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1. Introduction

Recent technical advances allow for the analysis of single 
cells with high throughput omics technologies (Wang 
et al 2010). In particular, single-cell transcriptome 
analysis (Tang et al 2011, Wu et al 2014) has made 
dramatic advances. Investigating transcripts of single 
cells with both quantitative real-time PCR (qPCR) 
(Ståhlberg et al 2010, Citri et al 2012) and single-cell RNA 
sequencing (RNA-seq) (Tang et al 2009, Islam et al 2011, 
2014, Yan et al 2013) has become possible. However, new 
experimental methods bring new challenges with them: 
biological variability among single cells, which remained 
hidden in population-based approaches, has now 
become evident. One major challenge of computational 
biology is the development of new and the adaptation 
of existing methods for single-cell gene expression data 
(Buettner et al 2012, Kim et al 2013).

Gene expression is a stochastic process (Elowitz et al 
2002) and the abundance of mRNA transcripts (of an 
individual gene) among many single cells (of the same 
cell type) can be formulated in terms of steady-state 
probability distributions (Raj et al 2006, Thattai et al 
2001). Analyzing these steady-state probability distri-
butions can yield new insights into the underlying gene 
expression mechanism (Shahrezaei et al 2008, Larson 
2011, Kim et al 2013).

There are two well-studied mechanisms of gene 
expression that have been serving as a paradigm  
(Raj et al 2008): simple, constitutive gene expression 
(also known as the birth-death process), where DNA is 
continuously transcribed to mRNA (see figure 1(A)); 
and bursty gene expression, where the DNA promoter 
successively switches between an active and inactive 
state and transcripts are produced in episodical bursts 
(see figure 1(B)). The steady-state distributions of  
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Abstract
Accessing gene expression at a single-cell level has unraveled often large heterogeneity among 
seemingly homogeneous cells, which remains obscured when using traditional population-based 
approaches. The computational analysis of single-cell transcriptomics data, however, still imposes 
unresolved challenges with respect to normalization, visualization and modeling the data. One 
such issue is differences in cell size, which introduce additional variability into the data and for 
which appropriate normalization techniques are needed. Otherwise, these differences in cell size 
may obscure genuine heterogeneities among cell populations and lead to overdispersed steady-
state distributions of mRNA transcript numbers. We present cgCorrect, a statistical framework to 
correct for differences in cell size that are due to cell growth in single-cell transcriptomics data. We 
derive the probability for the cell-growth-corrected mRNA transcript number given the measured, 
cell size-dependent mRNA transcript number, based on the assumption that the average number of 
transcripts in a cell increases proportionally to the cell’s volume during the cell cycle. cgCorrect can 
be used for both data normalization and to analyze the steady-state distributions used to infer the 
gene expression mechanism. We demonstrate its applicability on both simulated data and single-cell 
quantitative real-time polymerase chain reaction (PCR) data from mouse blood stem and progenitor 
cells (and to quantitative single-cell RNA-sequencing data obtained from mouse embryonic stem 
cells). We show that correcting for differences in cell size affects the interpretation of the data 
obtained by typically performed computational analysis.
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simple gene expression follow the Poisson distribu-
tion (Peccoud et al 1995, Thattai et al 2001) whereas the 
steady-state distribution of bursty gene expression fol-
lows the negative binomial distribution (Raj et al 2006), 
which allows for more variability among the transcript 
numbers.

Besides the stochastic nature of gene expression that 
gives rise to this insightful biological variability, there 
are also other, confounding sources of variability, such 
as technical noise (Ramsköld et al 2012, Brennecke et al 
2013, Buettner et al 2014, Vallejos et al 2015) and cell-
cycle effects. The influence of the latter on the inter-
pretation of gene expression data based on steady-state 
probability distributions has not been investigated so 
far, even though confounding cell-cycle effects appear 
in all proliferating cells (such as stem and progeni-
tor cells). During the cell cycle, the cell grows and the 
number of transcripts within a cell doubles on average  

(Mitichison 2003). Recently, Padovan-Merhar et al 
(2015) found experimental evidence for the compen-
sation of differences in cell size and suggested that the 
concentration of transcripts within a cell is maintained 
constant. This means measuring the abundance of a 
particular transcript in two identical cells with differ-
ent cell sizes will yield different results. The differences 
in cell size cause a broadened, overdispersed steady-
state distribution of transcript numbers, which may be  
mistakenly interpreted in an upstream analysis.

To illustrate this issue, we consider the following 
scenario (illustrated in figure 1(C)): assume we meas-
ure the mRNA transcripts of a particular gene from 
several single cells, which have the same volume. The 
gene of interest is subjected to simple, constitutive gene 
expression and follows the Poisson distribution. In a 
typical experiment, however, cells are not synchro-
nized and single cells with different sizes are pooled 
together (see figure 1(C)) leading to an overdispersed 
steady-state distribution. Performing model selection  
(see section 2) on the steady-state distribution of tran-
script numbers obtained by this type of experiment 
incorrectly favors the negative binomial over the Pois-
son distribution and therefore the gene expression 
mechanism would be interpreted to be bursty.

