Machine Learning SI manuscript No.
(will be inserted by the editor)

Incorporating Domain Knowledge in
Machine Learning for Soccer Outcome Prediction

Daniel Berrar - Philippe Lopes -
Werner Dubitzky

First draft: / Revision:

Abstract Predicting the outcome of a soccer match is an immensely difficult
task because of the chance influence. The task of the 2017 Soccer Prediction
Challenge was to use machine learning to predict the outcome of future soccer
matches based on a data set describing the outcomes of 216 743 past soccer
matches. One of the goals of the challenge was to gauge where the limits of pre-
dictability lie with this type of commonly available data. Another goal was to
pose a real-world machine learning challenge with fixed time line and a predic-
tion set of 206 future soccer matches. In this study, we present two novel ideas
for integrating soccer domain knowledge into the modeling process. Based on
these ideas, we developed two new methods of feature engineering for match
outcome prediction, which we denote as recency feature extraction and rating-
based feature learning. Using these methods, we constructed two learning sets,
which are readily amenable to supervised learning. We analyzed both learning
sets with a k-nearest neighbor model and an ensemble of extreme gradient
boosted trees. The top-ranking model of the 2017 Soccer Prediction Challenge
was our k-ncarest ncighbor model trained on the rating-featurc learning sct; it
achieved the overall best performance with an average ranked probability score
of RPSavg = 0.2054. This performance is comparable to the top performances
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of other challenge participants and approximately 9% better than null models
based on prior probabilities. In further experiments that we carried out after
the challenge deadline, we could slightly improve on the performance with ex-
treme gradient boosted trees (RPS,ys = 0.2023). Our study shows that, at
least to some extent, machine learning can predict the outcome of a soccer
match. The key to success lies in knowledge integration.

Keywords 2017 Soccer Prediction Challenge; Open International Soccer
Databasc; soccer analytics; knowledge representation; featurce engineering;
recency feature extraction; rating feature learning; k-nearest neighbor;
extreme gradient boosting (XGBoost)

1 Introduction

Paul the Octopus was a common cephalopod who allegedly could predict the
results of soccer matches during the 2008 UEFA European Championship and
the 2010 FIFA World Cup. To make his predictions, Paul was presented with
two boxes, each containing some food and the flags representing the opposing
soccer teams. The box that Paul selected first was assumed to indicate the
winning team. Amazingly, out of 14 predictions, 12 were correct! Paul’s pre-
dictions were staged as a media spectacle, but not carried out in a properly
controlled scientific experiment that could have accounted for the Clever Hans
Phenomenon (Samhita and Gross, 2013) and other biases. Paul’s predictions
garnered a massive media attention at the time, which shows how much public
interest there is for soccer outcome prediction.

Part of the fascination with soccer comes from the fact that the majority
of matches (> 85%) end either in a draw or are won by only two or fewer
goals. Thus, chance cvents play a major role in determining the final outcome
of a soccer match (Reep and Benjamin, 1968). Even when a strong team
plays against a relatively weak team, the outcome is not easy to predict, since
single events such as a red card can be decisive. But the outcome is also
clearly not purely random. Since the late 1960s, various approaches have been
proposed to predict soccer outcomes (Reep and Benjamin, 1968; Hill, 1974;
Maher, 1982; Dixon and Coles, 1997; Angelini and De Angelis, 2017); most of
these approaches rely on statistical methods such as Poisson regression models.
Relatively few studies investigated machine learning methods to predict the
outcome of soccer matches (O’Donoghue et al., 2004).

To what extent is it actually possible to predict the outcome of a soccer
match? Morc spccifically, given rcadily available data about soccer tcams,
players, and match events, how well can machine learning predict the outcome
of a future soccer match? These questions motivated us to organize the 2017
Soccer Prediction Challenge (Berrar et al., 2017). This challenge consisted of
a large challenge learning set and prediction set. The challenge learning set
comprises 216 743 entries, each describing the most basic information about the
outcome of a league soccer match in terms of goals scored by each team, teams
involved, and league, season and date on which the match was played. The
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drawback of such data is that it lacks more “sophisticated” match statistics,
such as fouls committed or corners conceded by each team, or relevant data
about players and teams. However, in contrast to more sophisticated data, the
beauty of this type of match data is that it is readily available for most soccer
leagues worldwide (including lower leagues). Thus, a particular motivation
of the 2017 Soccer Prediction Challenge was to determine how well we can
predict the outcome of a soccer match, given this type of data. In order to
find this out. we invited the machine learning community to develop predictive
models from the challenge learning set and predict the outcome of 206 future
matches. Here, the motivation was to pose a real “acid test” by requiring all
participants to make their predictions before the real outcome was actually
known. Details about the learning set and prediction challenge are described
in detail in (Dubitzky et al., 2018).

Here, we describe our approach to the 2017 Soccer Prediction Challenge.
The major difficulty that we faced was how to incorporate soccer domain
knowledge into the modeling process. The topic of knowledge representation
in machine learning has long been identified as the major hurdle in machine
learning for real applications (Brodley and Smyth, 1997; Rudin and Wagstalff,
2014). We believe that the integration of domain knowledge is of pivotal im-
portance for practically any predictive modeling process. Specifically, feature
engineering is one phase of this process where domain knowledge can be mean-
ingfully incorporated.

We propose two new methods for constructing predictive features from
soccer match data. We refer to these methods as recency feature extraction
and rating-based feature learning. By applying these methods to the data sct
released by the 2017 Soccer Prediction Challenge, we obtained two different
learning sets, the recency feature learning set and the rating feature learning
set. Both data sets can be represented in table or matrix form and are read-
ily amenable to subsequent supervised learning. First, as one of the oldest
workhorses of machine learning, we chose k-nearest neighbor (k-NN) learning.
Second, as one of the state-of-the-art classifiers, we used ensembles of extreme
gradient boosted trees (XGBoost) (Chen and Guestrin, 2016). Given the time
constraints of the 2017 Soccer Prediction Challenge, we could not finish all
analyses on time. The best model that we could complete before the com-
petition deadline was k-NN trained on the rating-based feature learning set.
This modecl achicved the best performance among all submissions to the chal-
lenge, with an average ranked probability score of RPS,vs = 0.2054. After the
competition deadline, we could improve on that performance with XGBoost,
which achieved RPS,,, = 0.2023 using the same data set. Using the recency
feature learning set, the performance was slightly worse but still comparable
to those of the other top-ranked teams.

The major contributions of our study can be summarized as follows. We
propose two new methods for integrating domain knowledge for soccer outcome
prediction. We demonstrate the usefulness of our methods by benchmarking
them against state-of-the art models in a real prediction challenge. In principle,
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the proposed methods are also suitable to outcome prediction in other, similar
team sports.

This article is organized as follows. In Section 2, we describe related work
on soccer outcome prediction. Then, in Section 3, we provide a short overview
of our analytical and experimental plan. Section 4 presents our new ideas on
feature modeling and data integration for soccer outcome prediction. Section 5
describes in detail the new methods that we developed based on these ideas:
recency feature extraction and rating-based feature learning. Section b sum-
marizes the feature engineering process and its results, the recency learning
set and the rating learning set. Section 7 describes the evaluation metric, the
average ranked probability score, and its rationale. Section 8 describes how we
built the predictive models with k-NN and XGboost. In Section 10, we com-
pare our results with those of the other challenge participants. The paper ends
with a discussion (Section 11) and conclusion (Section 12).

2 Related work

To our knowledge, Reep and Benjamin (1968) carried out one of the first
studies on the prediction of soccer matches. They investigated the fit of a
negative binomial distribution to scores from football matches but were unable
to reliably predict the outcomes. Their conclusion was therefore that “...]
chance does dominate the game.” (Reep and Benjamin, 1968, p.585). Clearly,
luck does play an important role in a single match; however, other factors,
such as attacking and defending skills, become more relevant over an entire
season, which is obvious because a strong team generally wins against a weak
team in the long run. Indeed, Hill (1974) showed that there was a significant
correlation between the predictions made by football experts and the final
league tables of the 1971-1972 season. Maher (1982) assumed that the number
of goals that a team scores during a match is a Poisson variable. His Poisson
model achieved a reasonably good fit to the data from four English football
league divisions for the seasons 1973 to 1974, suggesting that more than mere
chance is at play. Dixon and Coles (1997) point out that it is not so difficult
to predict which teams will perform well in the long run, but it is considerably
morce challenging to make a good prediction for an individual game. In fact, the
game Chelsea vs. Crystal Palace of the 2017 Soccer Prediction Challenge was
predicted to end with a win for the clear favorite Chelsea, with a probability
of 0.84 by the best model (team DBL) and 0.77 by the competition winner
(team OH); however, unexpectedly, Chelsea lost 1:2.

Angelini and De Angelis (2017) proposed PARX, a Poisson autoregression
model that captures a team’s attacking and defensive abilities. On the games
of the 2013/14 and 2014/15 English Premier League seasons, PARX outper-
formed the model by Dixon and Coles (1997) with respect to the number of
predicted goals.

The statistical approaches for soccer outcomne prediction fall into two broad
categories. Some models derive the probabilities for home win, draw, and away
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win indirectly by first estimating the number of goals scored and conceded by
each team (Maher, 1982; Dixon and Coles, 1997; Angelini and De Angelis,
2017). Other models calculate these probabilities directly (i.e., without explic-
itly estimating the number of goals scored and conceded), for example, by
using logit or probit regression. Goddard (2005) compared hoth approaches
on a 25-year data set from English league football matches and observed the
best performance for a hybrid approach, i.e., by including covariates describing
goals-based team performance to predict match outcomes. Overall, however,
the differences in predictive performance between the investigated models was
small, and it remains unclear which approach is preferable.

Sports betting is a global multi-billion dollar industry. The UK football
betting market is characterized by “fixed odds”, which means that odds are
determined by bookmakers several days before a match is to take place. These
odds are not updated based on betting volumes or new information. such as
a player’s injury (Forrest et al., 2005). Mispricing bets can therefore have se-
rious financial consequences for bookmakers, and this creates a real incentive
for them to make good predictions. How do odds-setters fare against statis-
tical models? Forrest et al. (2005) compared the performance of professional
British odds-setters with that of an ordered probit model during five seasons
from 1998/99 to 2002/03. Although the statistical model performed better at
the beginning of the study period, the odds-setters’ predictions were better
towards the end, which casts doubt on the widely held view that statisti-
cal models perform better than expert forecasts. This view might be due to
the fact that tipsters—independent experts whose predictions appear in daily
newspapers—generally perform poorly compared to statistical models Spann
and Skiera (2008). However, the financial stakes are incomparably higher for
professional odds-setters, which might explain the differences in predictive per-
formance.

To predict the results of the 2002 FIFA World Cup, O’Donoghue et al.
(2004) used a variety of approaches, including probabilistic neural networks,
linear and logistic regression, bookmakers’ odds, computer simulations, and
expert forecasts. The 2002 World Cup format consisted of two stages: Stage 1
(group stage) comprising 48 matches organized in 8 groups consisting of 4
teams each. Stage 2 (knock-out stage) comprising 16 matches, from the eight-
finals to the final. The prediction challenge was to identify the 16 teams that
progress from Stage 1 to Stage 2 (awarding 1 point per correct prediction).
An additional point was awarded for correctly identifying a group winner or a
group runner-up, and 2 points were awarded for correctly identifying a quarter-
finalist, 3 points for a scmi-finalist, and 4 points for cach of the 2 finalists.
Finally, 5 points were awarded for correctly identifying the winner of the final
as well as for the winner of the 3rd place play-off match. Thus, a perfect model
would score a total of 78 points. In the study by O’Donoghue et al. (2004), the
bookmaker’s odds and the expert forecast performed the worst, with 20 and 19
points, respectively. Of course, these results do not suggest that bookmakers’
odds or experts’ forecasts are generally inferior to the other methods. The
probabilistic neural network scored 27 points and performed slightly worse
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than linear and logistic regression, with 33 and 32 points, respectively. The
best prediction (40 points) was based on a commercial game console that
simulated the matches. Still, given that the maximal points are 78, this result
is arguably not very impressive.

