1 **Exposure to ambient air pollutionand blood lipids in adults:the 33 Communities Chinese** 2 **Health Study**

21 ^fDivision of Geriatrics and Nutritional Science, School of Medicine, Washington

***** 43 **Address correspondence to:**

yuming.guo@monash.edu

ABSTRACT

 *Background***:**Little information exists on the lipidemic effects of air pollution, particularly in developing countries. We aimed toinvestigate the associations oflong-term exposure to ambient air pollutants with lipid levels and dyslipidemias in China.

 *Methods***:** In 2009, a total of 15,477 participants aged 18-74 years were recruited from the 33 Communities Chinese Health Study conducted in three Northeastern China cities.Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C) were measured in participants' blood specimens.Three year (2006-08) average air pollution concentrations were assessed using data 62 from 33 communities (particles with diameters \leq 1.0 μ m (PM₁) and \leq 2.5 μ m (PM_{2.5}) predicted 63 using a spatial statistical model) or 11 air monitoring stations (particles with diameters ≤ 10 μ m (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide (NO₂), and ozone (O₃)). Associations were evaluated by two-level logistic and generalized linearregression models.

 *Results***:** We detected many significant associations between exposure to air pollutants 67 (especially for PM_1 and $PM_{2,5}$) and blood lipid levels. Most of the associations suggested 68 deleterious effects on blood lipid markers (e.g., a 10 μ g/m³ increase in PM₁ was associated with1.6% (95% confidence interval (CI): 1.1, 2.0), 2.9% (95% CI: -3.3, 9.3), and 3.2% (95% CI: 2.6, 3.9) higher levels of TC, TG, and LDL-C, respectively, but 1.4% (95% CI: -1.8, -0.9) 71 lower HDL-C levels), although beneficial associations were found for O_3 . In analysis with dyslipidemias, all the observed associations suggested deleterious lipidemic effects of air 73 pollutants, and no significant beneficial association was observed for O_3 . Stratified analyses showed that the associations were stronger in overweight or obese participants; sex and

- agemodified the associations, but the pattern of effects was mixed.
- *Conclusions***:**Long-term ambient air pollutionwas associated with both altered lipid profiles
- and dyslipidemias, especially among overweight or obese participants.
- **Key words:**Particulate matter,Gaseous pollutants,Dyslipidemia, Lipids, Cross-sectional study

79 **Abbreviations**

80 BMI, body mass index; CI, confidence interval; CVD, cardiovascular diseases; HDL-C, 81 high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NO₂, 82 nitrogen dioxide; OR, odds ratio; O₃, ozone; PM₁, particles with diameters
subseteq l.0 μ m; PM_{2.5}, 83 particles with diameters ≤ 2.5 µm; PM₁₀, particles with diameters ≤ 10 µm; PM_{2.5-10}, particles 84 with diametersranging from 2.5 to 10 µm; SEPA, the State Environmental Protection 85 Administration of China; SO₂, sulfur dioxide; TC, total cholesterol; TG, triglycerides; 86 33CCHS, the 33 Chinese Community Health Study.

1. Introduction

 Cardiovascular diseases(CVD)are responsible for approximately 31% of deaths worldwide (World Health Organization, 2017) and the results of numerous epidemiological studies have supported a causal relation for long-term air pollution exposure withCVD(Brooket al., 2010; Bourdrel et al., 2017).Inhaled air pollutants triggerinflammation, oxidative stress, autonomic imbalance, and epigenetic changes (Brook et al., 2010; Bourdrel et al., 2017).These reactions have been linked to several CVD risk factors, includingatherosclerosis, hypertension, diabetes mellitus, and dyslipidemia(Brook et al., 2010;Thiering and Heinrich, 2015; Rajagopalan and Brook, 2012; Yang et al., 2018). For example, higher levels of particulate matter (PM) have been linked to increased systemic inflammation (Brook et al. 2010), which can lead to adverse lipid metabolism and lipid oxidation (Chen et al., 2013). The relationshipsofair pollution with hypertension and diabetes mellitus have been demonstrated bymany epidemiological and experimental studies(Brook et al., 2010; Rajagopalan and Brook, 2012; Thiering and Heinrich, 2015), including our own(Dong et al., 2013; Yang et al., 2017; Yang et al., 2018).

 Dyslipidemia, characterized by hypercholesterolemia, hypertriglyceridemia, hypoalphalipoproteinemia, and/orhyperbetalipoproteinemia, is the foremost cause of atherosclerosis(Stensland-Bugge et al., 2000) and is inextricably relatedto the development of CVD(Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults,2001).The global prevalence of dyslipidemias is high and increasing (Cahalin et al., 2014). For example, a 2013 report from the American Heart Association suggested that the prevalences of hypercholesterolemia, hypoalphalipoproteinemia, and hyperbetalipoproteinemiain American adults were 43.4%, 21.8%, and 31.1%, respectively

 (Go et al., 2013).Several previous epidemiological studies exploredrelationships between ambient air pollutant exposure and dyslipidemia and blood lipid levels, yet the results were inconsistent (Bell et al., 2017; Bind et al., 2016; Cai et al., 2017; Chuang et al., 2011; Jiang et al., 2016; Poursafa et al., 2014; Shanley et al., 2016; Sørensen et al., 2015;Wallwork et al., 2017; Yeatts et al., 2007; Yitshak Sade et al., 2016) (see Table S1). Additionally, moststudies investigated effects among specific populations, including asthmatics(Yeatts et al., 2007), 116 patients with chronic diseases (Yitshak Sade et al., 2016), the elderly (Bind et al., 2016; Chuang et al., 2011; Sørensen et al., 2015; Wallwork et al., 2017), and adolescents (Poursafa et al., 2014).However, the lipidemiceffects of air pollution exposurewere rarely evaluated in general populations. Moreover, previous studies were mostly conducted in high-income nations or regions(Bell et al., 2017; Bind et al., 2016; Chuang et al., 2011; Shanley et al., 2016; Sørensen et al., 2015; Wallwork et al., 2017; Yeatts et al., 2007; Yitshak Sade et al., 2016). There are few data available to characterize the risks of air pollution exposure on lipid levels and dyslipidemia in low-income countries.