Here, we introduce cgCorrect (cell growth cor-
rection), a statistical method to correct single-cell 
transcriptomics data for latent differences in cell size. 
cgCorrect can be used for both normalizing single-cell 
gene expression data sets and for parameter estima-
tion and model selection on steady-state distributions 
of gene expression. Our approach assumes that the 
average number of mRNA transcripts within the cell 
increases proportionally to the volume as the cell grows 
during the cell cycle, leaving the concentration of tran-
scripts constant (Padovan-Merhar et al 2015).

We calculate the cell growth correction probabil-
ity, which corrects for differences in transcript num-
bers that are due to differences in cell size. This is the 
conditional probability of finding the corrected, 
cell-growth-independent number of mRNA tran-
scripts of a particular gene, given the measured, cell- 
growth-dependent number of mRNA transcripts of 
this gene. cgCorrect can include information on the cell 
volume, but, more strikingly, it can also be applied if 
there is a total lack of additional information on the cell 
volume. Since the cell volume is typically not observed, 
we marginalize this latent variable out, which corre-
sponds to a blind deconvolution problem.

cgCorrect is based on discrete molecule numbers 
of individual mRNA transcripts in single cells. Discrete 
molecule numbers are essential for the interpretation of 
the underlying mechanism of gene expression (Raj et al 
2009). There are two high throughput transcriptomics 
techniques, qPCR and RNA-seq, which are both able to 
measure discrete molecule numbers in single cells (e.g. 
via digital PCR (Vogelstein et al 1999), droplet digital PCR 
(Hindson et al 2011), direct RNA sequencing (Ozsolak 
et al 2009) or strand-specific single-cell sequencing (Islam 
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Figure 1. Differences in cell size lead to an overdispersed 
mRNA distribution. (A) Simple gene expression 
mechanism. The promoter of a particular gene is always 
actively transcribing its associated DNA to mRNA with 
rate ν. The degradation rate of the mRNA is given by γ. 
(B) Bursty gene expression mechanism. In addition to 
the simple gene expression mechanism, the promoter can 
perform transitions between the active and inactive state 
with rates kon and koff, respectively. (C) A measurement of 
mRNA transcripts from single cells with different cell sizes 
that are pooled together leads to an overdispersed steady-
state distribution. We display the Poisson distribution of 
steady-state transcript numbers for three generic cells with 
different cell sizes (increasing volume from top to bottom) 
that are all subjected to constitutive, simple gene expression. 
By pooling these nine cells together and ignoring their 
different volumes, we obtain an overdispersed steady-state 
distribution of transcript numbers (bottom panel, dashed 
black line) that no longer follows a Poisson distribution. The 
overdispersed distribution may be mistakenly interpreted to 
be due to the bursty gene expression mechanism.
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et al 2011)). If the experiment does not provide discrete 
molecule numbers, the data can be converted to such by 
matching the measured value (e.g. cycle time (ct) values 
in qPCR experiments) to known absolute molecule num-
bers of a particular gene in the same cell type.

Current state-of-the-art normalization techniques to 
account for confounding variability are based on scaling 
the measured number of mRNA transcripts with report-
ers that should correlate with the confounding variabil-
ity. In qPCR where the mRNA transcripts of only a few 
genes are observed, the measured number of transcripts 
is scaled with the abundance of house-keeping gene tran-
scripts from the same single cell (Guo et al 2010, Liviak 
et al 2013, Moignard et al 2013). In RNA-seq experi-
ments where the whole transcriptome is measured, the 
sum of all mRNA transcripts or rank statistics thereof 
can be used as an estimator for the cell size of each single 
cell (Brennecke et al 2013, Glusman et al 2013, Sasagawa 
et al 2013, Vallejos et al 2015). However, scaling does not 
account for the discreteness of mRNA numbers.

Scaling normalization strategies can also be per-
formed based on genes selected from the data, as has 
been pointed out for bulk measurements (Glusman et al 
2013). Whereas this approach is infeasible for single cell 
qPCR, it is applicable for single-cell RNA-seq data since 
there the whole genome is measured. For instance, it 
has been shown that the covariance of cell-cycle-related 
genes can be used to correct for specific gene expression 
during cell-cycle phases (Buettner et al 2015). However, 
this is not the focus of this work, where we introduce a 
correction scheme that is based on a global characteristic 
of each sample, namely the cell volume, rather than on 
the correlations among the expression of different genes.

2. Methods

2.1. Cell-growth correction probability
Measuring the abundance of a particular mRNA in a 
single cell during its cell cycle yields a discrete transcript 
number m, which is generally greater than the transcript 

number m0 that we would find at the beginning of the 
cell’s cycle (τ = 0). During the cell cycle, the size of the 
cell increases from its initial volume ( )τ= =V V 00  (at 
the beginning of its cell cycle) to ( )τ>V 0 . Cell cycle and 
cell growth are intimately related (Mir et al 2011, Kafri 
et al 2013) and the number of mRNA transcripts within 
the cell increases as the cell volume increases. Therefore, 
we assume the concentration of mRNA transcripts 
m/V to remain constant during the cell cycle. To render 
the numbers of mRNA transcripts from single cells 
with different cell sizes comparable, we introduce the 
volume-dependent cell growth correction probability 