Rescarchers have also investigated rating systems to predict the outcome
of soccer matches. Perhaps the best-known approach is an adaption of the Elo
rating system for chess (Elo, 1978), originally proposed by Arphad Elo and
later adapted to football (Hvattum and Arntzen, 2010). The principle behind
Elo rating schemes is that the actual competitive strength of a player or team
is represented by a random variable sampled from a normal or logistic density
distribution centred on the team’s true strength. Comparing such distributions
from two teams allows the computation of the probability of winning. The
more the distributions overlap, the closer is the winning probability to 0.5 for
either team; the more separate the distributions are, the higher is the winning
probability for the team with the higher rating. If the winning probability of
both tcams is close to 0.5, then a draw is the most likely outcome. However,
the probability of a draw is not calculated directly.

The actual probability, Pa (Win), of team A winning is calculated from
the cumulative distribution function (CDF) of the rating difference, Ra —
Rg, between team A and team B as shown in Equation (1a). The winning
probability, Pg (Win), for tcam B is calculated analogously.

Typically, the underlying rating difference distribution is scaled somewhat
arbitrarily, so that the difference of 200 rating points equates to the higher
ranked team having a win probability of approximately 0.75. The base-10
logistic CDF with a scale factor of s = 400 is commonly used for standard Elo
rating systems. This is illustrated in the plot of Figure ?7. For comparison,
the plot also shows the corresponding natural logistic CDF and normal CDF.

, 1
Pp(Win) = 17 10Rs Relis (1a)
R\ =Rl + K(WDL - Pa(Win)) (1b)

where

— Pa(Win) denotes the probability of team A winning.

— Ra — Rg denotes the rating difference between the home team A and B.

— s is the scaling factor of the cumulative distribution function.

— R and RY denote a team’s new (updated after match) and old Elo
ratings, respectively.

— K is a weighting factor.

— WDL €{0,0.5, 1} refers to the observed outcome of the match, such that
1 is interpreted as team A winning, 0.5 denotes a draw, and 0 denotes team
B winning (i.e., team A losing).

After a match, the rating of both teamns is updated according to Equa-
tion (1b) based on the actual outcome, W DL, of the match and the predicted
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winning probability of each team. In a sequence of performances of the teams,
the weighting factor, K, determines how strong the impact of recent perfor-
mances is.

For example, ww._eloratings.net uses a scaling factor value of s = 400
for Equation (1b) and a weighting factor value of K = 50 for Equation (1b)
in their World Football Elo Ratings for continental championship soccer fi-
nals and major intercontinental tournaments (K is adjusted for goal differ-
ences greater than 1). Thus, K = 50 applies to the 2017 FIFA Confederations
Cup which was recently played in Russia in preparation for the 2018 FIFA
World Cup. In the final, Germany beat Chile 1:0 (hence no adjustment of K
is needed). Prior to the match, Germany was ranked 2nd in the World Foot-
ball Elo Ratings (with an Elo rating of 2063 points) and Chilc was ranked 8th
(with a rating of 1947 points). Before the match, according to Equation (1b),
the probability of Germany winning was Pger(Win) = 0.661 and that of
Chile winning was Pop| (Win) = 0.339. After the match, Germany’s rating
increased by ca. 17 points to 2070 (still ranked 2nd after Brazil) and that of
Chile decrcased by 17 points to 1930 (pushing it down to rank 9).

Applying the Elo rating scheme in soccer is problematic because of the
choice of a rating difference distribution and their paramcters, such as the
scale factor for logistic distributions (Equation (1a)). Another issue is choosing
a good value for K in the rating update rule (Equation (1b)). An even deeper
problem in such rating schemes is the limitation to a single rating per team to
model the team’s overall strength. It is also not obvious how the probability
of a draw should be derived. For example, if the winning probability bascd on
Elo rating is 0.75, we do not know how the remaining 0.25 are distributed over
draw and loss.

One of the major innovations in the research presented in this paper is
a soccer rating model (rating-based feature learning) that characterizes each
team by four ratings, representing a team’s attacking and defensive strength
both at its home and at its opponent’s venue. Moreover, our rating model does
not rcly on any distribution of ratings or rating differcncces of tcams. Instcad,
we define a model that (a) defines two equations that predict the goals scored
by the home and away team, respectively, based on the four ratings for each
team, and (b) a rating update function for each of the four ratings. Thus, the
entire rating model has six functions involving eight parameters, which are
optimized based on the actual match data.

3 Summary of analytical and experimental plan

Before we describe the new methodologies, experiments, and results in de-
tail, we provide a high-level overview of the analytical and experimental plan
(Figurc 1).

The analytical and experimental plan can be divided into four parts. First,
after stating the fundamental research question, we specify the concrete an-
alytical task, i.e., the prediction of 206 future soccer matches as defined in
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I ®

O Research question / Knowledge integration
To what extent can machine learning predict (1) Feature modeling
the outcome of soccer matches based on readily - Which factors influence the match outcome?
available match data? - How can these factors be represented as predictive

3| features?
TaSk (2) Data integration
Predict the outcome of 206 future matches - How can the match outcomes of various leagues
based on a data set of >200 000 past matches from different countries covering multiple seasons
be meaningfully integrated?

(‘\ Y
~ Feature engineering
(1) Receny feature extraction (2) Rating-based feature learning
- data integration across seasons and leagues - data integration across seasons
- 4 predictive feature time series per team: - team performance is quantified by a rating model
attacking strength, defensive strength, - performance ratings are updated based on rules
home advantage, strength of opposition after each match
- each time series yields n features, where n - score prediction based on performance ratings
denotes the recency depth
@ ¥ Y g
: (1) Receny feature learning set (2) Rating-based feature learning set
- number of games: 30 860 - number of games: 31 318
- number of features: 72 - number of features: 8 H
Y Y

|(1) k-nearest neighbor I (2) XGBoost

Supervised learning and application

Fig. 1: Overview of the analytical and experimental plan.

the 2017 Soccer Prediction Challenge Berrar et al. (2017). The raw challenge
learning set contains only data about past match statistics, but it is not readily
amenable to predictive analysis. The second step therefore concerns domain
knowledge integration; here, the central question is how meaningful informa-
tion can be extracted from the provided data set so that predictive modeling
becomes possible. Here, we {irst analyze which factors (e.g., home advantage)
are likely to contribute to a soccer match outcome and then how these fac-
tors can be represented. Knowledge integration encompasses data integration,
which in this context refers to how the data of various leagues, countries, and
scasons can be meaningfully integrated. In this second step, we came up with
two different, new ideas, which we call recency feature extraction and rating-
based feature learning. We formally developed both methods and then applied
them to the challenge learning set, which resulted in a recency feature learning
set and a rating-based learning set. Finally, we employed two supervised learn-
ing algorithms, £-NN and extreme gradient boosted trees, to build predictive
models based on these data sets. We finally applied the models to predict the
outcome of the 206 future matches.



Incorporating Domain Knowledge for Soccer Outcome Prediction 9

The last part, supervised learning and application, involves a standard su-
pervised learning problem. Our novel methodological contributions concern
the second and third part, knowledge integration and feature engineering, re-
spectively.

4 Knowledge integration

In addition to league and season, each match in the challenge learning set
(Dubitzky ct al., 2018) describes the date on which the match was played, the
teams involved, and the actually observed outcome in terms of the goals scored
by each team.! This format does not directly capture features that could be
used to learn a predictive model. So a central question in this study is: “How
can we derive predictive features from such data?”

A further problem is the composition of the challenge learning set in 52
soccer leagues from 35 countrics over a total of 18 scasons from 2000/01 to
2017/18. The assumption in the 2017 Soccer Prediction Challenge is that we
can integrate these data somehow to create a more reliable model than could
be obtained from separate league/season subsets alone. However, it is not
immediately obvious if (and how) we could integrate the match data across
lcagucs, countrics, and scasons.

4.1 Feature modeling framework

Hcere, we outline our basic conceptual framework for cngincering predictive
features from data provided by the soccer prediction challenge (Dubitzky et al.,
2018). Aspects relating to the integration of the data across leagues, seasons,
and countries are considered in Section 4.2.

Given a future soccer match between team A and B, our main idea is
to describe each team by features that characterize the team in terms of its
strengths and weaknesses relevant to the outcome of the match. Soccer domain
knowledge tells us that the definition of such features must take into account

the following dimensions?:

— Attacking performance describes a team’s ability to score goals.
— Defensive performance describes a team’s ability to prevent goals by the
opponent.

— Recent performance characterizes a team’s current condition in terms of
its aggregate performance over recently played matches.

1 Because the data covers only regular league soccer (no cups, tournaments, friendly
games, etc.), we also know that the match was played at the venue of the team mentioned
first.

2 We list only those dimensions that can be derived from the challenge data. Data sets
containing additional features, such as fouls committed, corners, yellow cards, and so on,
may offer more opportunities to formulate predictive features.
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— Strength of the opposition qualifies a team’s prior performance depending
on the strength of the opponent played in the (recent) past.

— Home team advantage refers to the advantage a team has when playing at
its home venue.

The attacking and defensive performance dimensions are both obvious and
intuitive. A team that scores many goals consistently has a strong attack.
Similarly, a team that consistently prevents its opponents from scoring is likely
to have a strong defense. The stronger a team’s attack and defense, the more
likely it is to prevail over an opponent.

As already indicated, we may obtain a team’s current attacking and de-
fensive strength by aggregating relevant recent performances over a period
of time. The observations in the challenge data are recorded at successive
points in time—the time points are defined by values of the “Date” vari-
able. The idea is that the strength of a tcam at time # can be expressed as
an aggregate computed from the team’s performances at recent time points
(t—1),(t=2),...,(t— n). The recency problem refers to the challenge of finding
an optimal value for n. Small values may not cover a sufficient number of past
performances (hence, may not yield robust predictive features), while large
valucs may include performances that arc too obsolete to rcliably characterize
the current condition of a team. Weighted, adaptive, and other schemes are
possible to capture the influence of past performances on future performance.
How many recent time points are considered may also have an impact on data
integration (cf. Section 4.2).

The strength of the opposition dimensions is perhaps one of the more subtle
aspects. As we aggregate various past performances of a team into a predictive
feature value, we need to qualify or weight the team’s past performances based
on the strength of the opponent against which the team achieved these. For
example, a 2:1 win against a top team should be weighted higher than a 2:1
win against a mediocre team.

The home tcam advantage in soccer (and indeed other tcam sports) is a
well-known phenomenon whereby soccer teams experience a competitive ben-
efit from playing at their home venue (Moskovitz and Wertheim, 2011). Based
on the challenge learning set containing Njearn = 216 743 matches (Dubitzky
et al., 2018), we can quantify the home team advantage in soccer: 45.42%
matches are won by the home team, compared to 27.11% draws and 27.47%
wins by the away tcam.

4.2 Data integration framework

Section 4.1 described the basic dimensions that should be considered in the
generation of features for predictive modeling. These considerations fully apply
in the context of a single league and season. However, the challenge learning
set contains various leagues from different countries covering multiple seasons.
The underlying assumption in the soccer prediction challenge (Berrar et al.,
2017) is that we can somehow “combine” all or most of the data from the
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challenge learning set for predictive modeling. On one extreme, we may decide
to preserve the league/season context throughout and construct a dedicated
predictive model from each league/season data subset. This approach would
be warranted if we assumed, for example, that the mechanisms underlying
the matches within a league/scason unit would be substantially different from
other league/season blocks. On the other extreme, we may decide to ignore the
league and season origin of the data and combine the matches from all leagues
across all seasons into a single data set and construct a single predictive model
from this unified data set. Thus, a 1:1 draw in GER3 (German 3rd Liga) in
the 2010/11 season would be similar to a 1:1 draw in BRA2 (Brazilian Serie
B) in the 2015/16 season (except for the league and season label).