 In recent decades,China has experienced a gradual increase in the prevalence of dyslipidemia, although itremains lower than that in many developed countries(Pan et al., 2016). For instance, the 2002 China National Nutrition and Health Survey reported that the prevalences of hypercholesterolemia, hyperbetalipoproteinemia, hypoalphalipoproteinemia, and hypertriglyceridemiawere 2.9%, 2.5%, 7.4%, and 11.9%, respectively (Zhao, 2008), while the corresponding 2013-2014 China Chronic Disease and Risk Factor Surveillance prevalenceswere 6.9%, 8.1%, 20.4%, and 13.8% (Zhang et al. 2018). Simultaneously, air pollution has emerged as a severe environmental problem in China(Guan et al., 2016; Rohde

 and Muller, 2015). Given temporal increases inboth ambient air pollution and the prevalence of dyslipidemia, and the scarcity of data, it is of significant public health importance to explore the relationship between the two. To begin to address the data gap, this study examinedassociations betweenlong-term residential ambient air pollutionandblood lipid levels in a large community-based sample of urban adultsparticipating in the33 Chinese Community Health Study (33CCHS).

2. Methods

2.1. Study population

 The population of the 33CCHSwas previously described in detail (Dong et al., 2013; Yang et al., 2017). Briefly, in2009, we useda random-number generator coupled toa four-staged, stratified, cluster sampling strategy to recruit study participants. First, to maximize the inter-city gradients of air pollutants, we randomly selected three cities - Shenyang, Anshan, and Jinzhou - from 14 total cities in Liaoning province. There are five districts in Shenyang city and three each inthe cities of Anshan and Jinzhou. Second, we randomly selected three communities from each of the districts, generating a total of 33 study communities. Each 147 study community was approximately $0.25{\text -}0.64 \text{ km}^2$ in area. Third, we randomly selected 700-1000 households from each study community. Fourth, from each study household,we randomly selected one adult aged 18 to 74 years for study enrollment. To be included, individuals had to liveat the study address for at least five years, have no severepre-existing diseases (e.g., cancers), and not be pregnant.Based on the sampling frame, 28,830 participants were invited, of whom 24,845 individualscompleted the survey, yielding an overall response rate of 86.2%.A total of 9368 individuals were excluded from the present analysis due to

 refusal to provide a blood sample, leaving a final sample of 15,477 participants (62.3% of the 33CCHS participants).All participants completed informed consent prior to study enrollment, and Sun Yat-Sen University's Human Studies Committee reviewed and approved all study procedures and protocols.

2.2. Health outcomes

 After an overnight fast, peripheral venous blood sampleswere collected from study participants. Total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), and low-density lipoprotein cholesterol (LDL-C)levels were determinedusing a Hitachi Autoanalyzer (Type 7170A; Hitachi Ltd.; Tokyo, Japan). Hypercholesterolemia was defined as TC≥ 240 mg/dL; hypertriglyceridemia was defined as TG ≥200 mg/dL; 164 hypoalphalipoproteinemia was defined as HDL-C \leq 40 mg/dL; and hyperbetalipoproteinemia 165 was defined as $LDL-C \ge 160$ mg/dL(Joint Committee for Developing Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults,2007).

2.3. Air pollution data

 A detailed description of the exposure assessment was provided in our previous publications(Dong et al., 2013; Yang et al., 2017; Chen et al., 2018). Briefly, daily 170 concentrations of PM with diameters ≤ 1.0 µm (PM₁)and ≤ 2.5 µm (PM_{2.5})were predicted for 171 the 33 study communities, at a $0.1\,^{\circ}\times\,0.1\,^{\circ}$ spatial resolution, using PM₁ and PM_{2.5} measurements from air monitoring stations, satellite remote sensing, meteorology, and land use characteristics. Aerosol optical depth data was combined from two types of Moderate Resolution Imaging Spectroradiometer algorithms—Dark Target and Deep Blue. A

175 generalized additive model was developed to link ground-monitored $PM₁$ and $PM_{2.5}$ data with aerosol optical depth data and other spatial and temporal predictors. In each of the study districts, there was one air monitoring station, which was located within a 1-kmdistance from the centroid of the community of each study participant's home address (Fig. S1). We 179 collected data for PM with diameters $\leq 10 \mu m$ (PM₁₀), sulfur dioxide (SO₂), nitrogen dioxide $(NO₂)$ and ozone $(O₃)$ concentrations from 11 air monitoring stations, according tostandardized procedures set by the State Environmental Protection Administration of China (SEPA)(SEPA, 1992). These air monitoring stations were mandated to be away from main traffic roads, industry sources, or residential sources of emissions from the combustion of coal, waste, or oil. Thus, air pollution measurements from these stations were more likely to reflect mixtures from different sources and background levels in urban areas. Daily average 186 concentrations of PM_{10} , SO_2 , NO_2 , and an eight-hour average of O_3 were calculated using 187 measurements from days with at least 75.0% of one-hour values available. $PM_{coarse} (PM_{2.5-10})$ 188 was calculated by subtracting $PM_{2.5}$ from PM_{10} . The three-year (2006-08) average concentrations of air pollutants were calculated for the 33 communities and 11 districts (or air monitoring stations), and then assigned to each participant based on proximity of the community or district to his/her residential address, as surrogates of long-term air pollution exposure.