( )|P m m V,cgc 0 . This is the probability of finding m0 
mRNA transcripts within a cell’s initial volume V0 given 
a measured number of mRNA transcripts m within 
a cell’s total volume V. The volume-dependent cell 
growth correction probability is described by a binomial 
distribution

( ) ( / )| = |P m m V m m V V, Bi , ,cgc 0 0 0 (1)

since this is the discrete probability distribution for 
finding m0 transcripts inside the initial volume V0 given 
the number of transcripts m present in the total volume 
V with success rate p  =  V0/V (see figure 2(A)). In the 
limit of high mRNA transcript numbers, the binomial 
distribution tends to a normal distribution. In this 
limit, cell growth correction corresponds to scaling 
the measured number of mRNA transcripts m with 
the normalized volume of the cell V0/V. Therefore, the 
volume-dependent cell growth correction probability, 
equation (1), contains the commonly performed 
scaling correction in the limit of high mRNA transcript 
numbers.

If the single cell’s volume V and its initial volume V0 
are measured, we can evaluate ( )|P m m V,cgc 0  directly. 
In many experimental applications (such as qPCR), 
however, measuring each single cell’s volume is not per-
formed or impossible. In this case, we treat the volume 
as a latent variable and marginalize over it to obtain the 
cell growth correction probability
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Figure 2. Cell growth model and correction probability. (A) During the cell cycle, a cell will increase its initial volume V0 to V  >  V0. 
We assume the cell to increase its molecular content accordingly, keeping the concentration of mRNA transcripts constant. Then 
the number of mRNA transcripts m measured later in the cell cycle (τ> 0) is greater than the number of mRNA transcripts m0 at 
the beginning of the cell cycle (τ = 0). To render measured mRNA transcript numbers m from single cells at different time points 

in their cell cycle comparable, we calculate the cell-growth-correction probability ( )|P m m V,cgc 0 . This is the probability of finding 
m0 transcripts within the cell’s initial volume V0 (light gray area) given the cell’s current volume V and the measured number of 

transcripts m. (B) Cell-growth-correction probability ( )|P m mcgc 0  obtained after marginalizing over a linear growth-model (see text 
and supplementary figure S1) for several values of measured mRNA transcript numbers m. Notice that ( )| =P m m 0cgc 0  for m0  >  m 
resulting in the displayed discontinuities.
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( ) ( ) ( )∫| = |P P Pm m V m m V Vd , .cgc 0 cgc 0 (2)

To evaluate this, we require the probability distribution 
of the cells’ volumes ( )P V  (i.e. the volume distribution 
over the cell population). This may be determined 
experimentally or we can use generative models to 
simulate ( )P V  computationally. In the following 
we used a linear growth model to generate ( )P V  
(see supplementary material S1 (stacks.iop.org/
PhysBio/14/036001/mmedia)). We evaluated the effect 
of different linear growth models in supplementary 
figure S2. The cell growth correction probability 

( )|P m mcgc 0  for linear growth is displayed in figure 2(B) 
for several values of observed molecule numbers m.

2.2. cgCorrect for data normalization
The cell growth correction probability ( )|P m mcgc 0  
can be used to correct measured mRNA transcript 
numbers m directly to cell-growth-independent mRNA 
transcript numbers ∗m0 by determining its mode

( )= |∗ Pm m marg max .
m

0 cgc 0
0

 (3)

For instance, measuring m  =  15 transcript numbers 
in a single cell, the most likely value for the transcript 
number, which we corrected for differences in cell 
size is =∗m 110  (see the blue line in figure 2(B)). 
This approach offers rank-conserving, one-to-one 
correspondence between measured and cell-growth-
corrected mRNA transcript numbers, as needed for 
normalization of a data set. When using point estimates 
(such as the mode of a probability distribution), many 
alternative mRNA transcript numbers m0 with non-
negligible probability are ignored (see figure 2(B)). 
However, we can also exploit the full distribution of 
the correction probability ( )|P m mcgc 0 : The number of 
mRNA transcripts of a particular gene is measured in 
many single cells. This yields a set of measured mRNA 
transcript numbers, which we use to obtain the steady-
state probability distribution ( )P m  of measured mRNA 
transcript numbers of this gene. We then sum over 
the correction probability of all measured transcript 
numbers m multiplied by the steady-state probability 
distribution to gain the cell-growth-corrected steady-
state distribution.

( ) ( ) ( )∑= |P P Pm m m m .
m

cgc 0 cgc 0 (4)

2.3. cgCorrect for steady-state distribution analysis
The correction probability can also be used to account 
for differences in cell size when performing steady-state 
distribution analysis of the transcript numbers of a 
particular gene. Given the mRNA transcript numbers m 
of a gene from several single cells, the likelihood ( )θ|P m  
for the kinetic parameters θ of the underlying steady-
state distribution can be calculated (Peccoud et al 1995, 
Raj et al 2006, Shahrezaei et al 2008) (see supplementary 
material S2 for a summary of  the analytical  
steady-state distributions for the simple and bursty 

gene expression mechanism). Neglecting differences in 
cell size, however, can lead to incorrect identification of 
the underlying steady-state distribution and its kinetic 
parameters (as already demonstrated in figure 1(C)) 
and has not been considered within this context so far.