Note that a team’s performance is of course not constant over time. Various
factors affect a team’s performance, for example, transfers of players, so per-
formance fluctuations across seasons are to be expected. Within each league
and season, we have a fixed number of teams that play a fixed number of
matches over the season according to the league’s season format. At the be-
ginning of a season, all teams in a league start out with zero points and goals.
For example, the English Premier League (ENG1) consists of 20 teams that
play a total of 380 matches over a season. The match schedule format is such
that cach tecam plays against cach other tcam twice, once at the home and
once at the away ground. By the end of the season, the best-performing teams
are crowned champion, promoted to a higher league, or qualified for play-offs
or other competitions, and the worst-performing teams face relegation. The
most obvious approach to predicting the outcome of future matches would be
to compute predictive features from a team’s performance over the n most
recent matches within a league and season and use these features to construct
a predictive model. However, there are two issues that need to be considered:
the recency problem (see Section 4.1) and the beginning-of-season problem.

The beginning-of-season problem arises because at the start of a season,
each team in a league starts out on zero points and zero goals. Thus, in order
to build up a record of past performances that is indicative of future perfor-
mances, we need to wait until each team has played a number of games before
we have such a record for the first time. The problem is that this leads to a loss
of data that could be used for predictive modeling—the larger n, the bigger
the loss of data. To illustrate, let us assume a valuc of n = 7 for the English
Premier League (20 teams, 380 matches per season). Requiring each team to
have played 7 matches from the start of the season means that we have to
wait for at least 70 matches (18.4% of 380) to be completed at the beginning
of the season before we can compute predictive features for all teams for the
first time. Because none of the first 70 matches can be characterized by 7 prior
matches, these matches are lost from the learning data set. Moreover, matches
taking place at the beginning of the season in the prediction data set could not
be predicted, either, because their predictive features cannot be computed.

One way to overcome the beginning-of-season problem is to view the suc-
cession of seasons for a given league as one continuously running season. In
such a continuous-season approach, the first matches of a new season would
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simply be considered as the next matches of the previous season. Under this
view, we could continue the performance trajectory from the previous season
and do not reset each team to zero—in terms of its continuing performance
indicators—when a new season starts. Therefore, we do not lose any data at
the beginning of cach new scason (only for the very first scason for cach league
within the data set). However, while this is true for teams that remain in the
same league for many seasons (which is generally the case for most teams), it
does not fully apply to teams that feature only infrequently within a league.

For example, in the 17 seasons from 2000/01 to 2016/17, FC Watford has
played only the 2006/07, 2015/16, and 2016/17 seasons in the English Pre-
mier League. This means that over these 17 seasons, we have only a fragmented
time-series data trajectory for Watford. Combining all seasons of ENG1 into
a single continuous season not only introduces the undesired beginning-of-
season effect twice (at the start of the 2006/07 and 2015/16 seasons), it also
also raises the question if we could reasonably view the first match of Wat-
ford in the 2015/16 as the “next” of match after Watford’s last match in the
2006/07 season. This is illustrated in Figure 2. At the bottom of the two ta-
bles (highlighted rows), we see the same match between Manchester City and
Watford played on 29/08/2015 in the 2015/16 season. In each table, the three
matches above the highlighted match (at time points ¢ — 1, ¢t — 2 and ¢t — 3)
show the first three matches of Manchester City and Watford, respectively,
in the 2015/16 season. In case of Manchester City, the matches labeled ¢ — 4,
t—5,t— 6 and t— 7 (column T') refer to Manchester’s last four matches in the
2014/15 season, whereas the corresponding four matches for Watford are from
the 2006/07 season. Thus, under the continuous-season view, there is a much
bigger gap between Watford’s matches across the season boundary (indicated
as dashed line in the diagram) and the matches of Watford.

The fluctuation of teams in lower leagues is even more pronounced than in
the top league in each country because the team composition in such leagues
is subject to change by teams promoted up from the league below as well as
teams demoted down from the league above. We refer to this as the league-
team-composition problem?3.

To illustrate the leaguc-tcam-composition problem, we look at the top
two leagues in Germany (GER1, GER2) over the 16 seasons from 2001/02 to
2016/17. Both leagues consist of exactly 18 teams per season over the consid-
ered time frame. Over this period, 35 different teams have featured in GERI,
seven of which played in all 16 seasons. In contrast, a total of 52 different teams
have featured in GER2 over the same period, nonc of which has remained in
the league over the entire time frame (and only one over 15 seasons).

One way of addressing the issues arising from league-team-composition
problem would be to combine all leagues from a country into one super league.
For example, the top three German leagues (GER1, GER2, GER3) covered

3 This problem has reared its ugly head in the challenge prediction set. It contains five
teams that have less than nine recent matches in the entire challenge learning set. This is
because until the recently started 2017/18 season, these teams have never featured in any of
the 52 leagues covered in the challenge learning set over the 2000/01 to the 2016,/17 seasons.
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Sea Lge Date HT AT HS AS T
14-15 ENG1 03/05/2015 Tottenham Hotspur Manchester City 0 1 t-7
14-15 ENG1 10/05/2015 Manchester City Queens Park Rangers 6 0 t-6
14-15 ENG1 17/05/2015 Swansea City Manchester City 2 4 t-5
14-15 ENG1 24/05/2015 Manchester City Southampton 2 0 t-4

"15-16 ENGL 10/08/2015 West Bromwich Albion  Manchester City 0 3 t-3
15-16 ENG1 16/08/2015 Manchester City Chelsea 3 0 t-2
15-16 ENG1 23/08/2015 Everton Manchester City 0 2 t-1
15-16 ENG1 29/08/2015 Manchester City Watford 2 0 t

Sea Lge Date HT AT HS AS T
06-07 ENG1 21/04/2007 Watford Manchester City 1 1 t-7
06-07 ENG1 28/04/2007 Sheffield United Watford 1 0 t-6
06-07 ENG1 05/05/2007 Reading Watford 0 2 t-5
06-07 ENG1 13/05/2007 Watford Newcastle United 1 1 t-4

"1516 ENGL 0808/2015 Everton Watford 2 2 t-3
15-16 ENG1 15/08/2015 Watford West Bromwich Albion 0 0 t-2
15-16 ENG1 23/08/2015 Watford Southampton 0 0 t-1
15-16 ENG1 29/08/2015 Manchester City Watford 2 0 t

Sea: Season; Lge: League; HT/AT: Team names; HS/AS: Score
T: Time points of recent matches across season boundary

Fig. 2: Match time-series trajectories of Manchester City and Watford, cover-
ing n = 7 recent matches (¢ = 1,t— 2, ..., ¢t = 7) prior to their encounter on
29/08/2015 under the continuous-season view. Note that Manchester City’s
trajectory is continuous and “smooth” across two consecutive seasons (green
dashed linc), whereas that of Watford is continuous across two scasons that
are years apart (hence, the red dashed line).

in the challenge learning set could be viewed as one German super league,
consisting of 18 + 18 4+ 20 = 56 teams per season. The fluctuation of teams in
such a country-specific super league would be less than the sum of fluctuations
over all individual leagues. For example, in the top three German leagues, a
total of 72 teams featured in the eight seasons from 2008/09 to 2015/16, 41
(57%) of the teams featured in all eight seasons, and 59 (82%) featured in
four or morc scasons. The more leagues arc covered per country, the higher
the positive effect of pooling the leagues into one super league. For 25 of the 35
countries in the challenge data, only a single (the top) league is covered. Thus,
the league-team-composition problem is inherently limited as team fluctuation
is only occurring at one “end” for top leagues within a country.

A conscquence of the super league approach is that all match outcomes
would be dealt with in the same way, independent of league membership. For
example, three match days before the end of the 2014/15 season of the English
Championship league (ENG2). AFC Bournemouth beat FC Reading by 1 to
0 goals. At the end of the season, Bournemouth was promoted to the English
Premier League (ENG1). On the third match day in the 2015/16 season of
ENGI1, Bournemouth beat West Ham United by 4 to 3 goals. In the time-
series under a super league view, these two wins by Bournemouth are only six
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match days apart. Can we consider the two wins on an equal footing, given the
class difference of opponents (Reading from ENG2, West Ham United from
ENG1)? We argue that this is justified because the class difference for teams
at the interface between two leagues is not significant, i.e., teams at league
interfaces could he viewed of approximately belonging to the same class.

While teams from within one country can play in different leagues over
a number of seasons (giving rise to the super league approach), teams never
appear in leagues across different countries (other than in rare continental
or global competitions that are not covered in the challenge data). This in-
dependence would suggest that it is reasonable to pool data from different
countrics without further consideration. However, some may arguc that this
is not necessarily true because the style and culture (including attack, de-
fense, tactics, strategy) of soccer may vary considerably across countries, and
match results may therefore not be directly comparable. For example, for New
Zealand (NZL1; n = 722 in the challenge learning set), we have an average of
goals scored by the home tcam of 1.898 (with a standard deviation of 1.520),
whereas for France (FRA1, FRA2 and FRA3 combined; n = 15314 in the
challenge learning set), we get an average of goals scored by the home team
of 1.375 (standard deviation: 1.166). We think it is justified to pool data from
leagues within each country without any adjustment because the statistics
suggest that the distributions are very similar (Dubitzky et al., 2018).

There is also an end-of-season problem which is orthogonal to the beginning-
of-season and the league-team-composition issues. On the last few match days
at the end of the season, a small number of matches may no longer be fully
competitive because some teams have nothing to play for anymore (such as
championship, relegation, promotion, qualifications for play-offs or other com-
petitions). Thus, predictive features derived from a match time trajectory
involving these gaies may be problematic. A simple way of dealing with this
problem would be to drop the last few matches within a season from the data
sets altogether. A more sophisticated approach would selectively remove end-
of-season matches in which at least one team has no real competitive interest.
Both approaches would lead to another loss of data. In this study, we do not
cxplicitly address this issuc.

5 Feature engineering methods

Taking into account the basic considerations on feature modeling and data
integration discussed above, we developed two methods to generate predictive
features:

1. rccency feature extraction
2. rating-based feature learning

In both methods, we adopt a continuous-season view to integrate data
across season-boundaries. For the recency feature extraction method, we also
combined data from different leagues within one country into a super league,
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whereas in the rating-based feature learning method, we did not merge data
across leagues.

5.1 Recency features extraction

Our first approach to feature modeling represents each match by four feature
groups per team. These four feature groups per team are the following:

— Attacking strength feature group, representing a team’s ability to score
goals.

— Defensive strength feature group, representing a team’s ability to prevent
goals by the opponent.

— Home advantage feature group, used to qualify both the attacking and
defensive strengths, respectively, in terms of home advantage.

— Strength of opposition feature group, used to qualify both the attacking
and defensive strengths as well as home advantage in terms of the strength
of the opposition.

Each of the four feature groups per team consists of n features, where n
denotes the recency depth of the match time-series from which the feature
valucs arc obtained. Thus, the total number of predictive features used to
describe a match with the recency feature extraction approach is 2 X 4 X 5,
reflecting 2% teams, 4X feature groups per team, each feature group nx levels
deep in terms of recency.

This approach is illustrated in Table 1. The table shows the four feature
groups characterizing Manchester City and Watford based on the n = 5 recent
performances prior to their match on 29/08/2015 (last match shown in tables
of Figure 2). The time points ¢t = 1 to t — 5 relate to the corresponding time
points and associated matches shown in Figure 2.

