cancer stage DCIS 3 (21)

Invasive 9 (64)

Unknown 2 (14)

Phys. Med. Biol. 63 (2018) 015003
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lifetime measurement technique and has been described previously (Yankelevich et al 2014, Gorpas et al 2016). 
Fluorescence excitation was produced with a micro Q-switched laser frequency tripled to 355 nm with a 2 KHz 
repetition rate (Teem Photonics™, France). The resulting fluorescence emission from the tissue specimens was 
sequentially spectrally resolved into four channels: 390/40 nm (channel 1), 466/40 nm (channel 2), 542/50 nm 
(channel 3), and 629/53 nm (channel 4) (Yankelevich et al 2014). Each channel was connected to an optical fiber 
of varying length that allowed all 4 signals generated from a single laser pulse to arrive sequentially at distinct time 
points at the detector, a single microchannel plate photomultiplier tube (MCP-PMT, R3809U-50, Hamamatsu, 
45 ps FWHM). The signals were then increased by an RF amplifier (AM-1607-3000, 3 GHz bandwidth, Miteq, 
USA) and temporally resolved (80 ps intervals) by a high sampling frequency digitizer (PXIe-5185, National 
Instruments, 12.5 GS/s sampling rate). A continuous-wave solid state laser (450 nm, 50 mW, World Star Tech, 
Canada) coupled into the second channel allowed the aiming beam (power ~ 3 mW) to be projected onto the 
tissue in the same location as the fluorescence excitation beam. An external camera (Point Grey Chameleon3 1.3 
MP Color USB3 Vision with Fujinon HF9HA-1B 2/3″ 9 mm lens) recorded the entire specimen, including the 
aiming beam, during the scanning procedure. The video images were converted to the HSV color space and the 
blue aiming beam was segmented by thresholding the hue channel, providing co-registration between the FLIm 
measurements and the video of the tissue. Once the location of the aiming beam is determined, the FLIm data 
acquired from that location was augmented in real time with the video display of the scanning procedure. Thus 
as the tissue was scanned, an image of the FLIm data was reconstructed within the video stream of the tissue 
visualized on the FLIm system computer monitor, creating an augmented view of the tissue overlayed with the 
FLIm values.(Gorpas et al 2016) This can be observed in figures 1 and 2 and videos 1 and 2.

FLIm parameters
Following the acquisition of the fluorescence decay signal, constrained least-squares deconvolution based on the 
Laguerre expansion method was performed to determine the fluorescence response of the tissue (Liu et al 2012). 
From the deconvolved fluorescence decay, the average lifetimes and intensity ratios were derived. The average 
lifetime is the average amount of time a fluorophore spends in the excited state. The probability distribution of 
detected photons is obtained by normalizing the deconvolved fluorescence intensity decay. The average lifetime 
is then defined as the expected value of this distribution (Lakowicz 1999). Intensity ratios were computed by 
taking the ratio of the fluorescence intensity at each channel divided by the sum of all four intensity channels.

Figure 1.  Representative breast specimen automatically scanned on the mechanical stage. (A) White light image of a breast 
specimen scanned on a mechanical stage. (B) White light image augmented with FLIm data from spectral channel 2; (C) white light 
image augmented with classification results when this specimen was left out of the training set. (D) Corresponding H&E histology 
section. Cancer is outlined in red, adipose in blue and fibrous in green. Scale bar  =  4 mm. (E) Zoomed in histology section from 
black dashed line in (D) with ROIs included in the study shown with the filled-in shapes (red for cancer, blue for adipose, green for 
fibrous). Scale bar  =  0.5 mm. These regions are overlayed with the breast specimen in (F).