Using the correction probability, it is straightfor-
ward to incorporate cell growth correction into the 
existing framework of commonly performed steady-
state distribution analysis,

( ) ( ) ( )∑θ θ| = | |P P Pm m m m ,
m

cgc cgc 0 0

0
 (5)

allowing us to obtain the likelihood for the measured 
mRNA transcript numbers m from cells that differ 
in cell size given the parameters θ of the steady-state 
distribution under consideration. To obtain ( )|P m mcgc 0  
from the correction probability ( )|P m mcgc 0 , we use 
Bayes’ theorem with a uniform prior on the measured 
transcript numbers m.

For the simple gene expression mechanism, the 
steady-state distribution is given by a Poisson dis-
tribution with one kinetic parameter: the effective 
transcription rate /λ ν γ= , which corresponds to the 
mean transcript number among all cells. For bursty 
gene expression, the steady-state distribution is given 
by a negative binomial distribution with two kinetic 
parameters that allow for overdispersion: the burst 
size /ξ ν= koff  and the burst frequency /κ γ= kon on   
(see  figure 1 and supplementary material S2 for details 
on the kinetic parameters). The model parameters can 
then be found via maximum-likelihood estimation 

(MLE) ˆ ( )θ θ= |θP marg max cgc . We evaluate if the 

parameters of both steady-state distributions are iden-

tifiable and therefore capable of describing the data by 
calculating their profile likelihoods (Raue et al 2009).

If both parameters of both distributions are identi-
fiable, we perform model selection using the Bayesian 
information criterion (BIC) (Jeffreys 1961, Kass et al 
1995) to select between the Poisson and the negative 
binomial distribution. Model selection based on the 
BIC provides a good trade-off between goodness of 
fit and model complexity; by penalizing models with 
more parameters it counteracts overfitting the data. In 
case this model selection is inconclusive ( ⩽∆BIC 10), 
we call the underlying steady-state distribution incon-
clusive due to model selection (see supplementary mat-
erial S3 for details on parameter estimation and model 
selection). As the BIC does not take into account the 
technical noise level of the data, we only perform model 
selection for those genes for which the biological varia-
tion significantly exceeds technical noise.

2.4. cgCorrect and technical noise correction
In general, cell growth correction can also be combined 
with technical noise correction. To incorporate 
technical noise correction into the likelihood, 
equation (5), the technical noise has to be measured in 
the experiment (e.g. with external spike-in controls) 
and the probability distribution of the technical noise 

Phys. Biol. 14 (2017) 036001
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( )|P m mtn t  has to be determined experimentally. This is 
the conditional probability for the number of mRNA 
transcripts m that would be measured without technical 
noise given the number of mRNA transcripts mt that 
are measured and are subjected to technical noise. The 
likelihood of cell growth correction and technical noise 
correction can then be calculated as

( ) ( ) ( )∑θ θ| = | |P P Pm m m m .
m

cgc,tn t tn t cgc (6)

To obtain ( )|P m mtn t  from the probability distribution 
of the technical noise ( )|P m mtn t , Bayes’ theorem can be 
applied with a uniform prior on the measured mRNA 
transcript numbers with technical noise mt.

If the level of technical noise is higher than the 
observed level of variability, it is not possible to distin-
guish between biological variability and variability due 
to technical noise (Brennecke et al 2013, Vallejos et al 
2015). To assess if the level of observed variability signif-
icantly exceeds the level of technical noise we perform 
an additional test. For each measured gene, we com-
putationally sample transcript measurements from the 
measured distribution of technical noise for as many 
cells as were measured in the experiment and calculate 
their coefficient of variation (CV). We then test for the 
null hypothesis that the CV of a measured gene is drawn 
from the sampled distributions of CVs. Only if the null 
hypothesis is rejected based on a p-value ⩽p 0.01 we 
use the gene for further analysis with cgCorrect and 
call it inconclusive due to technical noise otherwise. To  

correct for multiple testing we used the false discovery 
rate (Benjamini et al 1995).

This test ensures that only genes that have data with 
a high signal-to-noise ratio enter the subsequent analy-
sis where we estimate parameters and perform model 
selection on the mRNA steady-state distributions.

3. Results

3.1. cgCorrect on simulated mRNA data leads to 
correct normalization and identification of the 
steady-state distribution
To validate cgCorrect, we applied it to mRNA 
transcript numbers that we simulated from the 
Poisson distribution (corresponding to the simple 
gene expression mechanism). We generated mRNA 
transcript numbers m of 100 single cells with 
different cell sizes (see supplementary figure S3 and 
supplementary material S4 for details on the simulation 
of the data).