2.4. Covariates

 All potential covariates were selected *a priori*. An interviewer administered questionnaire was used to collect information on age (years), sex (male/female), nationality (Han/others), household annual income (≤5000 Yuan/5001-10000 Yuan/10001-30000 Yuan/≥30000 Yuan),

 highest educational attainment (no school/primary school/middle school/junior college or higher), current smoking (yes/no), alcohol drinking (yes/no), regular exercise (yes/no), controlled diet with low calories and low fat (yes/no), sugar-sweetened soft drink consumption (≤1 day per week/ 2-4 days per week/ ≥5 days per week), family history of dyslipidemia, and district (or community). Height (cm) and weight (kg) were measured 202 without heavy clothes and shoes, and body mass index $(BMI, kg/m²)$ was calculated.Data on temperature, humidity, and wind speed for the 11 districts were obtained from Liaoning Provincial Meteorological Bureau. Per-capita gross domestic product and population density in each district were obtained from Shenyang, Jinzhou, and Anshan cities' Statistical Yearbooks. Season at the time of blood sampling was also included as a potential cofounder.

2.5. Statistical analysis

 The Shapiro-Wilk and the Bartlett tests were used to examine data normality and homogeneity, respectively. Differences in basic characteristics between men and women, and between participants with and without blood sampling, were tested using Student's t-test, or the Wilcoxon rank sum or chi-square tests. We used the Spearman rank correlation test to assess the relationship between air pollutants.

 We applied linear regression models to assess associations between individual air pollutants 214 (per 10 μ g/m³ increase)andblood lipid levels (TC, TG, HDL-C, and LDL-C), which were naturally log-transformed to achieve normal distributions. Effect estimates were then 216 back-transformed from the log scale using $100 \times \text{[exp (}\beta) - 1\text{]}$ and presented as percent differences with corresponding 95% confidence intervals (CI). We also used two-level binary

logistic regression models to investigate associations of ambient air pollutants (per $10 \mu g/m³$ increase) with hypercholesterolemia, hypertriglyceridemia, hypoalphalipoproteinemia and hyperbetalipoproteinemia, whereparticipantswere treated as first-level units and districts or communities as second-level units. Detailed descriptions of the two-stage binary logistic regression models were provided in our previous publications(Dong et al., 2013; Yang et al., 2017) and in the supplemental material (detailed information on two-level binary logistic regression model). These results are presented as odds ratio (OR) withcorresponding 95% CI. All regression models were adjusted for the variables listed in the Covariates section. District or community was incorporated as a random effect, and the remaining covariates were incorporated as fixed effects. Multi-pollutant models could not be applied, as all air pollutants 228 were correlated moderately to highly (except $NO₂$ and $SO₂$). Therefore, highly correlated pollutants were regressed against each other and the residualswere then incorporated into the models for associations between air pollutants and lipid outcomes (Flexeder et al., 2017).

231 We performed subgroup analyses by sex (men, women), age group (\geq 50 years, < 50 years), 232 and BMI category ($\geq 25 \text{ kg/m}^2$, $\lt 25 \text{ kg/m}^2$), and across-product term was incorporated into regression models to evaluate the statistical significance of their interactions. Additionally, we repeated theregression analyses of air pollution and lipid levels by excluding participants who took lipid lowering drugs, or those had cardiovascular diseases or diabetes mellitus.Also,we applied multi-annual average concentrations of air pollutants (i.e.,one-year average (2008),two-year average (2007-08), and three-year average (2006-08)) as long-term exposures, in order to exclude possible exposure fluctuations over shorter periods. Furthermore, 30-day average air pollutant concentrations before the blood draw were additionally adjusted to

 explore the potential impact of short-term air pollution exposure on lipids. Similarly, for pollutants in which long-term and short-term levels were highly correlated, these were regressed against each other and the individual residuals were then incorporated into the regression models.

 Data analysis was performed using SAS 9.4(SAS Institute, Cary, NC) with a p value less than 0.05 considered as statistically significant for a two-tailed test.

3. Results

3.1. Descriptive statistics

 The mean age of study participants was 45.0 years, and52.7%were men (Table 1). Most participants had a middle school or higher education (84.8%). Thirty percent and 24.6% of them were smokers and drinkers, respectively. Approximately 31.9% reported engaging in regular exercise and 7.9% had a family history of dyslipidemia. The prevalencesof hypercholesterolemia, hypertriglyceridemia, hypoalphalipoproteinemia,and hyperbetalipoproteinemiawere 11.1%, 22.6%, 18.3%,and 8.6%, respectively. The median concentrations of TC, TG, HDL-C, and LDL-C were 179.92 mg/dL, 118.58 mg/dL, 50.97 mg/dL, and 98.60 mg/dL, respectively. Men and women differedfor all sociodemographic and lifestyle variables, with the exception of nationality. The distribution of the main characteristics was similar between the analytical sample and those who were excluded from this analysis (Table S2)

259 The PM₁, PM_{2.5}, PM₁₀, SO₂, NO₂, and O₃ concentrations varied greatly across study 260 districts(or communities) with a median of $62 \mu g/m^3$, $73 \mu g/m^3$, $123 \mu g/m^3$, $48 \mu g/m^3$, $33 \mu g/m^3$,

261 and $50 \mu g/m^3$, respectively (Table 2).Except for SO_2 and NO_2 , moderate to high 262 correlationsbetweenairpollutantswere detected (Spearman correlations ranged from 0.45 to 263 0.99). In particular, NO₂ and O₃ were positively correlated, which might be caused by high air 264 pollutants levels, especially NO_x and volatile organic compounds(Shi et al., 2015; Zong et al. 265 2017), at the studysite.