Phys. Med. Biol. 63 (2018) 015003(9pp)
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Statistics
Support vector machines (SVM) with a RBF kernel (Chang and Lin 2011) were used to classify FLIm data into 
three groups based on training from histology: adipose, fibrous and cancerous. The feature vector included 
average fluorescence lifetime from channels 1–4. Multiclass classification was realized through the ‘one-against-
one’ strategy (Hsu and Lin 2002). The cancerous regions included both invasive cancer and DCIS. Sensitivity, 
specificity, positive predictive value and negative predictive value were calculated with leave one out cross-
validation. This involved sequentially leaving data from a single patient out of the training set, then testing the 
classification accuracy on that single patient for all patients. Since multiple specimens were imaged for N  =  5 
patients, the leave one out cross-validation was performed per patient rather than per specimen. The leave 
one out cross-validation was performed twice, first with the numbers of pixels per group in the training set 
imbalanced and next with balanced numbers between groups. The numbers of pixels per group were forced 
to be balanced by randomly sampling 31 pixels per group from each sample, the size of the smallest group per 
sample in the dataset (Chawla et al 2004). Average fluorescence lifetime values are presented as mean  ±  standard 
deviation. To remove dependence between pixels, the median from each patient from each group was used as the 
outcome variable and a non-parametric Kruskal–Wallis test was performed to determine statistical significance 
between groups because the data was not normally distributed, as determined with a Kolmogorov–Smirnov 
test. Post-hoc Mann–Whitney U-tests were performed to determine the p values for the outcome variables 
(median values) from each set of groups. Image analysis, classification and statistical analyses were performed 
using MATLAB (The Mathworks, Inc.). The classification algorithm and results (tables 2 and 3) only included 
data from a 0.5 mm border within the pathologist tracings of the histology. Data that was scanned by hand was 
thresholded to remove artifacts that occur at the edges of the specimen (see figure 2). The classification algorithm 
was validated for the ROIs carefully co-registered with histology, however classification was also performed for 
all pixels acquired for each specimen (figures 1(C) and 2(D)).

Results

See videos 1 and 2 for a demonstration of data being recorded and simultaneously displayed on the video feed of 
samples imaged by hand and by the automated stage, respectively. ROIs were selected from each of the specimens 

Figure 2.  Representative breast specimen manually scanned by hand. (A) H&E histology section from breast specimen overlayed 
with pathologist tracings and the ROIs selected for the study (filled-in shapes). Scale bar  =  4 mm. (B) The corresponding white light 
image of the breast specimen augmented with the ROIs identified by the pathologist tracings. (C) White light image augmented with 
FLIm data from detection channel 2; (D) white light image augmented with the classification results when this specimen was left out 
of the training set.

Table 2.  Results from leave-one-out cross validation with a Gaussian SVM (numbers of pixels per group imbalanced).

Sensitivity analysis Specificity analysis

No. No.

Accuracya PPVa SEa TP FN SPa TN FP

Cancer 99.0 (99.0–99.1) 98.5 (98.4–98.5) 100.0 (100.0–100.0) 70 555 1 97.4 (97.3–97.5) 40 819 1093

Adipose 99.3 (99.3–99.4) 99.9 (99.9–100.0) 97.2 (97.1–97.3) 25 250 723 100.0 (100.0–100.0) 86 479 16

Fibrous 99.7 (99.6–99.7) 100.0 (100.0–100.0) 97.6 (97.5–97.7) 15 552 387 100.0 (100.0–100.0) 96 527 2

Abbreviations: PPV, positive predictive value; SE, sensitivity; TP, true positive; FN, false negative; SP, specificity; TN, true negatives;  

FP, false positives.
a Value expressed as: % (95% CI).

Phys. Med. Biol. 63 (2018) 015003
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for a total of N  =  14 688 pixels associated with fibrous tissue, N  =  67 465 associated with cancerous tissue and 
N  =  24 311 associated with adipose tissue. Average spatial resolution was approximately 60 points mm−2.

Average fluorescence lifetime
The mean average lifetime values for each spectral detection channel from within 0.5 mm borders of the 
pathologist tracings on the FLIm images co-registered with histology (figure 3) were computed. Average 
fluorescence lifetime from detection channel 1 identifies fibrous regions with the highest values and adipose 
with lowest values. For spectral channels 2–4 the lifetimes from adipose are highest, fibrous in the middle and 
cancer the lowest. Figures 1 and 2 demonstrate representative examples. The Kruskal–Wallis test found that the 
fluorescence lifetimes were significantly different (p  <  0.001). Additionally, the rank sum test found that the 
differences in all detection channels between all groups were statistically significantly different (p  <  0.001) for all 
groups excluding fibrous compared to cancer in channel 1 (p  =  0.64).

Classification results
The sensitivity, specificity, positive and negative predictive values for discriminating between adipose, cancerous 
and fibrous tissue are summarized in table 2. When groups were forced to be balanced by randomly sampling 
N  =  31 points per group per sample, the results were slightly different, as summarized in table 3. The SVMs for 
lifetime values of each set of groups (adipose versus fibrous, adipose versus cancer, fibrous versus cancer) and 
scatter plots of the fluorescence lifetime data can be seen in figure 4.