Without differences in cell size, the mRNA 
transcript numbers would be Poisson-distributed 

( )λ∼ |m mPois0 0 0  where the average number of mRNA 
transcripts per cell ⟨ ⟩ λ=m0 0 equals the effective tran-
scription rate (see red line in figures 1(C) and 3(A) for 
an example where λ = 100 ). Due to differences in cell 
size, the steady-state distribution of measured mRNA 
transcript numbers ( )P m  is shifted towards higher 
transcript numbers (green line in figure 3(A)). We 

Figure 3. Cell growth correction of simulated gene expression data leads to the correct identification of parameters and the 
underlying steady-state distribution. (A) Steady-state probability distribution of the measured mRNA transcript numbers m (green 
line) and the cell growth corrected mRNA transcript numbers m0 (blue line). The underlying steady-state distribution of transcript 
numbers in the absence of differences in cell size is given by a Poisson distribution with an effective transcription rate λ = 100  
(red line). The cell growth-corrected probability distribution resembles the Poisson distribution closer than the house-keeping-
normalized distribution (yellow line). (B) Estimated parameters and identified steady-state distributions for cell growth-corrected, 
house-keeping-normalized and measured mRNA transcript numbers. For house-keeping normalization and cell growth correction 
the steady-state distribution is best described by the Poisson distribution and therefore their gene expression mechanism would be 
interpreted to be simple; for the measured data, the steady-state distribution is best described by the negative binomial distribution 
and therefore the gene expression mechanism would be interpreted to be bursty. The Poisson distribution is governed by one 
parameter: the effective transcription rate /λ ν γ=0 . The negative binomial distribution is governed by two parameters: the burst 
size /ξ ν= koff and the burst frequency /κ γ= kon on . Only cell growth correction is in the range of the true parameter (red x). Error 
bars indicate 0.99 confidence intervals of the estimated parameters. (C) To explore the parameter range, we performed parameter 
estimation and model selection for several values of the effective transcription rate λ0. We find that cell growth correction (blue line) 
is capable of correctly inferring the true parameter (red dashed line) for the whole parameter range whereas inferring the parameter 
on the measured (green line) and the house-keeping-normalized mRNA transcript numbers (yellow line) fails. (D) Ratio of steady-
state distributions that were identified to be Poisson for 10 independently simulated data sets. Model selection (based on the BIC) 
on the cell growth-corrected data (blue line) identifies the true steady-state distribution correctly over the whole parameter range, in 
contrast to model selection on the measured data (green line) and on the house-keeping-normalized data (yellow line).

Phys. Biol. 14 (2017) 036001
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can  correct for latent differences in cell size by calcu-
lating the corrected steady-state distribution of tran-
script numbers ( )P mcgc 0 , equation (4) (blue line in 
figure 3(A)). Since we ignored the cell volumes by mar-
ginalizing the volume out (see equation (2)) the cor-
rected steady-state distribution of transcript numbers 
does not entirely coincide with the Poisson  distribution 
but has slightly larger tails. To compare cgCorrect with 
conventional house-keeping normalization, we scaled 
the measured number of transcripts m with the tran-
script number of an additionally simulated house-
keeping gene mhk (see supplementary material S6 
for details on house-keeping normalization), which 
we chose to have an average number of transcripts 

=m 1000,hk  (yellow line in figure 3(A)). Visual com-
parison of the two normalization strategies shows that 
cell growth correction for normalization outperforms 
house-keeping normalization for this data set.

Model selection based on steady-state distributions 
reports very strong evidence that the measured steady-
state distribution of mRNA transcript numbers can be 
described by the negative binomial rather than by the 
Poisson distribution and would therefore mistakenly be 
interpreted to originate from the bursty gene expression 
mechanism. When correcting for cell growth, model 
selection correctly identifies the steady-state distribu-
tion to be Poisson (see supplementary material S3 for 
details on parameter estimation and model selection). 
By performing parameter estimation, the true effec-
tive transcription rate can only be inferred when using 
cgCorrect (see figure 3(B)), confirming that cgCorrect 
outperforms house-keeping normalization in recover-
ing the true underlying distribution. To test cgCorrect 
for a broad parameter range, we simulated additional 
mRNA data sets for several average numbers of mRNA 
transcripts per cell (figures 3(C) and (D)): only when 
we apply cgCorrect are we able to infer the underly-
ing steady-state distribution and its parameters for the 
whole parameter range correctly.

Moreover, we verified that after applying cgCorrect 
to transcript numbers that were simulated from the 
negative binomial distribution, the inferred steady-
state distribution is negative binomial. To this end, we 
simulated mRNA transcript numbers from the nega-
tive binomial distribution ( )ξ κ∼ |m mNB ,0 0 on  for a 
wide range of average numbers of mRNA transcripts 
⟨ ⟩ ξ κ= ⋅m0 on. When applying cgCorrect we found 
that model selection for ⟩ ⩾m 30  correctly identifies 
the underlying steady-state distribution to be negative 
binomial. For very small average numbers of mRNA 
transcripts ⟨ ⟩ ⩽m 20  the obtained distribution of tran-
script numbers is very narrow and we find cases (20% 
for ⟨ ⟩ =m 20  and 90% for ⟨ ⟩ =m 10 ) where the underly-
ing steady-state distribution is identified to be Poisson 
(see supplementary figure S4). In summary, cgCorrect 
is capable of both successfully inferring the underlying 
system parameters from the simulated, cell growth-
dependent transcript numbers and correctly specify-
ing the steady-state distribution of transcript numbers.