266 *3.2. Associations between air pollutants and lipid levels*

267 The associations ofair pollutantswithblood lipid levels are summarized in Tables 3 and S3. 268 For all participants, higher concentrations of PM_1 and $PM_{2.5}$ consistently showed significant 269 associations with higher levels of TC, TG, and LDL-C, as well as with lower levels of HDL-C. 270 However, associations of PM_{10} with blood lipids were less consistent, and $PM_{2,5-10}$ was 271 associated only with TG levels (Table S3). Higher $NO₂$ levels were significantly associated 272 with higher levels of TC and TG and with lower levels of HDL-C. SO_2 was positively 273 associated with TG, but not with the remaining lipid markers. Higher O_3 concentrations were 274 significantly associated with higher levels of TG and HDL-C, but with lower levels of TC and 275 LDL-C.The results remained materially unchanged in sensitivity analyses where 263 276 individuals taking lipid lowering drugs (Table S4) or2222 individuals with CVD or diabetes 277 mellitus (Table S5) were excluded,where multi-annual average concentrations of air pollutants 278 were used (Table S6),and where the models were additionally adjusted for short-term air 279 pollutant levels (Table S7). The only exception in the latter case was the statistical 280 insignificance of the association between O_3 and HDL-C (Table S7).

281 We detected statistically significant interactions between air pollutant concentrations and sex

 on blood lipids; however, the pattern of effects was mixed in stratified analyses (Fig. 1; Table S8).For example, while associations of all six air pollutants with HDL-C were stronger for men, in the case of TG they werestronger for women. In addition, thepositive associations of 285 LDL-C with PM_1 and $PM_{2.5}$ were stronger in women than in men, and were stronger yet 286 negative for PM_{10} , SO_2 , NO_2 and O_3 . In stratified analysis by age, the associations between air pollutants and lipid levels were similarly complex, although most interaction terms were not statistically significant (Table S8).In another stratified analysis, BMI significantly modified 289 the associations of PM₁ and PM_{2.5} with HDL-C and LDL-C, with stronger associations among overweight/obese participants (Table S8).

3.3. Associations between air pollutants and dyslipidemias

292 For all participants, we detected statistically significant associations between: (1)higher $PM₁$, 293 and $PM_{2.5}$ concentrations with higher odds for hypercholesterolemia,hypoalphalipoproteinemia, and hyperbetalipoproteinemia; (2)higher 295 PM₁₀, SO₂, and O₃concentrations with higher odds for hypertriglyceridemia; and (3) higher NO2concentrations with higher odds forhypercholesterolemia (Table 4).In stratified analyses by sex and age, we detected statistically significant interactions of air pollutant concentrations with sex and age for severaldyslipidemia associations, but the pattern was mixed (Table S9).In stratified analyses by BMI, associations of air pollutants with dyslipidemias (particularly for hypoalphalipoproteinemia) were consistently greater in participants who were overweight or obese (Table S9).

4. Discussion

4.1. Key findings

 To our knowledge, thisis the largest population-based epidemiological study to date, to explore associations betweenambient air pollutionand blood lipidsin a developing country. We detectedmany statistically significant associations between exposure to long-term ambient air 307 pollutants (particularly PM_1 and $PM_{2.5}$) and blood lipid levels and the prevalence of dyslipidemias.Most of the associations suggested deleterious effects on blood lipid levels (i.e., associated with higher levels of TC, TG, and LDL-C, and lower HDL-C levels), though 310 beneficial associations were detected for O_3 . However, all observed associations suggested deleterious effects of air pollutants on dyslipidemias; nobeneficial significantassociation was observed for O_3 with dyslipidemia. Stratified analyses showed that associations between air pollutants and lipids were generally stronger among overweight and obese participants; sex and agealso modified associations, but the pattern of effects was complicated.

4.2. *Comparison with other studies and interpretations*

 Several previous studies investigated associationsbetween air pollution exposure and blood lipid levels or dyslipidemias, but the findings have been inconsistent(Bell et al., 2017; Bind et al., 2016; Cai et al., 2017; Chuang et al., 2011; Jiang et al., 2016; Poursafa et al., 2014; Shanley et al., 2016; Sørensen et al., 2015;Wallwork et al., 2017; Yeatts et al., 2007; Yitshak Sade et al., 2016). Consistent with our current findings,a cross-sectional study from the USA 321 revealed that an11.1 μ g/m³ increase in PM₁₀ was associated with 2.42% higher TG levels(Shanleyet al., 2016).Another cross-sectional study, from Denmark,reported positive 323 association for $PM_{2.5}$ exposure with TC levels. Similarly, a retrospective cohort study of Israeli 324 adults reported a statistically significant association between higher PM_{2.5}concentrations and 325 lower HDL-C levels(Yitshak Sade et al., 2016).Chuang et al.(2011) found that PM₁₀ and NO₂were significantly associated with higher TC levels in Taiwan, but there were no associations with TGor HDL-C levels. In addition, a panel study among American adults 328 showed no significant association between PM_2 , sexposure and TC levels (Yeatts et al., 2007). The specific reasons for the inconsistent results across studies of ambient air pollution exposure and blood lipid levels are not clear. They may be related to the differences in population characteristics (e.g., age, genetic background, lifestyles, and health status) and/or local or regional differences in the physical and chemical properties of the air pollutants (e.g., concentrations, chemical constituents, and sources).

 The biological mechanisms underlying links between air pollutants and lipid metabolism are not fully understood. However, several possible biological pathways have been proposed. One hypothesis is that inhaled air pollution elicits systemic inflammation and oxidativestress (Lodovici and Bigagli, 2011; Shanley et al., 2016; Thompson et al., 2010), which can induce adverse lipid metabolism and lipid oxidation (Chen et al., 2013). Air pollutants could also cause aberrant DNA methylation by decreasing activity of DNA methyltransferases. Several studies have linked air pollution exposure to abnormalities in global DNA methylation as well asto methylation at specific genes related to lipid metabolism (Chen et al., 2016; Bind et al., 2014).The associations between air pollutant concentrations, PM in particular,and blood lipid levels in our current study are consistent with these hypothesized biologicalmechanisms.