Histology co-registration
The pathologist (M.D.) compared histology sections from 3 levels within the 300 µm imaged region and found 
that the breast tissue did not vary significantly in these N  =  2 samples to warrant cutting multiple levels from 
each sample. Thus for the remaining N  =  18 samples, the first complete section from the paraffin block was used 
to interpret the results of the entire 300 µm imaged volume.

Discussion

This study demonstrates that spectroscopic features derived from FLIm images are capable of being used to 
distinguish between adipose, fibrous and cancerous regions in breast specimens from women undergoing 
lumpectomies and mastectomies. The system is compatible with intraoperative applications. It allows for hand 
scanning the surgical bed with a fiber optic or automatic scanning of resected ex vivo tissue specimens on a 
mechanical stage. Fluorescence lifetime information is displayed as the scanning is conducted and a classification 
algorithm was developed to automate distinction between these three tissue types. The classification algorithm 
worked equally well for data acquired via hand scanning and automated stage scanning. The classification is able 
to be performed fast enough that it could be implemented in real time as the measurements are acquired, which 
shows the potential of this technology as an intraoperative tool either during surgery or on resected specimens 
for tumor margins assessment.

The ability of this FLIm technique to distinguish between breast tissue types is due to the endogenous fluo-
rescence of the fluorophores that comprise those tissues, specifically: fat cells, collagen fibers, NADH and FAD. 
Adipose tissue is connective tissue predominantly composed of fat cells. From our histologic co-registration, 
we see that the adipose tissue tends to fluoresce with long lifetimes at the longer wavelengths detected in spec-
tral channels 2–4 of the FLIm apparatus (figure 3), as is consistent with previous studies of adipose tissue fluo-
rescence (Swatland 1987, Datta et al 2015). Fibrous tissue is composed of bundles of collagen fibers, and fluo-
resces with a lifetime longer than cancer, but shorter than adipose tissue, based on our histologic co-registration  
(figure 3). Importantly, this FLIm technique can clearly distinguish between fibrous and cancer, unlike some other 

Table 3.  Results from leave-one-out cross validation with a Gaussian SVM (numbers of pixels per group balanced with 31 pixels per group 
from each sample).

Sensitivity analysis Specificity analysis

No. No.

Accuracya PPVa SEa TP FN SPa TN FP

Cancer 97.8 (96.9–98.5) 93.1 (91.7–94.4) 100.0 (99.7–100.0) 434 0 96.9 (95.8–97.7) 991 32

Adipose 99.9 (99.6–100.0) 100.0 (100.0–100.0) 99.8 (99.4–100.0) 526 1 100.0 (99.7–100.0) 930 0

Fibrous 97.7 (96.8–98.4) 99.8 (99.3–100.0) 93.5 (92.1–94.7) 464 32 99.9 (99.5–100.0) 960 1

Abbreviations: PPV, positive predictive value; SE, sensitivity; TP, true positive; FN, false negative; SP, specificity; TN, true negatives;  

FP, false positives.
a Value expressed as: % (95% CI).

Phys. Med. Biol. 63 (2018) 015003(9pp)
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optical techniques (figures 3 and 4(B)). Cancer cells have altered NADH and FAD metabolism in comparison 
to normal tissue according to the Warburg theory (Druzhkova et al 2016). Free NADH and bound FAD have 
relatively short lifetimes and fluoresce predominantly in the wavelengths detected by channels 2–4, which may 
explain the shorter lifetimes of cancerous breast tissue in these channels, though we cannot determine NADH 
and FAD presence with histologic methods (Skala et al 2007). While the trends in fluorescence lifetime detected 
in spectral channel 1 were also statistically significant, channels 2–4 exhibit the greatest amount of separation 
between groups.

The margin of healthy tissue around the lumpectomy specimens necessary for negative margins has been con-
troversial. As recently as 2013, standard of care required breast cancer margins to be 1–2 mm in depth, depend-
ing on the cancer type and surgeon. However, recent studies demonstrated that a ‘no ink on tumor’ margin 
for lumpectomy specimens leads to patient outcomes equivalent to those from the previous 1–2 mm guideline 
(Moran et al 2014). The ‘no ink on tumor’ guideline defines negative cancer margins as occurring when there are 
no tumor cells touching the ink used to mark the entire lumpectomy specimen. The 355 nm FLIm imaging sys-
tem excitation light penetrates approximately 300 microns into the breast tissue and thus will identify cancer cells 
right at the surface, in the same region as the ‘no ink on tumor’ guideline suggests. Thus this FLIm system can 
probe the same region of tissue important for determining margin status based on current clinical guidelines.