When analyzing the steady-state distributions 
of genes, one typically assumes that all cells of a par-
ticular cell type share the same kinetic parameters. This 
assumption does not necessarily reflect biological real-
ity. To explore the effect of neglecting this assumption, 
we performed simulations where we varied the effective 
transcription rate of a gene simulated from the simple 
gene expression mechanism among all cells (see sup-
plementary figure S5). Since the cells’ effective tran-
scription rates differ among each other, the simulated 
steady-state distribution may exhibit overdispersion 
and model selection may identify the steady-state dis-
tributions as being negative binomial.

3.2. cgCorrect on qPCR data facilitates identifying 
distinct cell types and alters the interpretation of the 
gene expression mechanism based on a steady-state 
distribution analysis
To demonstrate the applicability of cgCorrect on 
single-cell qPCR data, we applied cgCorrect to a 
recently published data set of hematopoietic stem and 
progenitor (HSP) cells (Moignard et al 2013). In this 
experiment, 18 transcripts of key hematopoietic genes 
(and six additional transcripts of house-keeping genes) 
were measured in 597 single cells of five different HSP 
cell types. To transform the measured data from ct-
values into discrete numbers of mRNA transcript we 
use results from digital qPCR (Warren et al 2006), where 
the discrete number of one of the 18 transcripts, PU.1, 
was measured for hematopoietic stem cells (HSCs), 
common lymphoid progenitors (CLPs) and common 
myeloid progenitors (CMPs), all of them found among 
the HSPs (see supplementary material S6 for details on 
the data pre-processing).

Since in this experiment neither technical noise 
nor information about the cells’ volume was measured 
we applied cgCorrect without technical noise correc-
tion and with marginalized volume (equation (2)). To 
compare cgCorrect with conventional house-keeping 
 normalization, we normalized the data set with the 
house-keeping genes Ubc and Polr2a as described by 
Moignard et al (2013). cgCorrect is more suitable to 
resolve distinct cell types than house-keeping normali-
zation, as can be visualized by PCA (see figure 4). The 
nearest-neighbor error of finding two differing cell-
types next to each other is decreased by 12.1%.

To further illustrate the effect of cgCorrect, we 
focus on one particular transcript (PU.1) in one cell 
type (CLP) (see figure 5(A)). We analyze the Fano  
factor /σ μ=F 2  defined as the ratio between the vari-
ance σ2 and the mean μ of the steady-state distribution 
of mRNA transcript numbers. The Fano factor is a key 
parameter to quantify deviations from a Poisson distri-
bution (Munsky et al 2012) and it equals 1 if the values 
are Poisson-distributed. cgCorrect alters the Fano fac-
tor from ( ) =F m 2.29 for the measured PU.1 transcript 
numbers to ( ) =∗F m 1.320 . Parameter estimation for 
the measured and the corrected transcript numbers is 
depicted in figure 5(B). cgCorrect alters the identified 
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steady-state distribution of PU.1 in CLPs from follow-
ing the overdispersed negative binomial distribution 
(in case of no correction) to Poisson.

Applying cgCorrect to all measured mRNA tran-
scripts, we find that the steady-state distributions of 
18 out of 54 (∼33.0%) gene/cell type combinations 
are identified to be Poisson and would be interpreted 
to originate from the simple rather than the bursty 
gene expression mechanism, whereas this is the case 
for only three out of 54 (∼5.6%) without cgCorrect  
(see  figure 5(C)). A corresponding analysis with 
house-keeping normalization yields that the steady-
state distribution of only two out of 54 gene/cell 
type  combinations follow the Poisson distribution  
(see supplementary figure S6).

3.3. cgCorrect on RNA-seq data decreases 
variability and the number of genes with an 
overdispersed steady-state distribution
Finally, we applied cgCorrect to a single-cell RNA-seq 
data set (Islam et al 2014) of 41 cells, where 9022 different 
mRNA transcripts were measured. By using unique 
molecular identifiers (Kivioja et al 2011), it was possible 
to measure the absolute molecule number of each mRNA 
within each single cell. Moreover, (Islam et al 2014) 

determined the technical noise with external spike-in 
control molecules to follow a lossy Poisson distribution—a 
Poisson distribution with an additional loss factor f  =  0.2, 

( ) ( )| = | ⋅P m m m f mPoistn t t . Here mt indicates the 
measured number of mRNA transcripts that are subjected 
to technical noise and m describes the measured number 
of mRNA transcripts if there was no technical noise  
(i.e. the actual number of transcripts in the cell).

We perform steady-state distribution analysis 
of mRNA transcript numbers of the observed genes 
and identify the underlying distribution using model 
selection based on the BIC. In total, 3227 genes sig-
nificantly ( ⩽p 0.01) exceed the limit of technical noise 
(see section 2) and are further analyzed. In figure 6 the 
coefficient of variation /σ μ=CV  of the mRNA tran-
script numbers is displayed as a function of the average 
mRNA transcript numbers for all measured genes, for 
the cell growth- and technical noise-corrected (A), for 
the (only) technical noise-corrected (B) and (C) the 
uncorrected data set. We indicate the technical noise 
given by the lossy Poisson distribution as a black solid 
line. Moreover, we display the limit of Poisson gene 
expression as a black dashed line.