For example, the five recent Attacking Strength values for Watford over
the five recent time points are obtained by looking up the goals that Wat-
ford scored in those matches (Figure 2): ¢ = 1: 0 against Southampton, ¢ — 2:
0 against West Bromwich Albion, ¢ — 3: 2 against Everton, ¢ — 4: 1 against
Newcastle United, and ¢ — 5: 2 against Reading. In the same way, we de-
rive the goals scored for Manchester City and the goals conceded (Defensive
Strength) for both teams over the considered time frame. The value in the
strength of opposition group represent the average goal difference the oppo-
nent achiceved in its n prior matches. For example, at ¢ = 1 (23/08/2015)
Manchester City played at Everton. Everton’s average goals difference over
five games prior to 23/08/2015 was 0.2 because the five relevant matches
were as follows: 15/08/2015: Southampton 0:3 Everton, 08/08/2015: Ever-
ton 2:2 Watford, 24/05/2015: Everton 0:1 Tottenham Hotspur, 16/05/2015:
West Ham United 1:2 Everton, and 16/05/2015: Everton 0:2 Sunderland. Thus,
when Manchester beat Everton by two goals to zero on 23/08/2015, the overall
strength of the opposition (Everton) at that point was 0.2.
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Finally, the values in the Home Advantage group are drawn from the set
{-1.+1}, where +1 indicates that the corresponding feature values at time
point ¢t — ¢ are resulting from a home game, and — 1 indicates an away game.
Thus, each of the n features values in the three groups is qualified by a feature
valuc indicating whether the corresponding tcam played on the home or away
ground.

Table 1: Summary of performance on the learning set and prediction set.

Manchester City Watford
Feature Group \ Recency t-1 t-2 t-3 t-4 t-5|t-1 t-2 t-3 t-4 t-5
Attacking Strength 2 3 3 2 4 0 0 2 1 2
Defensive Strength 0 0 0 0 2 0 0 2 1 0
Strength Opposition 02 0 02 02 04|-04 04 0 -08 06
Home Advantage -1 1 -1 1 -1 1 1 -1 1 -1

Our algorithm produces 4 x n features for each team in such a way that
the home team’s features appear before the away team’s features. Thus, for
a recency depth of n = 4, we have 32 predictive variables, the first 16 corre-
sponding to the home, the last 16 corresponding to the away team. Of course,
the order of the predictive features is irrelevant for subsequent supervised
learning.

Using the continuous-season and super-league data integration approach on
the full challenge learning set (Njearn = 216 743), the recency feature extrac-
tion process turned out to be very time-consuming on a standard workstation.
Hence, we first generated features only for four selected recency depths: n = 3,
n =6, n =09, and n = 12, respectively. We explored their predictive proper-
ties. Based on this exploration, we decided to use n = 9 for the final feature
generation process. This value is also consistent with our conventional soccer
intuition: n = 6 seems to be too low (which reduces the robustness of the
features), and n = 12 seems to be too high (which means that irrelevant data
are included).

Processing the challenge learning set with n = 9 took 30659 seconds (about
84 hours) on a standard PC and produced 207 280 matches with 2x 4x 9 =
72 predictive features for each match. This means that a total of Njearn =
216743 - 207280 = 9463 matches (4.37%) were lost due to the beginning-of-
season problem at the very first season for each league covered in the data.

The challenge prediction set includes five matches involving a team whose
track record of matches over the seasons covered in the learning data set is less
than n = 9 matches. These teams appeared only recently (2017/18 season) for
the first time. Thus, for these fixtures, it was not possible to create features
aggregating the information from n = 9 recent matches. In Section 8.2, we
describe how we solved this problem by imputing missing features.
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5.2 Rating-based feature learning

Our second method to create predictive features adopts a feature-learning
approach. The basic idea of this method is to define a goal-prediction model
that predicts the home and away score of a match based on certain performance
ratings of each team. After each match, the ratings of both teams are updated
according to rating update rules, depending on the expected (predicted) and
observed match outcome and the prior ratings of each team. Both the goal-
prediction model and the update rules involve free parameters whose values
neced to be estimated (optimized) from the challenge learning set. Together, the
goal-prediction model and the rating update rules are referred to as a rating
model. The final rating model, with concrete optimal parameter values, is used
to generate predictive features, which are then readily amenable to standard
supervised learning.

First, we define four quantitative features that capture a team’s perfor-
mance rating in terms of its ability to scorc goals and inability to prevent
goals at both the home and away venues, respectively:

— Home attacking strength reflects a team’s ability to score goals at their
home venue  the higher the value, the higher the strength.

— Home defensive weakness reflects a team’s inability to prevent goals by
the opponent at their home venue—the higher the value, the higher the
weakness.

— Away attacking strength reflects a team’s ability to score goals at the op-
ponent’s venue—the higher the value, the higher the strength.

— Away defensive weakness reflects a tcam’s inability to prevent goals by the
opponent at the opponent’s venue—the higher the value, the higher the
weakness.

Based on these four performance rating features (per team), Equations (2)
and (3) define a goal-prediction model that predicts the goals scored by the
home and away team, respectively.

R Qh
h (Hhatt; Aadet ) = 2
Gn(Hhatt, Aaget ) 1+ exp(= Bn(Hnatt + Aadef ) = Th) @

R Qg
Aaatt, H = 3
ga( aatt, “ihdef ) 14+ eXp(— ﬁa(Aaatt + Hhdet ) — fYa) ( )

where

— gn are the predicted goals scored by home team H. gy € RO+ .

§a are the predicted goals scored by away team A. §y € Rg .

— Hhpatt are the home team’s attacking strength in home games. Hpat € R.
— Hhget are the home team’s defensive weakness in home games. Hpget € R.
— Aaart are the away team’s attacking strength in away games. Aaat € R.
— Aager are the away team’s defensive weakness in away games. Aagef € R.
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(a) ENGL1 league table after 19/03/2017

(b) Team ratings continuous ENGL1 season after 19/03/2017

Team RNK|PLD S C GD PTS Team HATT HDEF AATT ADEF| RAT
Chelsea 1|28 59 21 38 69 Chelsea 316 042 142 -117 | 9.06
Tottenham Hotspur 2 28 55 21 34 59 Manchester City 269 -0.33 188 -0.60 [ 838
Manchester City 3 28 54 30 24 57 Tottenham Hotspur 282 046 146 -066 | 828
Liverpool 4 129 61 36 25 56 Arsenal 211 071 206 005 | 7.71
Manchester United 5 27 42 23 19 52 Liverpool 3.07 -016 151 053 | 7.09
Arsenal 6 27 56 34 22 50 Manchester United 1.02 -083 107 -061| 6.40
Everton 712 51 30 21 50 Everton 265 -007 056 008 | 6.08
West Bromwich Albion 8 29 39 38 1 43 Southampton 152 -0.03 050 -047 | 541
Stoke City 9 | 29 33 42 -9 36 Leicester City 147 002 039 047 | 425
Southampton 10| 27 33 36 -3 33 West Ham United 0.63 0.80 122 034 | 3.60
Bournemouth 11| 29 42 54 -12 33 West Bromwich Albion 055 040 -0.39 -010( 274
West Ham United 12 | 29 40 52 -12 33 Stoke City 048 012 002 070 | 256
Burnley 131 29 31 42 -11 32 Bourmnemouth 0.79 0.73 0.42 117 218
Watford 14 | 28 33 48 -15 31 Middlesbrough -0.58 0.06 -0.43 -0.34 | 215
Leicester City 15| 28 33 47 -14 30 Watford 031 033 012 066 | 207
Crystal Palace 16 | 28 36 46 -10 28 Burnley -0.02 -024 -056 072 | 1.82
Swansea City 17| 29 36 63 -27 27 Crystal Palace -0.76 049 071 057 177
Hull City 18| 29 26 58 -32 24 Swansea City 054 082 031 119 | 173
Middlesbrough 19| 28 20 33 -13 22 Sunderland -0.76 061 0.14 114 | 052
Sunderland 20| 28 24 50 -26 20 Hull City -0.17 048 -0.82 129 | 012

RNK: Rank. PLD: Games played. S: Goals scored.

C: Goals conceded. GD: Goal difference. PTS: Points.

HATT: Home attacking strength. HDEF: Home defensive weakness.
AATT: Away attacking strength. ADEF: Away defensive weakness.

Fig. 3: English Premier League after matches played on 19/03/2017 in the
2016/17 season. (a) League table at that point. (b) Table showing the four
performance ratings from Equations (2) and (3) for each team at that point.

— ap, aa are constants defining maximum for gn, ga. on, s € RT.
— PBh, fBa are constants defining steepness of sigmoidal curves. B, 3a € R
— “h,Va are constants defining the curves’ threshold point. vn,va € R.

Notc how the goal-prediction modcl predicts the goals scored by the home
team, gn, based on the sum of the home team’s home attacking strength, Hnatt,
and the away team’s away defensive weakness, Aadef . The higher the sum, the
more goals the home team is expected to score. Analogously. the predicted
goals scored by the away team, G, depend on the sum of the away team’s
away attacking strength, Aaatt, and the home team’s home defensive weakness,
Hhiget - The higher the sum, the more goals the away team is expected to score

To illustrate the rating-based goal-prediction model defined by Equations (2)
and (3), we look at the situation in the English Premier League right after
the matches played on 19/03/2017 in the 2016/17 scason. The situation is
depicted by the league table (a) and the performance rating table (b) in Fig-
ure 3. The league table is sorted in descending order (first by points, then
by goal difference and goals scored). The rating table is sorted in descending
order by the combined rating, RAT. The combined or overall rating of a team,
Trat, is computed as follows: Tyat = Thatt + (max(HDEF) = Thaet ) + Taatt +
(max(ADEF)= Taget ), where max(HDEF) and max(ADEF’) represent max-
imum defensive weakness of all teams considered.
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We use the combined rating, RAT, only as a surrogate performance indi-
cator to gauge the overall plausibility of the rating scheme as illustrated in
Figure 3. If the team ranking in the two tables were to deviate significantly,
the plausibility of the rating model would be doubtful. Notice, the rating table
in Figurc 3b is derived from all 1423 matches in ENG1 from the 2013/14 to
the 2016/17 seasons (up and inclusive to the matches on 19/03/2017) under
the continuous-season approach. Over this time frame, the ENG1 continuous-
season league consists of 26 teams. In the table in Figure 3b, in order to
facilitate direct comparison, we only show the 20 teams that played in the
2016/17 season (Figure 3a).

We illustrate the goal-prediction model based on the match between Ai-
senal (home team) and Manchester City (away team) played on 02/04/2017
in ENG1. The game actually ended in a 2:2 draw. Based on the rating val-
ues for both teams highlighted in Figure 3b, the model predicts that Arsenal
scores gn = 1.588 and Manchester City gq = 1.368 goals. The corresponding
visualizations of the goal-prediction model functions (with concrete parameter
values) and scores are depicted in Figure 4. Note that we set ay = as = 5
across all models in this study.

So far, so good. Our goal-prediction model is able to predict the goals of a
match between team A and B based on the teams’ performance ratings before
the match. But where do we get the ratings from? And how do we determine
concrete parameter values for the model in Equations (2) and (3)?

The rating model characterizes a team, T', by four performance ratings, the
team’s home attacking strength, Thatt, home defensive weakness, Thgef , away
attacking strength, Thatt and away defensive weakness, Thqet , respectively, as
illustrated in Figure 3b. These ratings are updated after each match that the
tcams play, depending on the predicted and observed outcome of the match
and the prior ratings of both teams.

In particular, a team’s home attacking and defensive ratings are updated
according to home rating-update rules defined by the Equations (4) and (5).

Tr:;rtlt = Tft1att + Whatt (gnh = Gn) (4)
Tr::irelf = Trt1def + Whdef (Qa - ﬁa) (5)

where

- T ﬁ:tlt is the new home attacking strength of 1" after match. T, rt]:tlt eR

— T} .4 is the previous home attacking strength of T' before match. T} ., € R
— Trt]gelf is the new home defensive weakness of T' after match. Trt]gelf eR

— T} 4e 1s the previous home defensive weakness of 1" before match. 7} 4¢ € R
— Whatt is the update weight for home attacking strength. wnatt € RT.

— Whdef is the update weight for home defensive weakness. wnger € RT.

— Uh, Ya are the observed goals scored by howme/away team. gn,ga € Ng

— Jn, Ga are the predicted goals scored by home/away team. gn, ga € Rj.
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Predicted Goals HOME Team: Arsenal
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Predicted Goals AWAY Team: Manchester City
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Fig. 4: Predicted scores for Arsenal (top) versus Manchester City (bottom) on
02/04/2017 based on their ratings after match day on 19/03/2017 shown in
the table in Figure 3b.