 In stratified analyses, we found stronger associations between air pollutants and blood lipids among overweight and obese participants, which are partially consistent with Sørensen et al's

 work. (2015). Existing evidence shows that both air pollution exposure and overweight/obesity are associated with higher systemic inflammation (Bastard et al., 2006; Rajagopalan and Brook, 2012).Overweight and obese participants might therefore be more vulnerable to adverse health effects from air pollution, which act in part through an inflammation pathway. We also found that sex and age modified the effects of air pollution on lipid levels and dyslipidemias, but the pattern was mixed. To thebest of our knowledge, only two prior studies (Shanley et al., 2016; Sørensen et al., 2015)investigated sex- and age-specific associations between air pollutants and blood lipids. In line with our linear regression findings, Shanley et al. (2016) reported that age did not significantly modify the 355 associations of PM_{10} with TC and TG. However, they also observed a stronger association 356 between PM_{10} and TC among women, whereas for PM_{10} and TG a stronger association was 357 observedamong men, which contradicts our results. In another study, S grensen et al. (2015) 358 observed that both age and sex did not modify the associations of $NO₂$ and $PM_{2.5}$ with TC.Collectively, there is limited and inconsistent epidemiological evidenceto characterize the role of age and sex in modifying air pollution-lipid associations at present, and so further investigation is merited.

4.3. Implications for policy makers

 Dyslipidemias are well-documented risk factors for CVD (Zhang et al., 2003).Randomized trials have shown that lipid-lowering treatment could significantly decrease the risk of CVD (Fulcher et al., 2015). For example, the Asia Pacific Cohort Studies Collaboration reported 35% and 25% increased risksfor coronary death and incident stroke in Asians, respectively, per 1-mmol/L higher serum TC (Zhang et al. 2003).Yet, a meta-analysis of 22 trials found that a

 1-mmol/L LDL-C reduction could decrease major CVD events by 21% (Fulcher et al., 2015). 369 In the current study, we found that a - μ g/m³ increase in air pollutants was associated with an approximately 1-2% increase in blood lipids levels. Although the observed difference was relatively small and thus of uncertain clinical impact, our findings have certain public health implications for helpingpolicy makers to develop intervention policies, given the high levels of air pollution (Guan et al., 2016) and high prevalence of CVD in China (Peters et al. 2017).

4.4.Strengths and limitations

 This study has several strengths. First, our analysis was based on a large sample of northeastern Chinese with a high response rate,usingstandardized protocols and instruments, which ensuredsufficient statistical powerto detect modest effects, and generalizability of our results.Second, unlike most previous studies, which focused on specific populations, our present study provides valuable evidence regarding a general population in a developing nation. Third, in addition to measuring exposure to the traditional ambient 'criteria'air 381 pollutants (i.e., $PM_{2.5}$, PM_{10} , SO_2 , NO_2 , and O_3), we, for the first time,report effects for PM_1 on blood lipids. In addition, all air pollutants levels are high in our study settings, thus our results can provide a valuable reference for other developing countries, such as India.Finally, a combination of objectively measured lipid levelscoupled to a rich set of covariate data allowed for a comprehensive data analysis, including adjustment for BMI, physical activity, diet, and meteorological variables to minimize the impact of confounding.

 Despite the novel nature of our results, several limitations should also be acknowledged. First, the cross-sectional study design precludedassessment of temporality, and we are thus unable

 to infera causal association between air pollution exposure and blood lipid levels.Second,exposure levels were assigned using data from the nearest air monitor or community rather than using personal air pollution exposure data, which means that only 33 392 (for PM₁ and PM_{2.5}) and 11 (for PM₁₀, NO₂, SO₂, and O₃) unique air pollution values were available for the 15,477 participants. The values may have misclassified some participants, by randomly underestimating exposure in some and overestimating exposure in others.Nevertheless, such exposure misclassification is likely to bias the results towards null (Hutcheon et al., 2010).This indicates that if we had individual-level data on air pollution levels, our estimated effects of air pollution on blood lipids would have been stronger than the current estimates. Furthermore, our exposure assessment did not capture specific emissions known to adversely affect health, such as traffic-related sources, that are likely to show large variation across both space and time. Third, participants'baseline characteristics differed significantly among thestudy districts and communities (Yang et al., 2017). Although we collected rich covariate data to adjust for confounding, it is possible that the observed significant associations were biased by unmeasured confounding factors that differed across the study districts or communities, including health-care access, available green-space, noise, and household environments. Unfortunately, these data were not collected by the 33CCHS.In addition, conditions such as acute infection and inflammation, hyperthyroidism, and nephrotic syndrome, may affect lipid status (Nigam, 2011). These data were also not available in our current study, which may have compromised our estimates. Fourth, 62.3% of the 33CCHS participants with blood specimens were included in the current analysis, and so a selection bias was not impossible. However, the distribution of baseline characteristics was similar between participants with and without a blood specimen, and so any effect is likely to be modest. Fifth, we used a questionnaire to collect self-reported information on demographic and lifestyle characteristics; thus,recall bias and misclassification is possible. Finally, correlations between air pollutants were generally moderate or high, which limited our ability to assess the health effects of multiple pollutantssimultaneously.However, we performed regression analyses on air pollutants that highly correlated with each other, and then adjusted theindividual residuals in order to accommodate the co-exposures.

5. Conclusions

 Our findings suggest that long-term exposure to ambient air pollution is associated with altered lipid levels and the prevalence of dyslipidemias, especially among overweight and obese people.However, considering the limitations of our study, future well-designed longitudinal studies are warranted to more definitively evaluate the effects of ambient air pollution on lipid metabolism.

Declaration of interests

None

Acknowledgements

 The authors acknowledge the cooperation of participants in this study who have been very generous with their time and assistance.

Funding

The research was funded by the National Natural Science Foundation of China (No.91543208;

References

meteorology, and land use information. Environ.Pollut. 233, 1086-1094.