We find that only a small number of genes, 396, 
display an overdispersed steady-state distribution 

Figure 4. Principal component analysis (PCA) of single-cell qPCR data resolves hematopoietic sub-populations better when 
using cell growth correction. (A) PCA of cell growth corrected and (B) PCA of house-keeping-normalized single-cell qPCR data 
of 18 transcripts. The nearest-neighbor error ε decreases by 12.1% when using cell growth correction compared to house-keeping 
normalization.
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when the data is corrected for technical noise. After 
applying cgCorrect, the number of genes with an over-
dispersed steady-state distribution is reduced to 85  
(see figures 6(A) and (D)). The genes with an overdis-
persed steady-state distribution after cell growth cor-
rection are a subset of the genes with an overdispersed 
steady-state distribution if only technical noise is cor-
rected (see supplementary tables S1 and S2). Without 
correction for neither technical noise nor cell-cycle 
effects, 3222 of these genes display an overdispersed 
steady-state distribution (see figures 6(C) and (E)).

The steady-state distribution analysis yields an 
increased proportion of overdispersed genes with a high 
expression number (>1000 average mRNA count). 
However, applying cgCorrect to the data decreases this 
correlation (see supplementary  figure S7). When the 
data is not corrected, almost all genes exhibit overdis-
persion according to the steady-state distribution anal-
ysis. When correcting only for technical noise, all genes 
with an average mRNA count  >1000 are identified 
to exhibit an overdispersed steady-state  distribution. 

When applying cgCorrect with technical noise correc-
tion, the steady-state distribution analysis also iden-
tifies highly expressed genes that follow the Poisson 
 distribution.

Since all mRNA transcripts are measured for each 
single cell, we can also use this additional informa-
tion for cell growth correction. In this case, we can use 
the total number of mRNA transcripts within a single 
cell = ∑M m as an estimator for the cell’s volume V. 
Since the initial volume of the cells V0 is unknown, we 
choose the minimal total number of mRNA transcripts 
among all single cells M0 as an estimator for the initial 
volume and therefore set / /=V V M M0 0 . We can then 
apply the volume-dependent correction probability, 
equation (1), directly without marginalizing over the 
volume and find that only 32 of the genes display an 
overdispersed steady-state distribution of transcript 
numbers (see supplementary figure S8A and C and sup-
plementary table S3). For comparison, we also applied 
the scaling correction with the total number of mRNA 
transcripts (Glusman et al 2013) (see supplementary 

Figure 6. Cell growth correction decreases variability in single-cell RNA-seq data and reduces the number of genes with an 
overdispersed steady-state distribution from 396 to 85. (A) Scatter plot of the average mRNA transcript numbers versus the 
coefficient of variation (CV) of all genes in the RNA-seq data set for the cell growth-corrected and technical noise-corrected; 
(B) only technical noise-corrected and (C) without any correction. Genes with an overdispersed steady-state distribution (red 
triangles) that would be interpreted to originate from the bursty gene expression mechanism and genes with a Poisson steady-state 
distribution (green square) that would be interpreted to originate from the simple gene expression mechanism are highlighted. 
Moreover, we indicate genes with an inconclusive mechanism that is due to model selection (yellow diamond) and due to technical 
noise (grey circles). The error model for the technical noise, given by the lossy Poisson distribution, is depicted as a solid black line. 
The limit of Poisson statistics (where the Fano factor =F 1) is indicated with a dashed black line. Overall, we report a shift of the CV 
towards the Poisson limit when correcting for cell growth. (D) Bar chart of the different identified steady-state distributions from 
the cell growth and technical noise corrected data; (E) only technical noise-corrected data and (F) uncorrected data. We grouped 
the genes into logarithmically growing bins. With cell growth correction, in total 396 genes are characterized by an overdispersed 
steady-state distribution (red area, see supplementary table S2) whereas this is the case for 85 genes (see supplementary table S1) 
when ignoring differences in cell size and correcting for technical noise only. The majority of the genes’ steady-state distributions 
is Poisson and would be interpreted to originate from the simple gene expression mechanism (green area) or the analysis is 
inconclusive (yellow and gray area).
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figure S8B and D), which is contained within the limit 
of large mRNA transcript numbers of the volume-
dependent correction probability (see section 2). With 
the choice of M0, however, we find a four-fold change 
among the normalized total number of mRNA tran-
scripts M/M0 (see supplementary figure S8E) whereas 
we would expect cell growth to give rise only to a two-
fold change. This indicates that using the total number 
of mRNA transcripts as an estimator for the volume 
might reduce too much variability.

4. Discussion

In this work, we present cgCorrect, a statistical method 
for the correction of latent differences in cell size. 
We show that differences in cell size may lead to an 
overdispersed steady-state distribution of transcript 
numbers, which may be misleadingly interpreted in 
a computational analysis. cgCorrect can be used for 
data normalization before visualization as well as for 
steady-state distribution analysis of the data. It can 
incorporate information about the cell size on different 
levels: (i) if the size of each cell or an estimator for the 
size is known, we can use this information to obtain the 
volume-dependent cell growth correction probability. 
(ii) If only the probability distribution of the cell 
volume among the whole population is known, we can 
use this distribution to marginalize the volume out. 
(iii) If there is a total lack of information about the cell 
volume (as is typically the case for qPCR data including 
the qPCR data set we analyzed), we can use generative 
growth models to simulate the cell volume distribution 
computationally and use this for marginalization. 
Moreover, we showed how cgCorrect can be combined 
with the correction of technical noise, if the technical 
noise of the experiment is measured (e.g. via external 
spike-in controls).