A team’s away attacking and defensive ratings are updated according to
away rating-update rules dcfined by the Equations (6) and (7).

Tetl;rt% = Tetlatt + Waatt (9a = Ja) (6)
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Tidei = Tadet + wadef (9n = Gn) (7)

where

— Tt is the new away attacking strength of T after match. i1} € R.

— Tl Is the previous away attacking strength of 1" before match. T} ,,, € R.

— Tt is the new away defensive weakness of T after match. Th € R.

_ Tet\

— wWaatt is the update weight for away attacking strength. waatt € RT.

— Wadef is the update weight for away defensive weakness. waget € RT.

— 0h, ga Is the actual goals scored by home/away team, respectively. gn,ga €
Np.

— Jn, Ga is predicted goals scored by home/away team. gn, ga € Rj.

gef 18 the previous away defensive weakness of 1" before match. 7} ,,, € R.

We illustrate the rating-update rules based on the Arsenal versus Manch-
ester City Premier League match played on 02/04/2017 in the ENG1 league.
According to the goal-prediction modecl, the predicted outcome of the match
was 1.588:1.368, hence g, = 1.588 and g, = 1.368 (see Figure 4). The actually
observed outcome was a 2:2 draw, i.e. gn = 2.000 and g5 = 2.000. Figure 3b
shows the performance ratings of both teams right before the match. After the
match, Arsenal’s two home ratings and Manchester City’s two away ratings
are updated based on match outcome and the teams’ prior ratings as follows®:

— Arsenal’s home attacking strength: HATT : 2.11 — 2.16.

— Arscenal’s home defensive weakness: HDEF : —0.71 — —0.60.

— Manchester City’s away attacking strength: AATT : 1.88 — 1.94.

— Manchester City’s away defensive weakness: ADEF : —0.60 — —0.56.

We can see that the rating updates are meaningful. For example, Arsenal’s
home attacking strength improved slightly, from 2.11 to 2.16. because Arsenal
was expected to score 1.588, but actually scored 2.000 goals. Likewise, Arsenal
was expected to concede 1.368, but actually conceded 2.000 goals. Thus, Ar-
senal’s home defensive weakness rating increased slightly from -0.71 to -0.60,
to reflect a slightly higher defensive weakness. Similar considerations apply to
the update of Manchester City’s performance ratings.

In order to create predictive features, our feature-learning algorithm per-
forms two main steps:

Step 1: Estimate concrete values for the eight parameters of the overall
rating modcl, Equations (2) to (7), based on the learning sct.

Step 2: Apply rating model from Step 1 to learning and prediction set to
create rating features.

4 Notice that only two ratings per team are updated per match depending on whether
they play at their home venue or at the opponent’s ground.
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Step 1: Estimate rating model parameters: Given a learning data set, L,
containing the results of past soccer matches, the optimization algorithm first
sorts all matches in increasing chronological order, i.e., from the least to the
most recent match. Then, a rating table like the one illustrated in Figure 3b is
derived from L. The rating table has cxactly m cntrics, which correspond to
the number of unique teams featuring in the learning set, L. The rating table
is used to keep track of the performance ratings of each team. At the start, the
rating values of each team are set to zero. The optimization algorithm keeps
generating parameter sets, M, until (a) the average goal-prediction error falls
below a preset threshold, or (b) the predefined maximal number of parameter
sets have been evaluated. Each parameter set consists of eight concrete values
corresponding to the rating model parameters in Equations (2) to (7): S,
Yhs Ba, Yas Whatt, Whdef » Waatt and wadef . Note that our rating feature model
does not optimize the parameters ap or ag: these parameters were set to
ap = ag = 5.

For each parameter set, M, the algorithm iterates over all matches, d; €
L, in the learning set, from the least to the most recent match. For each
match, dj, the corresponding rating values—Hpary and Hpger for the home
team and Aaart and Agger for the away team—are retrieved and the goals, gn
and ga, are predicted according to Equations (2) and (3). The individual goal-
prediction error, €g, of the observed and predicted goals is computed using
Equation (8), and the corresponding performance ratings of the two teams
arc updated according to the rating-update rules defined in Equations (4) to
(7). The average goal-prediction error, &, over all matches in the learning set
determines the predictive performance of the model based on the parameter
set M. The final or best model is defined by the parameter set, Mpest, With
the lowest average goal-prediction error.

Step 2: Apply model to generate features: After the optimal model param-
eter set, Mpest, has been determined, we are left with a final rating table that
shows the ratings of all teams right after the most recent match in learning
set (this is illustrated in Figure 3b). Essentially, these ratings describe the per-
formance ratings that each team has at this point in time. In order to obtain
rating features for all matches in the learning and prediction sets, L and P,
we first combine the two data sets such that the chronological order across all
matches in the combined data set, LP, is preserved (assuming that prediction
sct matches take place after the matches in learning set). Now we use the
rating model obtained in Step 1 and iterate through all matches d; € LP and
record all four rating values of each team before each match and add these to
the match data set. Thus, each match is characterized by eight rating features,
four for the home team and four for the away team, as illustrated in Table 3.
The rating features capture the teams’ attacking and defensive performance
(both at the home and away venue) right before a match.

Notice that for the score-prediction model, Equations (2) and (3), we al-
ways use only four of the eight rating features—the home ratings of the home
team and the away ratings of the away team. However, all eight rating values
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generated by the feature-learning algorithm form the basis for learning a final
outcome-prediction model as required by the soccer prediction challenge.

Table 2: Ilustration of the rating features for three matches of ENG1 in the
2016/17 season. The data shows the match between Arsenal vs. Manchester
City on 02/04/2017 with unknown outcome, and the match of each team
directly prior to their encounter.

Rating Features HOME Team (HT) [ Rating Features AWAY Team (AT)

Date |HT AT | HS AS| HATT HDEF AATT ADEF | HATT HDEF AATT ADEF
18/03/2017 |West Brom. Albion Arsenal 3 1 0.32 0.46 -0.39 -0.10 211 -0.71 2.16 -0.11
19/03/2017 |Manchester City Liverpool 1 1 2.85 -0.31 1.88 -0.60 3.07 -0.16 1.55 0.65
02/04/2017 |Arsenal Manchester City | 2 ? 211 -0.71 2.06 0.05 2.69 -0.33 1.88 -0.60

HATT: Home attacking strength. HDEF: Home defensive weakness. ~ AATT: Away attacking strength. ADEF: Away defensive weakness.
HS: Goals scored by home team. AS: Goals scored by away team.

For the feature-learning algorithm used in this study, we calculated the
individual goal-prediction error, eq, as defined in Equation (8).

eg = 5[ (9n = k(jih)2 +(9a = ga)2 ] (8)

where

— gn and g, refer to the actual (observed) goals scored by the home and away
team, respectively. gn, ga € No;

— gn and g, refer to the predicted goals scored by the home and away team,
respectively. gn, ga € Ra' .

For the feature-learning algorithin, we used particle swarm optimization
(PSO) (Kennedy and Eberhart, 1995) to estimate the values for the eight
model parameters of the rating model defined by Equations (2) to (7). In brief,
PSO is a population-based, stochastic optimization method inspired by bird
flocking, fish schooling, and similar swarm behavior. It is a general-purpose
method that does not make strong assumptions about the problem at hand
and is particularly suited for continuous-parameter problems with complex
optimization landscapes.

In PSO, a potential solution is represented as an individual (particle) of
a population (swarm). At each generation i, each particle p has a defined
position xp(7) and velocity vp(7) within n-dimensional space R". A swarm P
cousists of 1 particles. After each generation, the position and velocity of each
particle in the swarm is updated based on the particle’s fitness describing the
quality of the associated solution: in our study, the average goal-prediction
error according to the PSO update rules® shown in Equations (9a) and (9a).

5 Enhanced version according to Shi and Eberhart (1998).
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V(i +1) =w vp(i) +c1 7(1) (yp(d) = %p(0)) + c2 () (2 (@) = xp(2))  (9a)
Xp(i+1) =xp(i) + vp(i + 1) (9b)

where x;(2) and xp(i+1) denote the position of particle p in n-dimensional
space at generations ¢ and i+ 1, respectively. In our feature-learning algorithm,
the n dimensions correspond to the permissable values of the cight rating
model parameters in Equations (2) to (7). The vectors vp(i) and vp(i + 1)
denote the velocity of particle p at generation ¢ and ¢ + 1, respectively. yp(4)
refers to the best personal solution (position) of particle p until generation i,
and zy () denotes the best global solution (position) of any particle k reached
by generation i. The PSO parameter w denotes the inertia weight used to
balance global and local search according to Shi and Eberhart (1998), and ()
denotes a function that samples a random number from the unit interval [0, 1].
Finally, ¢; and co are positive learning constants.

We employed the PSO implementation of the R package hydroPSO (Zambrano-
Bigiarini and Rojas, 2013) with the following main control parameters: number
of particles of the PSO swarm was npart = 50, and maximal number of genera-
tions to evaluate was maxit = 200. Hence, up to maximally 10 000 parameter
sets were evaluated per rating model. After some experimentation, the fol-
lowing limits for the rating model parameters were applied to constrain the
search space: B, Ba € [0,5] and v, va € [~ 5, 5] for Equations (2) and (3), and
Whatt, Whdef > Waatt, Wadef € [0, 1.5] for Equations (4) to (7).

Step 1 of the feature-learning algorithin that estimates the rating model
parameters is very time-consuming when applied to a large learning set. Thus,
to generate features for the prediction challenge, we took a few measures to
reduce the computational complexity of the feature-learning process. First, we
focused on only the 28 leagues featuring in the original challenge prediction
sct. This means that data from other lcagues were ignored.

Second, for these 28 leagues, we adopted a within-league, continuous-
seasons data integration approach covering only matches from the 2013/14
season onward.

Third, we created a rating model and the associated rating features for
each league separately, on a league-by-league basis. This, of course, has the
added advantage that we respect the league context when we create predictive
features. Based on these measures, we extracted a total of 31318 matches
from the original challenge learning set (Njearn = 216 743) to form our new
rating learning set. A breakdown of the rating learning set data we used in the
feature-learning algorithm is shown in Table 3.

Our feature-learning approach which is based on a score-prediction model,
Equations (2) and (3), and rating-update rules, Equations (4) to (7), has sev-
eral interesting properties. First, it offers an intuitively pleasing solution to the
recency problem because it does not require us to explicitly define the number
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Table 3: Breakdown of data in rating learning set used in Step 1 of our feature-
learning algorithin.