- Chen, R., Meng, X., Zhang, A., Wang, C., Yang, C., Li, H., et al., 2016. DNA methylation and its mediation in the effects of fine particulate air pollution on cardiovascular biomarkers: a randomized crossover trial. Environ. Int. 94, 614-619.
- Chen, T., Jia, G., Wei, Y., Li, J., 2013. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice. Toxicol.Lett., 223, 146-153.
- Chuang, K.J., Yan, Y.H., Chiu, S.Y., Cheng, T.J., 2011.Long-term air pollution exposure and risk factors for cardiovascular diseases among the elderly in Taiwan.Occup. Environ. Med.68, 64-68.
- Dong, G.H., Qian, Z.M., Xaverius, P.K., Trevathan, E., Maalouf, S., Parker, J.*,* et al., 2013.Association between long-term air pollution and increased blood pressure and

hypertension in China. Hypertension61, 578-584.

- Flexeder, C., Thiering, E., Koletzko, S., Berderl, D., Lehmann, I., von Berg, A., et al., 2017. 482 Higher serum $25(OH)D$ concentrations are associated with improved $FEV₁$ and FVC in adolescence. Eur. Respir. J. 49, 1601804.
- Fulcher, J., O'Connell, R., Voysey, M., Emberson, J., Blackwell, L., Mihaylova, B., et al., 2015. Efficacy and safety of LDL-lowering therapy among men and women: meta-analysis of individual data from 174,000 participants in 27 randomised trials. Lancet 385, 1397-1405.
- Go, A.S., Mozaffarian, D., Roger, V.L., Benjamin, E.J., Berry, J.D., Borden, W.B., et al., 2013. Heart disease and stroke statistics--2013 update: a report from the American Heart Association. Circulation 127, e6-e245.
- Guan, W.J., Zheng, X.Y., Chung, K.F., Zhong, N.S., 2016. Impact of air pollution on the burden of chronic respiratory diseases in China: time for urgent action. Lancet 388, 1939-1951.

Hutcheon, J.A., Chiolero, A., Hanley, J.A.,2010. Random measurement error and regression

- dilution bias. BMJ 340, c2289.
- Jiang, S., Bo, L., Gong, C., Du, X., Kan, H., Xie, Y., et al., 2016[.Traffic-related air pollution](https://www-ncbi-nlm-nih-gov.emedien.ub.uni-muenchen.de/pubmed/27084335) is [associated with cardio-metabolic biomarkers in general residents.I](https://www-ncbi-nlm-nih-gov.emedien.ub.uni-muenchen.de/pubmed/27084335)nt. Arch.Occup. Environ. Health 89, 911-921.
- Joint Committee for Developing Chinese Guidelines on Prevention and Treatment of Dyslipidemia in Adults., 2007.Chinese guidelines on prevention and treatment of dyslipidemia in adults.Chin. J.Epidemiol.35, 390-419.
- Lodovici, M., Bigagli, E., 2011.Oxidative stress and air pollution exposure. J.Toxicol.2011, 487074.
- Nigam, P.K., 2011. Serum lipid profile: fasting or non-fasting? Indian J. Clin.Biochem. 26, 96-97.
- Pan, L., Yang, Z., Wu, Y., Yin, R.X., Liao, Y., Wang, J.*,* et al., 2016.The prevalence, awareness, treatment and control of dyslipidemia among adults in China. Atherosclerosis 248, 2-9.
- Peters, S.A., Yang, L., Guo, Y., Chen, Y., Bian, Z., Millwood, I.Y., et al.,2017.Parenthood and the risk of cardiovascular diseases among 0.5 million men and women: findings from the China Kadoorie Biobank. Int. J. Epidemiol. 46, 180-189.
- Poursafa, P., Mansourian, M., Motlagh, M.E., Ardalan, G., Kelishadi, R., 2014. Is air quality
- index associated with cardiometabolic risk factors in adolescents? The CASPIAN-III
- Study. Environ. Res. 134, 105-109.
- Rajagopalan, S., Brook, R.D., 2012. Air pollution and type 2 diabetes: mechanistic insights. Diabetes61, 3037-3045.
- Rohde, R.A., Muller, R.A.,2015. Air pollution in China: mapping of concentrations and dources. PLoS One10, e135749.
- Shanley, R.P., Hayes, R.B., Cromar, K.R., Ito, K., Gordon, T., Ahn, J., 2016. Particulate air pollution and clinical cardiovascular disease risk factors. Epidemiology27,291-298.
- Shi, J., Deng, H., Bai, Z., Kong, S., Wang, X., Hao, J., et al., 2015. Emission and profile characteristic of volatile organic compounds emitted from coke production, iron smelt, heating station and power plant in Liaoning Province, China. Sci. Total Environ. 515-516, 101-108.
- Sørensen, M., Hjortebjerg, D., Eriksen, K.T., Ketzel, M., Tjonneland, A., Overvad, K.*,* et al.,
- 2015. Exposure to long-term air pollution and road traffic noise in relation to cholesterol: A cross-sectional study. Environ. Int.85, 238-243.
- State Environmental Protection Administration of China (SEPA), 1992. Standardizedenvironmental monitoring and analysis methods (Beijing, China).
- Stensland-Bugge, E., Bønaa, K.H., Joakimsen, O., Njølstad,I., 2000. Sex differences in the
- relationship of risk factors to subclinical carotid atherosclerosis measured 15 years later:
- the Tromsø Study. Stroke 31, 574-581.