The scanning speed of the FLIm system can be varied based on parameters input to the mechanical stage or 
by the person performing the hand scanning. Two representative speeds can be seen in videos 1 and 2. While 
mechanical stage scanning is slower in this case, the resolution is higher in comparison to the hand scanning, 
which is faster but with lower resolution. Thus we anticipate hand scanning would be performed to identify posi-
tive margins in the operating room or frozen section room immediately following tissue resection and mechani-
cal stage scanning would be reserved for cases where higher resolution is necessary, such as if in the future it is 
determined that FLIm can be used to study specifics of cancer type as well as positive or negative margins. How-
ever, the limiting factor of the slow mechanical stage scanning was the stage itself; with an improved stage, the 

Figure 3.  Average fluorescence lifetime from adipose, fibrous and cancerous breast tissue. This plot includes all data from the 
ROIs co-registered with histology and included in the classification algorithm. Fibrous: green circles, adipose: blue squares, and 
cancerous: red diamonds. Fluorescence lifetime (ns) can be seen to vary between the 3 breast tissue types. P  <  0.001 except for 
between fibrous and cancer in channel 1.

Figure 4.  SVM plots demonstrating discrimination between groups. These plots demonstrate the SVMs that separate the three 
groups: (A) adipose (blue) and fibrous (green), (B) fibrous and cancer (red), (C) adipose and cancer. The axes represent fluorescence 
lifetime (ns) in detection channels 1–3.

Phys. Med. Biol. 63 (2018) 015003
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FLIm system would be capable of operating at much faster speeds that could allow for the higher resolution scans 
to be obtained from both the operating room and frozen section room.

We acknowledge that a limitation to this study is the fact that only small regions of tissue within the traced 
outlines of each tissue type were included in the classification analysis (see figures 1(F) and 2(A)). This study 
design was used to reduce errors caused by co-registration between the FLIm data and histology that are pre-
dominantly caused by: (1) tissue shrinkage and warping during histological processing, (2) the use of a single 
4 µm histology section to represent the entire imaged volume and (3) the use of a computer mouse to trace the 
relevant tissue types, which does not allow for very detailed lines to be drawn with the Aperio software. Our 
work currently does not take into account the ways that multiple light scattering events may affect fluorescence 
lifetime, however our excitation-collection geometry and fast temporal resolution reduce the possibility that 
scattering affects our fluorescence lifetime measurements. In the future, this could be thoroughly studied with a 
technique such as lifetime tomography (Gao et al 2008, Cai et al 2016). Additionally, while we hypothesize that 
NADH and FAD allow us to distinguish cancerous from fibrous and adipose tissue based on known fluorescence 
lifetime properties of these molecules, we cannot verify this without chemical analysis. Since our specimens are 
ex vivo, this also only allows us to assess the state that the NADH and FAD were in following tissue resection in 
comparison to the true state they existed in in living tissue. We also acknowledge that these results will need to be 
validated in a larger cohort, and we aim to move to entire lumpectomy specimens rather than sections of lumpec-
tomy and mastectomy specimens for this work. A larger cohort will also enable the study of whether DCIS and 
invasive cancer can be distinguished using this technique. In the current study, nevertheless, cancerous tissue, 
regardless of cancer type, was discriminated from normal breast tissue (both fibrous and adipose).

In conclusion, normal fibrous and adipose tissue was able to be distinguished from cancerous breast tis-
sue with accuracy  >97% with a classification algorithm designed using FLIm derived parameters. The FLIm 
measurements can be acquired within minutes either by hand or automated scanning of a fiber optic, without 
the need for contrast agents or dyes and without damaging tissue. Additionally, the FLIm signal is generated 
from the region of breast specimens appropriate for current guidelines for determining tumor margin status. All 
combined, these results indicate that the current technique has great potential for further application in the field 
of surgical breast oncology to reduce rates of re-excision by determining tumor margin status intraoperatively 
either during surgery or on resected tissue specimens.
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