Lge 13-14 14-15 15-16 16-17 17-18 N W% D% L% HSg  ASg
AUT1 180 180 180 130 0 670 | 46.27 24.18 2955 | 1.65 1.26
BEL1 240 240 240 240 0 960 | 4750 2458 27.92 | 1.60 1.18
CHE1 180 180 180 125 0 665 | 4436 24.96 30.68 | 1.72 1.32
CHL1 306 306 240 176 0 1028 | 4465 23.83 3152 | 1.56 1.29
CHN1 240 240 240 240 16 976 | 4529 28.28 2643 | 1.56 114
ECU1 264 264 264 264 40 1096 | 47.17 26.92 2591 | 1.47 1.03
ENG1 380 380 380 283 1423 | 4554 24.03 3043 | 154 117
ENG2 552 552 552 455 2111 | 4225 2828 2946 | 1.43 114
FRA1 380 380 380 299 1439 | 4566 26.48 27.87 | 1.45 1.06
FRA2 380 380 380 300 1440 | 4278 3257 24.65 | 133 1.01
GER1 306 306 306 225 1143 | 46.81 23,53 29.66 | 1.62 1.25
GER2 306 306 306 225 1143 | 4217 29.48 28.35 | 1.40 1.16
GRE1 306 305 0 200 811 | 53.02 2454 2244 | 151 0.93
HOL1 306 306 306 243 1161 | 4496 2558 29.46 | 1.69 1.33
ISR1 182 182 182 189 735 | 3918 27.76 33.06 | 1.25 111
ITAL 380 380 380 290 1430 | 4559 2531 29.09 | 1.52 117
JPN1 306 306 306 306 36 1260 | 4111 2357 3532 | 141 1.25
KOR1 266 228 228 228 18 968 | 39.98 29.55 3048 | 1.33 114
MAR1 240 240 240 170 0 890 | 4337 34.04 2258 | 1.20 0.86
MEX1 306 306 306 243 0 1161 | 4393 2851 2756 | 1.49 1.16
POR1 240 306 306 234 0 1086 | 44.48 26.15 29.37 | 1.42 1.07
RUS1 240 240 240 160 0 880 | 4420 26.82 2898 | 1.37 1.02

0
0
0

SCO1 228 228 228 174 858 | 43.01 22.61 3438 | 150 1.23
SPAl 380 380 380 279 1419 | 46.86 23.96 29.18 | 1.60 115
TUN1 240 240 240 137 857 | 47.84 29.17 2299 | 1.23 0.80
USA1 323 323 340 340 32 1358 | 50.66 26.44 22.90 | 1.65 111
VEN1 306 306 380 410 65 1467 | 4526 29.11 25.63 | 1.45 1.05
ZAF1 240 240 240 163 0 883 | 41.22 29.22 2956 | 1.25 1.03
Sum/Avg| 8203 8230 7950 6728 207 |31318| 4481 26.83 2836 | 1.47 112

Lge: Soccer league. nn-mm: Season. HSg, ASg: Average home/away goals per match.
W%, D%, L%: Home win, draw and away win percentage.

of recent games to consider in the computation of predictive features. The
update weights (w-parameters) defined by the rating-update rules take care of
this aspect. The higher the update weight. the stronger the emphasis on more
recent results. The precise value of the update weights is learned from the data.
Sccond, our featurc-learning approach addresses the difficult strength-of-the-
opposition problem in a very “natural” way by rating each team’s current per-
formance status by four features. Thus, the observed outcome of a match can
be “naturally” qualified depending on the strength of the opposition. More-
over, these rating features distinguish attacking and defensive performance as
well as the home advantage dimension. Third, the score-prediction model of
the feature-learning approach presented here not only captures the margin of
victory and distinguishes different types of draws, it also takes into account
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(due to the sigmoidal characteristics) the fact that many soccer outcomes in-
volve few goals on each side (cf. Figure 5).

6 Summary of the feature engineering and resulting learning sets

The challenge learning set consists of Njearn = 216 743 matches, and the chal-
lenge prediction set counsists of Npreq = 206 matches. Processing the challenge
learning set with the recency feature extraction method produced a recency
learning set consisting of 207280 matches (95.63% of the challenge learning
set) with 72 predictive features per match, and a recency depth of n = 9.
The data loss is due to the beginning-of-season problem at the start of each
continuous-scason league. For five of the 206 matches of the challenge learning
set, we could not produce recency features because at least one team featuring
in each of the five matches does not have a history of at least five matches.
The data was integrated by adopting the super-league and continuous-season
approach. This means that data from each country was pooled into a single
continuous season encompassing all available seasons from each league within
a country. One advantage of this approach is that it maintains the country
context during the feature generation.

Applying the rating-based feature learning method to the challenge learning
set produced a rating learning set with Nya = 31318 matches (14.4% of
challenge learning set) with eight predictive features per match. The reason
for the relatively limited size of the feature learning set is the computational
complexity of the featurc-lcarning approach duc to the optimization part of
the algorithm. Thus, only a subset of the challenge learning data set was
processed—a breakdown of the leagues and seasons of the rating learning
set is shown in Table 3). The rating features were generated on a league-by-
league basis only, based on a continuous-season approach, covering the seasons
from 2013/14 to 2017/18. One advantage of this league-by-league processing is
that the league context in feature generation is being maintained. The rating
feature-learning approach does not lead to a data loss due to the beginning-
of-season problem because at the start of its time-series trajectory, each team
starts with zero as initial rating, and the rating changes after the first match
is played. Thus, this approach produced ratings even for the five teams in the
challenge prediction sct with less than nine prior matches.

Figurc 5 shows the 25 most frequent match outcomes in the challenge
learning set (a), the recency learning set (b), and the rating learning set (c).
Notice, the nine most common results in all three learning sets involve no more
than two goals for each team and account for 157047 (72.46%) of all results
in the challenge learning set.

Figure 6 shows the prior probabilities of win, draw, and loss in the challenge
learning set, the recency learning set, and the rating learning set. Figure 6 also
nicely shows the home advantage: the prior probability of a win is far higher
than the probability of a loss or draw.
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(a) Relative frequency b) Relative frequency c) Relative frequency
in the challenge learning set [%] in the recency learning set [%] in the rating learning set [%]
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Fig. 5: Relative frequencies of match outcomes in (a) the challenge learning
set, (b) the recency learning set, and (c) the rating learning set. Shown are
the 25 most frequent results from a total of 76 different results.
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Fig. 6: Boxplots of the prior probabilities of win (W), draw (D), and loss (L) in
(a) the challenge learning set, (b) the recency learning sct, and (c) the rating
learning set.
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7 Evaluation metric

The evaluation metric for the outcome prediction of an individual soccer match
is the ranked probability score (RPS) (Constantinou and Fenton, 2012), which
is defined as

m_
Lok
(5 = ) (10)

i=1 j=1

)

r—

RPS =

where r refers to the number of possible outcomes (here, » = 3 for home
win, draw, and loss). Let p = (p1, p2, p3) denote the vector of predicted prob-
abilities for win (p1), draw (p2), and loss (p3), with p; + ps + ps = 1. Let
a = (a1,a2,a3) denote the vector of the real, observed outcomes for win,
draw, and loss, with a1 + ao + a3 = 1. For example, if the real outcome is
a win for the home team, then a = (1,0,0). A rather good prediction would
be p = (0.8,0.15,0.05). The smaller the RPS, the better the prediction. Note
that the Brier score is not a suitable metric for this problem. For example,
assume that a = (1,0,0). A model X makes the prediction py = (0,1,0),
while a model Y makes the prediction py = (0,0,1). The Brier loss would be
the same for both X and Y, although the prediction by X is better, as it is
closer to the real outcome.

The RPS value computed with Equation (10) is always within the unit
interval [0,1]. Thus, an RPS of 0 indicates perfect prediction, whereas an
RPS of 1 expresses a completely wrong prediction. For cxample, let’s as-
sume the actual, observed outcome of a soccer match was a win by the home
team, coded as a = (1,0,0). Let’s further assume two predictions for that
match: a “crisp” draw prediction by model X, py = (0,1,0), and a predic-
tion py = (0.75,0.20,0.05) by model Y. Using Equation (10), we obtain a
ranked probability scorc of RPS = 0.500 for the prediction by model X and
RPS = 0.033 for the prediction by model Y. So, according to the RPS, the
prediction by model Y is better than that by model X. Intuitively, this seems
plausible.

The goal of the 2017 Soccer Prediction Challenge was to minimize the aver-
age over all ranked probability scores for the prediction of all n = 206 matches
in the challenge prediction set. The average ranked probability score, RPS,yg,
which was also used as criterion to determine training and test performance
of our models, is defined by Equation (11).

RPS; (11)
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8 Supervised learning algorithms

We used the following two learning algorithms to build predictive models from
our data sets: k-nearest neighbor (k-NN) and ensembles of extreme gradient
boosted trees (XGBoost) (Chen and Guestrin, 2016). The reason why we chose
XGBoost is that it has shown excellent performance in a number of recent
data mining compctitions: 17 out of 29 Kaggle challenge winning solutions
used XGBoost (Chen and Guestrin, 2016). XGBoost is therefore arguably one
of the currently top-performing supervised learning algorithms. We developed
a k-NN model primarily because of its simplicity.

We also implemented two different null models based only on the prior
probabilities of win, draw, and loss in the challenge learning set. All analyses
and implementations were carried out in the R environment (R Core Team,
2017). The R code is provided in retraceability scripts at the project website
at https://osf.io/ftuva/ (Berrar ct al., 2017).

8.1 k-nearest neighbor algorithm

The k-nearest neighbor (k-NN) algorithm is one of the simplest and arguably
oldest non-parametric machine learning methods (Cover and Hart, 1967; Wu
et al., 2008). In k-NN, the solution to an unknown test instance is derived
from a group of k cases (the k ncarest neighbors) in the training set that are
closest to the test case according to some measure of distance. For example,
in classification, the class label of a new case may be determined based on
the (weighted) majority class label found in the set of k nearest neighbors.
The k-NN algorithm belongs to the class of lazy machine learning algorithms
in which genceralization beyond the training data is delayed until a concrete
query is made. The k-NN approach is flexible and has been successfully used
to address a variety of learning tasks, including classification and regression
learning. Several studies have shown that the performance of a simple k-NN
classifier can be on par with that of more sophisticated algorithms (Dudoit
et al., 2002; Berrar et al., 2006).

A critical issue affecting the performance of k-NN is the choice of k. If k is
too small, the result may be very sensitive to noise in the k-nearest neighbors
sct; if k is too large, the k ncarcst ncighbors may contain too many irrclevant
cases, potentially leading to poor generalization performance. The optimal
value for k, kopt, is typically determined in a learning phase which evaluates
different k-values in a setup that divides the learning set into training set and
validation set, for example, using leave-one-out or n-fold cross-validation. For
large data sets, the learning phase could become computationally expensive,
as for cach instancc in the test set the distance to cach instance in the training
set needs to be computed.

The choice of the distance measure is another important consideration in
k-NN. Commonly used distance measures include the Euclidian distance, root
mean squared distance, and cosine distance. A good distance measure is one
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for which a smaller distance between two cases implies a greater likelihood
of these having the same or a similar solution. Some distance measures may
become less discriminating as the number of attributes gets very large. Also, if
the scale of instance attributes varies widely, then a small number of attributes
may dominate the distance measure. In such situations, it is advisable to scale
attributes.

To predict the soccer match outcomes, we implemented a k-NN algorithm
in R specifically for the soccer prediction challenge. Essentially, this implemen-
tation consists of two main functions: trainRatingKNN and predictRatingkKNN.

— trainRatingKNN takes as input a rating learning set, a range of values k
to explore, and the proportion of instances from the learning set to use as
test set. It computes the optimal value kopt and outputs the test set with
predictions. the value kopt, and the average test set RPS obtained with
kopt .

— predictRatingKNN takes as input a rating learning sct, a rating prediction
set, and a concrete k value. It outputs the prediction set with probabilities
for the three match outcomes.

8.2 Extreme gradient boosted trees

The basic idca of boosted trees is to learn a number of weak tree classificrs
that are combined to one ensemble model (Friedman, 2001). We used the R
package xgboost (Chen et al., 2017) to implement the ensembles of extreme
gradient boosted trees.

Building an ensemble of decision trees with XGBoost involves the opti-
mization of the following parameters:

— maximal tree depth, dpax: larger values lead to more complex trees, which
might be prone to overfitting;

— learning rate, 7: this shrinkage parameter is a weighting factor for new
trees being added to the ensemble; the smaller the value of 7, the smaller
the improvements by the added trees;

— training set subsampling, r,: random subsampling ratio for the training
set to avoid overfitting; for example, r, = 0.8 means that only 80% of the
training set are used by each tree;

— feature subsampling, 7 : random subsampling ratio for the features: for
cexample, 75 = 0.8 mcans that cach tree sclects only 80% of the available
features;

— number of trees in the ensemble, ¢.

9 Experiments

The final learning and prediction data sets were released on 22 March 2017.
The submission deadline for predictive models was 23:59 CET on 30 March
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Fig. 7: Timeframe of the 2017 Soccer Prediction Challenge.