- Thompson, A.M., Zanobetti, A., Silverman, F., Schwartz, J., Coull, B., Urch, B.*,* et al., 2010.Baseline repeated measures from controlled human exposure studies: associations between ambient air pollution exposure and the systemic inflammatory biomarkers IL-6 and fibrinogen. Environ.Health Perspect. 118, 120-124.
- Wallwork, R.S., Colicino, E., Zhong, J., Kloog, I., Coull, B.A., Vokonas, P., et al., 2017[.Ambient fine particulate matter, outdoor temperature, and risk of metabolic](https://www-ncbi-nlm-nih-gov.emedien.ub.uni-muenchen.de/pubmed/27927620) [syndrome.](https://www-ncbi-nlm-nih-gov.emedien.ub.uni-muenchen.de/pubmed/27927620) Am. J.Epidemiol. 185, 30-39.
- Word Health Organization.Cardiovascular diseases (CVDs) Fact Sheet.WHO. Available at: http://www.who.int/mediacentre/factsheets/fs317/en/. Updated May 2017. (accessed Jan 27, 2018).
- Yang, B.Y., Qian, Z., Howard, S.W., Vaughn, M.G., Fan, S.J., Liu, K.K., et al., 2018. Global association between air pollution and blood pressure: a systematic review and meta-analysis. Environ.Pollut.235, 576-588.
- Yang, B.Y., Qian, Z.M., Vaughn, M.G., Nelson, E.J., Dharmage, S.C., Heinrich, J.*,* et al.,
- 2017. Is prehypertension more strongly associated with long-term ambient air pollution
- exposure than hypertension? Findings from the 33 Communities Chinese Health Study.
- Environ.Pollut.229, 696-704.

 Zhao, W.H., 2008. The 2002 China National Nutrition and Health Survey, 7, People's Medical Publishing House, Lipid.Beijing, China (in Chinese).

 Zong, Z., Wang, X., Tian, C., Chen, Y., Fang, Y., Zhang, F., et al., 2017. First assessment of NOx sources at a regional background site in north China using isotopic analysis linked with modeling. Environ. Sci. Technol. 51, 5923-5931.

Figure legend

- **Fig. 1.** Associations between air pollutants and blood lipid levels (A: total cholesterol, TC; B:
- triglycerides, TG; C: high-density lipoprotein cholesterol, HDL-C; D: low-density lipoprotein
- cholesterol, LDL-C) by sex.Stars represent statistically significant interactions.

	Value (mean $\pm SD$, n(%), or median (Q1, Q3))					
Characteristics	Total $(n=15,477)$	Men $(n=8156)$	Women $(n=7321)$			
Age $(years)a$	44.97 ± 13.45	44.44 ± 14.20	45.56 ± 12.55			
Ethnicity						
Han	14,554 (94.0%)	7670 (94.0%)	6884 (94.0%)			
Other	923 (6.0%)	486 (6.0%)	437 (6.0%)			
Education ^a						
Junior college or higher	3579 (23.1%)	2250 (27.6%)	1329 (18.2%)			
Middle school	9554 (61.7%)	5008 (61.4%)	4546 (62.1%)			
Primary school	1863 (12.0%)	782 (9.6%)	1081 (14.8%)			
No school	481 (3.1%)	$116(1.4\%)$	365 (5.0%)			
Annual family income ^a						
\leq 5000 Yuan	1167(7.5%)	618 (7.6%)	549 (7.5%)			
5001-10,000 Yuan	1977 (12.8%)	846 (10.4%)	1131 (15.5%)			
10,001-30,000 Yuan	7869 (50.8%)	4198 (51.5%)	3671 (50.1%)			
\geq 30,000 Yuan	4464 (28.8%)	2494 (30.6%)	1970 (26.9%)			
Tobacco smoking status ^a						
Nonsmoker	10,837 (70.0%)	4004 (49.1%)	6833 (93.3%)			
Smoker	4640 (30.0%)	4152 (50.9%)	488 (6.7%)			
Alcohol drinking status ^a						
Nondrinker	11,668 (75.4%)	4562 (55.9%)	7106 (97.1%)			
Drinker	3809 (24.6%)	3594 (44.1%)	215 (2.9%)			
Regular exercise ^a						
Yes	4932 (31.9%)	2724 (33.4%)	2208 (30.2%)			
N _o	10,545 (68.1%)	5432 (66.6%)	5113 (69.8%)			
Control diet with						
low calorie and fat ^a						
Yes	3861 (24.9%)	1828 (22.4%)	2033 (27.8%)			
No	11,616 (75.1%)	6328 (77.6%)	5288 (72.2%)			
Sugar-sweetened						
soft drink intake ^a						
\leq 1 day per week	13,621 (88.0%)	6996 (85.8%)	6625 (90.5%)			
2-4 days per week	1286 (8.3%)	818 (10.0%)	468 (6.4%)			
\geq 5 days per week	570 (3.7%)	342 (4.2%)	228 (3.1%)			
BMI ^a						
\geq 25 kg/m ²	6271 (40.5%)	3660 (44.9%)	2611 (35.7%)			
$<$ 25 kg/m ²	9206 (59.5%)	4496 (55.1%)	4710 (64.3%)			
Family history of dyslipidemia ^a						
Yes	1228 (7.9%)	492 (6.0%)	736 (10.1%)			
N _o	14,249 (92.1%)	7664 (94.0%)	6585 (89.9%)			
Blood lipids& dyslipidemias						
TC (mg/dL)	179.92 (155.98, 205.41)	180.70 (157.53, 204.83)	179.15 (154.44, 206.18)			
$TG (mg/dL)^a$	118.58 (81.42, 176.99)	130.09 (88.50, 200.89)	106.19 (75.22, 160.18)			

573 **Table 1**Study population characteristics (n = 15,477).

574 Abbreviations: BMI, body mass index; HDL, high-density lipoprotein cholesterol; LDL,

575 low-density lipoprotein cholesterol; Q1, $25th$ percentile; Q3, $75th$ percentile; SD, standard 576 deviation; TC, total cholesterol; TG, triglycerides.

577 a Statistically significant difference between men and women (p<.05).