We validated cgCorrect on simulated mRNA data, 
where we could show that it is only possible to infer the 
true steady-state distribution and its parameters when 
cgCorrect was applied. To show that cgCorrect is gen-
erally applicable and independent of the experimental 
setup that was used to measure the data, it was applied 
on transcriptomics data from qPCR and from RNA-
seq. Analyzing steady-state distributions of transcript 
numbers from a qPCR data set, we found that cgCor-
rect changed the identified steady-state distribution in 
27.4% of the measured cell/gene combinations in HSPs 
from an overdispersed negative binomial distribution 
to the Poisson distribution. Moreover, we could show 
that cgCorrect reduced the number of genes with an 
overdispersed steady-state distribution in mouse ESCs 
measured by single-cell RNA-seq from 12.3% to 2.6%. 
For this data, we could correct for both variability due to 
technical noise and due to differences in cell size.

In contrast to conventional normalization tech-
niques, cgCorrect takes the discreteness of mRNA 
transcript numbers into account. For the analyzed 
qPCR data set, we showed that cgCorrect outperforms 

traditional house-keeping gene normalization result-
ing in a better separation of known cell types in PCA. 
House-keeping genes underlie stochastic gene expres-
sion themselves and therefore may not be suitable as 
reliable reporters for cell size.

In previous analyses, the steady-state distribution of 
a gene was used to interpret its gene expression mech-
anism (Raj et al 2006, Shahrezaei et al 2008, Larson 2011, 
Kim et al 2013). The Poisson steady-state distribution 
corresponds to the simple gene expression mechanism 
and the negative binomial distribution corresponds to 
the bursty gene expression mechanism. However, there 
are several assumptions involved that are important to 
consider for this interpretation.

First, it is assumed that the reaction rates that gov-
ern the gene expression mechanism remain constant 
during the cell cycle. Here, we do not consider tran-
scriptional changes during the cell cycle that may alter 
the reaction rates and have been reported to affect the 
measured number of mRNA transcripts (Bertoli et al 
2013, Zopf et al 2013). In order to assess the effect of 
cell cycle-specific gene expression, we modeled tran-
scriptional changes of the reaction rates by an activa-
tion function reaching its maximum in the S phase of 
the cell cycle. The resulting steady-state distribution is 
identified to follow the overdispersed, negative bino-
mial distribution and would therefore be interpreted to 
originate from the bursty gene expression mechanism 
both with and without applying cgCorrect (see supple-
mentary figure S9). Cell cycle-specific gene expression 
corresponds to a highly orchestrated on and off switch-
ing of the promoter region. For a sample of unsyn-
chronized cells that are pooled together, however, the 
resulting steady-state distribution of mRNA transcript 
numbers exhibits overdispersion.

The second assumption that is made when ana-
lyzing steady-state distribution of mRNA transcript 
numbers is that the kinetic parameters that govern 
gene expression are equal for all cells of the same cell 
type (Thattai et al 2001, Raj et al 2008, Shahrezaei et al 
2008, Kim et al 2013), which does not necessarily reflect 
biological reality. We tested the effect on the steady-state 
distribution analysis when neglecting this assumption 
by simulating mRNA transcript numbers from a cell 
population with varying transcription rates expressing 
mRNAs with the simple mechanism and showed that 
this effect can also lead to overdispersed steady-state 
distributions (see supplementary figure S5). A final 
conclusion on the gene expression mechanism cannot 
be made based on steady-state distributions of gene 
expression alone but needs techniques that allow for 
spatial and temporal resolution such as fluorescence in 
situ hybridization (FiSH) (Raj et al 2006, Hocine et al 
2012, Battich et al 2013).

Finally, we made assumptions concerning the cell 
growth parameters for the generative growth model 
that we used to obtain the correction probability. 
The question whether mammalian cells grow linearly 
or exponentially is still under debate (Cooper 2004, 
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 Popescu et al 2014). Here, we used a linear growth 
model, which has been reported to be appropriate for 
rat Schwann cells (Conlon et al 2003) to computation-
ally simulate the distribution of cell volumes. Moreover, 
we performed a sensitivity analysis (see supplementary 
figure S2) that investigates the effect of different linear 
cell growth scenarios on the correction probability and 
indicates that our findings are robust with respect to 
the growth scenario. As already discussed, cgCorrect 
does not rely on a generative growth model as it allows 
inclusion of additional information on either each sin-
gle cell’s volume or the distribution of the cells’ volume, 
if they are measured.

To summarize, we identified differences in cell size 
of proliferating cells to be a latent cause of confound-
ing variability. We introduced cgCorrect, a statistical 
method that is capable of correcting for this confound-
ing cell-cycle effect in gene expression data, which can 
be used for data normalization, parameter estimation 
and model selection. We validated cgCorrect on a simu-
lated data set and applied it to single-cell qPCR gene 
expression data (Moignard et al 2013) from mouse 
HSPs. Finally, we demonstrated the genome-wide 
applicability of our approach to single-cell RNA-seq 
data obtained from mouse ESCs (Islam et al 2014).
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