2017 (Figure 7), which did not allow us to carry out all experiments that we
had planned. For example, we were not able to apply both learning algorithms,
k-NN and XGBoost, to both the recency features learning set and the rating-
based features learning set. Below, we report our analyses that we could finish
on time (and the results that we submitted to the competition) and the more
exhaustive analyses that we completed after the deadline. The goal of the post-
challenge experiments was to compare the recency feature extraction method
with the rating-based learning method.

9.1 Modecls submitted to the 2017 Soccer Prediction Challenge
9.1.1 k-NN and rating-based feature learning set

Using the rating-based features learning set (Nyq; = 31 318; see Section 5.2),
we implemented the k-NN algorithm. We randomly split the rating feature
learning set into a single training set (Nirain = 26620; 85%) and test set
(Ntest = 4698; 15%). In order to find an optimal value for k, we needed to
determine the k nearest neighbors for each instance in the test set. This means
we had to perform 4698 x 26 620 = 125060 760 distance computations (plus
checking and sorting operations) for each k value. Thus, after some experi-
mentation with different k-values, we varied k from 50 to 85 in steps of 5,
and predicted for each k the outcome probabilities of each match in the test
set from k nearest neighbors in the training set. With this procedure, we de-
termined the optimal valuc as kopt = 70 based on the best averaged ranked
probability score (Equation (11)). RPSayg = 0.2105, achieved on the test set.
We used kopt = 70 to predicted the 206 matches in the prediction set (with
rating features) based on the entire feature learning set with Ny = 31318
instances.

To predict the outcome of a test instance, X, based on its k nearest neigh-
bors, we computed the proportion of each of the three observed outcomes in K.
For example, if the observed outcomes in the set of k& = 70 nearest neighbors
of X were 47 x home wins, 13 X draws and 10 x away wins, the individual
prediction for X would be p; = 47/70 = 0.671, po = 13/70 = 0.186 and
p3 = 10/70 = 0.143 in line with the definitions in Equation (10).
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We computed the distance d between two instances X and Y based on the
eight rating features as defined in Equation (12).

(12)

where (see Table 2)

. — h h h h a a a a
-z €X = {Ihatt’xhdef » Laatt> Ladef » Thatt» Thdef » Taatts xadef} refer to the
rating fcatures of the home, h, and away, a, tcam of match X;
a0 — [,h 4 20 0 P ! P} P!
— Ui €Y = {Ynatt> Yndet > Yaatt> Yadef + Ynatts Yndef » Yaatt> Yader } Tefer to the
rating features of the home, h, and away, a. team of match Y.

We used the k-NN approach with the optimal value of kopt = 70 to predict
the outcome probabilities in the 206 matches of the prediction set and deter-
mined an average ranked probability score of RPSayg = 0.2054. Notice that
this prediction RPSayg is lower than that for the best test BPSayg = 0.2105.

9.1.2 XGBoost and recency features learning set

First, we applied the recency features extraction method to the entire challenge
data set. This resulted in a recency features learning set of 207 280 matches,
which we split into a training set comprising 186 552 (90%) and a hold-out
test set of 20728 (10%) matches. Then, we carried out a randomized param-
eter optimization procedure. The nominally best parameters were those that
resulted in the lowest average ranked probability score, RPS,,,, in 3-fold strat-
ified cross-validation. We obtained the following nominally best parameters:
dmax = 1, 7 = 0.06, 7y, = 0.7, i = 0.8, and ¢ = 844, which resulted in the
lowest cross-validated average ranked probability score of RPS,s = 0.2143.

Next, we checked the performance on the hold-out test set. Using dy.x = 1,
n = 0.06, r, = 0.7, and s = 0.8, we built 1000 ensembles, where the first
ensemble consists of one tree, the second ensemble consists of two trees, and so
on. We applied each ensemble to the test set and observed the best performance
(RPSavg = 0.2142) for the ensemble consisting of ¢t = 806 trees.

Finally, we used the entire recency features learning set (i.e., training set
plus hold-out test set) and built an ensemble with the parameters dpax = 1,
n = 0.06, r, = 0.7, 1 = 0.8, and ¢ = 806. This model was used to predict
the matches of the prediction set. However, 5 of 206 prediction matches could
not be described by a set of recency features because of the leaguc-hopping
problem (cf. Section 3.2). Therefore, we estimated the feature vector for each
of the five matches as follows. To impute the j-th feature of the i-th game,
Fj,¢=1..5and j = 1..72, we calculate the average recency feature value over
allzgames that were played in the same league as that of the i-th game, Fj; =
L R FjI(i, k), where the indicator function I(i, k) equals 1 if the league
of match i and match k& are the same, and 0 otherwise. With each of the five
games being described by imputed features, we could predict their outcomes
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with the XGBoost model. The predictions of this model were submitted to the
2017 Soccer Prediction Challenge. With RPS,,, = 0.2149, it achieved the 5th
place (Table 4).

9.1.8 Null models

We constructed two slightly different null models (or baseline models), League
priors and Global priors, in which we used only the prior information of home
win, draw, and loss probabilities estimated from the challenge learning set.

In the Global Priors null model the prior probability of “win” is calculated
as the proportion of home wins in the challenge learning set and this prior
is then used as estimated posterior probability of “win” in the prediction
set. The probabilities of “draw” and “loss” are calculated analogously. The
priors for the Global Priors null model were calculated as P(win) = 0.4542,
P(draw) = 0.2711, and P(loss) = 0.2747.

The League Priors null model is constructed from the prior probabilities of
win”, “draw”, and “loss” for each of the 52 leagues individually (Figure 6).
These priors are then used as estimated probabilities for “win”, “draw”, and
“loss” per league. For example, the proportion of “win”, “draw”, and “loss”
for league GER1 in the challenge learning set are 0.468, 0.245, and 0.287,
respectively, whereas the corresponding priors in league FRAT arc 0.463, 0.288,
and 0.250. These priors were used to predict the corresponding matches in the
prediction set.

i“©

9.2 Comparison between recency feature extraction and rating-based feature
learning

In our preliminary analysis, we developed two efficient models for soccer out-
come prediction: however, we do not know where the performance comes
from—is it due to the different learning algorithms (k-NN vs. XGBoost), the
different learning sets (recency features learning set vs. rating-based learning
set), or a combination of these factors? To elucidate this question, we carried
out more exhaustive experiments as follows.

Table 3 shows the 28 leagues and 5 scasons used to gencrate the rating-
based features learning set, which contains N5y = 31318 games. For a fair
comparison, it was necessary that we limit the recency feature extraction
method to the same games. This led to a recency features learning set of
Nige = 30860 games. The difference of 31318 — 30860 = 458 matches is
due to the fact that we must wait until each team has built up a history of
n matches (here, n = 9) before meaningful values can be extracted for all
features. Then, we trained both k-NN and XGDBoost on both learning sets.

9.2.1 k-NN and recency features learning set

The recency features learning set of N;eoc = 30860 games was randomly split
into a training set of 27 776 games (90%) and a hold-out test set of 3086 games
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(10%). We built k-NN models using the training set, with k ranging {rom 2
to 250, and applied each model to the hold-out test set. We observed the best
performance of RPS,,, = 0.2174 for kope = 125. With this optimal number
of nearest neighbors, the model achieved RPS,,, = 0.2164 on the prediction
sct.8

9.2.2 k-NN and rating-based features learning set

The rating-based features learning set of Nygr = 31318 games was randomly
split into a training set of 28 186 games (90%) and a hold-out test set of 3132
games (10%). As belore, we built k&-NN models using the training set, with k
ranging from 2 to 250, and applied each model to the hold-out test set. We
observed the best performance of RPS,,, = 0.2088 for kopr = 248. With this
optimal number of nearest neighbors, the model achieved RPS,,, = 0.2059 on
the prediction sct.

9.2.3 XGBoost and recency features learning set

The analysis that we completed before the challenge deadline gave us valuable
clues regarding the paramcter scarch space. For example, we obscrved that
ensembles with deeper trees tend not to perform well for this data set, possibly
because of overfitting. In fact, we obtained the best performance for a decision
stump (dmax = 1) in the randomized parameter search. We also observed that
the learning rate, 77, had a neglible effect on the performance, provided that it
was sufficiently small (= 0.06). In cssence, the a small value of the lcarning
rate has the effect that a tree is added even if it improves the performance of
the ensemble only a little. This means that if the learning rate is small, then
the maximum number of trees, tax, should be relatively large. Conversely,
if the learning rate is relatively large (n = 0.5), then including many trees is
unlikely to improve the performance further.

We carried out a grid search over the plausible parameter space: dyax €
{1,2,3,4,5}, p = 0.06, r, €{0.7,1.0}, r; €{0.8,1.0}, and ¢ € {1,2, ..., 1000}.
We tested all combinations of values, leading to dpy.x X 7% 7 X g X ¢ = 20000
models. We observed the best cross-validated performance of RPS,s = 0.2112
for dpmax = 3, 7 = 0.06, 7y = 0.7, 1y = 1.0, and ¢ = 284. This model achieved
RPSave = 0.2113 on the hold-out test set (Figure 8).

Finally, we used again the entire recency features learning set (i.e., learn-
ing set plus hold-out test set) and built a final ensemble with the optimized
parameters (dpmax = 3, 7 = 0.06, 7y = 0.8, 1y = 1.0, and ¢ = 284). This
model achieved RPS,y, = 0.2152 on the prediction set.® This performance is
slightly worse than that of the model that we completed before the deadline
(RPS.vs = 0.2149).

6 For 5 out of 206 prediction matches, no recency features could be extracted because
of the league-hopping problem. The missing values were therefore imputed as described in
Section 9.1.2.)
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Fig. 8: Average ranked probability score in the recency features training set
(black curve) and the recency features hold-out test set (red curve) as a func-
tion of the number of trees in the cnscmble. The dotted blue line shows the
performance of the best model from cross-validation, with dya.x = 3, = 0.06,
rn = 0.7, 4 = 1.0 and ¢ = 284.

9.2.4 XGDoost and rating-based features learning set

From the rating featurc learning sct with 31 318 matches, we randomly sclected
3132 (10%) as hold-out test cases. The remaining 31318 — 3132 = 28186
cases are the training set. We first explored again various parameter set-
tings to gauge plausible values for the grid search. Here, we did not consider
feature subsampling because the rating features learning set contains only
eight features. We limited the search space to the following parameters values,
dmax €{1,2,3,4,5}, n=0.06, r, ={0.7,0.8,0.9,1.0}, and ¢t € {1,2, ..., 1000} .
Each of the dyax X X rp X t = 20000 models was then evaluated in 3-fold
stratified cross-validation. We obtained the lowest average ranked probability
score of RPS,y, = 0.2086 for dy.x = 5, 7 = 0.06, t = 84, and 7, = 0.9. On
the hold-out test set, this model achieved RPSy,s = 0.2060. As we can see
in Figure 9, adding morc trees to the ensemble does not further improve the
performance on the hold-out test set.

Finally, to predict the 206 matches of the prediction set, we used the en-
tire learning set (i.e., training set plus hold-out test set) to build an ensemble
with the parameters that resulted in the lowest cross-validated RPS,y,. This
final ensemble achieved RPS,,, = 0.2023 on the prediction set. We remember
that we built this model after the competition deadline had passed, and con-
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Fig. 9: Average ranked probability score in the rating-based features training
set (black curve) and the rating-based features hold-out test set (red curve) as a
function of the number of trees in the ensemble. The dotted bluce line shows the
performance of the best model from cross-validation, with dya.x = 5, 7 = 0.06,
rn = 0.9, and ¢ = 84.

sequently, this prediction was not submitted to the challenge; if it had, then
it would have achieved the first place.

10 Results

Tablc 4 shows the ranking of all valid submissions to the 2017 Soccer Prediction
Challenge, including our models (Team DBL). We subuitted the predictions
of two models to the 2017 Soccer Prediction Challenge: k-NN trained on the
rating-based features learning set and XGBoost trained on the recency features
learning set. Among all challenge submissions, the k&-NN model achieved the
lowest error, with RPS,y, = 0.2054. The XGBoost model achieved only fifth
place, with RPS,y, = 0.2054. Since our submissions were out-of-competition,
the winner of challenge is team OH, with RPS,.; = 0.2063.