	Summary statistics			Spearman correlation coefficients								
Exposure	Mean	Median	Minimum	Maximum	IQR	>WHO guideline $(\%)^c$	PM	$PM_{2.5}$	PM_{10}	SO ₂	NO ₂	Q_3
$PM_1 (\mu g/m^3)^a$	65.97	62	50	82	15	none ["]	00.1	0.99 ^e	0.73^e	0.52	0.67^e	0.47
$PM_{2.5} (\mu g/m^3)^a$	82.02	73	64	104	26	100		00.1	0.72^e	0.5°	0.63^e	0.45°
$PM_{10} (\mu g/m^3)^b$	123.06	123	93	145	19	100			.00	0.81°	0.65°	0.81°
$SO_2(\mu g/m^3)^b$	54.42	48	36	78	20	100				.00	0 25	0.84^e
$NO2(\mu g/m3)b$	35.28	33	フフ	45		18.2					.00	0.45
$O_3(\mu g/m^3)^b$	49.40	50	າາ		22	0.0						1.00

578 **Table 2**Summary statistics and pairwise Spearman correlations of air pollutants.

579 Abbreviations: IQR, interquartile range; NO₂, nitrogen dioxide;O₃, ozone; PM₁, particle with aerodynamic diameter ≤1.0 µm;PM_{2.5}, particle with aerodynamic diameter ≤1.0 µm;PM_{2.5}, particle with aerodynamic di aerodynamic diameter ≤ 2.5 µm;PM₁₀, particle with aerodynamic diameter ≤ 10 µm; SD, standard deviation; SO₂, sulfur dioxide.

581 ^aBased on values from 33 communities.

582 bBased on values from 11 districts.

583 ^cWorld Health Organization (WHO) air quality guidelines (2005).

584 $\,^{\text{d}}$ No guideline for PM₁.

585 ^eStatistically significant correlation (p <.05).

	% changes (95% Confidence Interval) ^a						
Pollutant	TC	TG	HDL-C	LDL-C			
PM_1	$1.6 (1.1, 2.0)^{b}$	$2.9(-3.3, 9.3)$	-1.4 (-1.8 , -0.9) ^b	$(2.6, 3.9)^{b}$			
$PM_{2.5}$	1.1 $(0.8, 1.4)^b$	1.1 $(0.4, 1.8)^{b}$	-1.1 $(-1.4, -0.8)^{b}$	$2.9(2.4, 3.5)^{b}$			
PM_{10}	-0.2 ($-0.5, 0.1$)	4.7 $(3.6, 5.9)^b$	-0.2 $(-0.7, 0.2)$	-0.9 $(-1.3, -0.4)^{b}$			
SO ₂	-0.2 $(-0.7, 0.1)$	5.1 $(3.9, 6.3)^b$	-0.1 $(-0.6, 0.4)$	-0.1 $(-0.7, 0.5)$			
NO ₂	$0.7(0.0, 1.4)^{b}$	6.0 $(3.5, 8.6)^b$	-1.6 ($-2.3, -1.0$) ^b	-0.1 $(-1.2, 1.1)$			
O ₃	-1.2 ($-1.6, -0.8$) ^b	5.6 $(4.5, 6.7)^b$	$0.6(0.2, 1.0)^{b}$	-2.7 $(-3.2, -2.2)^{b}$			

586 **Table 3** Associations between per 10- μ g/m³ increment in air pollutants and blood lipid levels (n = 15,477).

587 Abbreviations: HDL-C, high-density lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; NO₂, nitrogen dioxide; O₃, ozone; 588 PM₁, particle with aerodynamic diameter ≤ 1.0 µm;PM_{2.5}, particle with aerodynamic diameter ≤ 2.5 µm; PM₁₀, particle with aerodynamic 589 diameter $\leq 10 \text{ µm}$; SO₂, sulfur dioxide; TC, total cholesterol; TG, triglycerides.

590 ^aAdjusted for age, sex, body mass index, education, family income, smoking, alcohol drinking, exercise, diet, sugary drink intake, family 591 history of dyslipidemia, temperature, humidity, wind speed, season, gross domestic product, population density, residuals from regression 592 model of highly correlated pollutants, and study district (or community).

593 bStatistically significant association ($p < .05$).

	Odds Ratio (95% Confidence Interval) ^a					
Pollutant	Hypercholesterolemia	Hypertriglyceridemia	Hypoalphalipoproteinemia	Hyperbetalipoproteinemia		
PM_1	$1.26 (1.02, 1.57)^{b}$	1.03(0.91, 1.17)	1.27 $(1.06, 1.52)^{b}$	1.29 $(1.02, 1.64)^{b}$		
$PM_{2.5}$	$1.18(1.01, 1.37)^{b}$	1.07(0.95, 1.19)	1.15 $(1.02, 1.30)^b$	1.28 $(1.05, 1.57)^{b}$		
PM_{10}	1.05(0.92, 1.22)	$1.14(1.01, 1.29)^{b}$	1.08(0.88, 1.32)	1.06(0.89, 1.27)		
SO ₂	1.11(0.79, 1.55)	$1.16(1.00, 1.39)^{b}$	1.01(0.79, 1.29)	0.98(0.77, 1.25)		
NO ₂	1.23 $(1.02, 1.48)^{b}$	1.21(0.76, 1.90)	1.27(0.68, 2.38)	1.25(0.74, 2.11)		
O ₃	0.95(0.77, 1.19)	$1.17(1.01, 1.36)^{b}$	0.97(0.78, 1.20)	0.98(0.84, 1.15)		

Table 4Associations between per 10-μg/m³ increment in air pollutants and dyslipidemias (n = 15,477).

595 Abbreviations: NO₂, nitrogen dioxide; O₃, ozone; PM₁, particle with aerodynamic diameter ≤1.0 µm;PM_{2.5}, particle with aerodynamic diameter 596 \leq 2.5 µm; PM₁₀, particle with aerodynamic diameter \leq 10 µm; SO₂, sulfur dioxide.

597 ^aAdjusted for age, sex, body mass index, education, family income, smoking, alcohol drinking, exercise, diet, sugary drink intake, family 598 history of dyslipidemia, temperature, humidity, wind speed, season, gross domestic product, population density, residuals from regression 599 model of highly correlated pollutants, and study district (or community).

600 bStatistically significant association (p <.05).