In the post-challenge analysis, we obtained the following results (Table 5).
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Table 4: Summary of the results of the 2017 Soccer Prediction Challenge. Par-
ticipating teams are ranked based on increasing values of the average ranked
probability score, calculated from the submitted predictions for the 206 games
of the prediction set. Shown is also the predictive accuracy, i.e., the percentage
of correctly predicted games. Submissions by the organizers (Team DBL) are
out-of-competition and marked by *. NB: k-NN trained on recency features
and XGBoost trained on rating-based features arc not include, as these models
could not be completed before the submission deadline.

Rank Team RPSavg Accuracy  Method

1  Team DBL* 0.2054 0.5194 k-NN and rating-based features
2 Team OH 0.2063 0.5243 cf. Berrar et al. (2017)
3 Team ACC 0.2083 0.5146 cf. Berrar et al. (2017)
4  Tecam FK 0.2087 0.5388 cf. Berrar ct al. (2017)
5  Team DBL* 0.2149 0.5049 XGBoost and recency features
6 Team HEM 0.2177 0.4660 cf. Berrar et al. (2017)
7  League Priors 0.2255 0.4515 Prior information based on leagues
8 Team EB 0.2258 0.4854 N/A
9  Global Priors 0.2261 0.4515 Global priors of win, draw, lose

10  Team LJ 0.2313 0.4126 N/A

11  Team AT 0.3981 0.3883 N/A

12 Team LHE 0.4515 0.3398 N/A

13 Team EDS 0.4515 0.3592 N/A

Tablc 5: Post-challenge analysis of A-NN and XGBoost trained on the same
data sets.

Algorithm  Hold-out test set  Prediction set  Data set

k-NN 0.2105 0.2054 Rating-based features

k-NN 0.2088 0.2059 Recency features
XGBoost 0.2060 0.2023 Rating-based features
XGBoost 0.2113 0.2152 Recency features

11 Discussion

Over a period of more than ten ycars, we compiled the Open International
Soccer Database (Dubitzky et al., 2018) comprising the most essential match
information of over 216 000 soccer games from various leagues and countries.
Version 1.0 of the database was released as the learning set of the 2017 Soccer
Prediction Challenge (Berrar et al., 2017). The task of the challenge was to de-
velop a machine Icarning modcl from the lcarning sct and predict the outcome
of 206 future matches. The underlying research question of the challenge was
to find out how well machine learning could predict the outcome of a soccer
match based on such data.

Goals in soccer are the most important match events because they directly
determine the outcome (win by either team or draw) of the match and ul-
timately the result of any soccer competition. Thus, the assumption is that
the goals in soccer carry vital information in terms of assessing the relative
strength of the teams—the winning team is stronger than the losing team
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because it scored more goals; the higher the margin of victory, the greater
the difference in strength. Therefore, it is reasonable to hypothesize that it
is possible to construct a predictive model based on goal information alone.
Indeed, the research question underlying the prediction challenge was asking
was: How well can machince learning predict the outcome of a soccer match
based on goals as main piece of match information?

To provide a baseline, we evaluated the performance of two null models
on the challenge prediction set based on the average ranked probability score
(RPS) (Constantinou and Fenton, 2012). The Global Priors null model is based
on the outcome probabilities of all matches in the learning set: it achieved an
average ranked probability score of RPS,yg = 0.2261 on the prediction sct.
The League Priors null model consists of one null model per league, each
league-specific null model uses the outcome probabilities of a single league.
Applying the League Priors null model to the prediction set produced a score
of RPS,y, = 0.2255.

We developed two novel methods to produce meaningful predictive fea-
tures from the challenge learning set: recency feature extraction and rating-
based feature learning. With these methods, we generated a recency feature
learning set and a rating-based feature learning set, from which we then built
an ensemble of gradient boosted trees (XGBoost) and a k-nearest neighbor (k-
NN) model, respectively. Among all submissions to the 2017 Soccer Prediction
Challenge, the £-NN model derived from the rating-based features learning sct
achieved the overall best performance with a score of RPS,.s = 0.2054 (Ta-
ble 4). The error is approximately 9% lower than that of the null models. With
RPS,, = 0.2149, the XGBoost model was approximately 5% better than the
null models and was ranked fifth in the competition. Notice that these two
models were built using different learning sets. In our post-challenge analy-
sis, we considered all combinations of learning algorithms and data sets. Both
XGDBoost and k-NN performed better on the rating-based features learning
set. Overall, the best performance (RPS,ys = 0.2023) was achieved by XG-
Boost using rating-based features. These results suggest that the rating-based
feature learning method is superior to the recency features extraction method.

Interestingly, Tecam OH (winner of the 2017 Soccer Prediction Challenge)
also used gradient boosted trees, but achieved only RPS,,; = 0.2063. Our
k-NN model trained on rating-based features could outperform this winning
model, which suggests that the learning sets being used are decisive, while it
does not matter so much which supervised learning algorithm is actually used.

One aspect that makes soccer so popular (and prediction based on goals
alone so difficult) is that the final outcome of the majority of soccer matches
is uncertain until the end. This is because goals are relatively rare, and the
margin of victory for the winning team is relatively low for most matches
(Figure 10). From the challenge learning set, we estimate the average number
of home goals, gn, and away goals, g,, in regular league soccer as follows:
gh = 1.483 and g, = 1.111. This means that, on average, the home team
prevails over its opponent by a margin of 0.372 goals (reflecting the home
advantage in league soccer). Moreover, when we look at the distribution of the
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(a) Margin of victory (b) Goals scored home team (c) Goals scored away team

Margin Frq Frq [%0] HS Frq Frq [%0] AS Frq Frq [%0]
0 58 760 27.11 0 50612 23.35 0 73760 34.03
1 84478 38.98 1 72675 33.53 1 77737 35.87
2 44689 20.62 2 52722 24.32 2 42 107 19.43
3 18992 8.76 3 26013 12.00 3 16 223 7.48
4 6771 3.12 4 10 108 4.66 4 5098 2.35
5 2142 0.99 5 3239 1.49 5 1339 0.62
6 667 0.31 6 1020 0.47 6 383 0.18
7 184 0.08 7 270 0.12 7 71 0.03
8 43 0.02 8 60 0.03 8 17 0.01
9 13 0.01 9 18 0.01 9 7 0.00
10 4 0.00 10 5 0.00 10 1 0.00
- - - 11 1 0.00 - - -

216 743 100.00 216743 100.00 216 743 100.00

Margin: Winning goal difference; 0 means draw. HS/AS: Goals scored by home/away team.
Frq: Absolute frequency. Frq [%)]: Frequency percentage.

Fig. 10: Distribution of (a) margin of victory, (b) goals scored by home team,
and (c) goals scored by away team in league soccer based on challenge learning
set.

margin of victory, we find that 86.71% of all matches end either in a draw or a
victory of either team by a margin of two or fewer goals difference, and 95.47%
are either a draw or a win by either team of three or fewer goals (Figure 10a).
Because of this overwhelming concentration of the margin of victory to only
0 (draw), 1, 2 and 3 goals, it is unlikely that this difference provides a highly
accurate view of the actual difference in strength of the two teams. Therefore,
it is very difficult to make meaningful predictions based on goals alone.

The problem with rare goals and low winning margins is that any scheme
will generally find it difficult to discriminate team strength based on goals or
goal difference. Consider an away goal prediction of g, = 1.50. For a consid-
erable proportion of games (ca. 45%), the observed number of away goals is
ga = 1 or go = 2. For all of these games, a prediction of g, = 1.50 is equally
good or poor, as the deviation is 0.5 goals. This is also illustrated by our ap-
proach to feature learning. The rating-based features investigated in this study
were crcated from a model that predicts the home, g, and away goals, g,, of
a match based on Equations (2) and (3). From these, we can derive the pre-
dicted goal difference as PGD = gn — §a. Figure 11 depicts the predicted goal
difference density distributions for home wins, draws. and away wins in the
rating feature learning set. We see that the density for home wins dominates
from PGD values greater than approximately 0.4, and away wins for PGD
values smaller than ca. 0.1. In between, the draw density dominates. Figure 11
also illustrates how close the density peaks are in terms of the predicted goal
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Density of predicted goal differences (PGD)

PGD means: - \[/)Vins
Wins = 0.444 N = 14034 ® Draws
157 Draws =0.279. N = 8402 / = Losses
osses = 0.135

Density

Fig. 11: Densitics of predicted goal difference (PGD) for home wins (Wins),
draws (Draws) and away wins (Losses) in rating learning set (Table 3). Vertical
dotted lines depict the means of the distributions.

difference. Indeed, the density peaks of home wins and draws are difficult to
separate visually.

The goal of the 2017 Soccer Prediction Challenge was to get an approx-
imate idea as to how well we can predict league soccer outcomes by us-
ing match information that is readily available for many leagues around the
world. In our study, the best performance was an average ranked probabil-
ity score of around 0.21. This result is comparable to the best results by
the top-ranked challenge participants who used different methods for knowl-
edge integration and feature engineering. It is therefore tempting to speculate
that the limit of predictability—with the provided data—might be around
RPS, e = 0.21. The challenge data sets remain publicly available at the project
website (https://osf.io/ftuva/) for further analyses. Is it possible to sig-
nificantly improve the prediction performance by obtaining morc data that
holds information relevant to the outcome of a match? Many different types
of data are potentially interesting and relevant, including data about game
events (e.g., yellow and red cards, fouls, ball possession, passing and running
rates, etc.), players (e.g., income, age, physical condition) and teams or team
components (e.g., average height, attack running rate). A major problem, of
course, is the availability of such data. For example, simnple statistics like the
number of fouls committed are readily available for some top leagues. How-
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ever, if we want to predict the outcome of games in lower leagues (e.g., GER2
or ENG4), such data may not be readily available. Even more sophisticated
data like heat maps showing movements of players on the field during a match
may never become widely available for a large number of teams or players
(Van Haaren ct al.; 2015, 2016).

However, here we need to sound a few notes of caution. First, additional
data will not solve the problem duc to the small number of goals or address
the narrow-margin-of-victory aspect in soccer (Table 10). Second, and this is
even more fundamental, goals and other game-changing circumstances (e.g.,
red cards, injuries, penalties) in soccer often do not occur as a result of superior
or inferior play by one team but are due to difficult-to-capture events, such
as poor refereeing, unfortunate deflections or bounces of the ball, weather
or ground conditions, or fraudulent match manipulation. Third, factors like
political upheaval in the club’s management, behavior of spectators, media
pressure, and fluctuation of club player squads also influence the outcome of
matches. However, even with sophisticated data sets, such aspects may not be
covered.

Like with many other real-world prediction problems, the main challenge is
not to develop a new learning algorithm but to develop a satisfactory solution
basced on innovative use and adaptation of existing mcthods. A particularly
important role in real-world applications is the question how relevant domain
knowledge can be incorporated in the model development process, from data
processing and integration, to model development, application, revision, and
maintenance. Here, we concur with (Rudin and Wagstaff, 2014, p.2), saying
that “[wlhen ML is used in a rcal application, its success is instcad primarily
determined by how effectively we understand the unique aspects of the do-
main and how well we tailor the ML solution and evaluation measures to the
domain.”

In this study, we presented two new feature-generation methods for incor-
porating soccer domain knowledge into the modeling process. Both methods
produced meaningful learning sets from which we could build effective predic-
tive models. With some minor adaptations, the proposed methods should be
applicable to data from other tcam sports as well.

12 Conclusions

Predicting the outcome of sports events remains an immensely challenging
task. The objective of the 2017 Soccer Prediction Challenge was to gauge the
limit of predictability, given readily available soccer data. While some improve-
ments over the results reported here are certainly conceivable, we believe that
real progress will come from studies involving additional data. In particular,
we hypothesize that innovative feature-engineering approaches hold the key
to success. How well can we incorporate domain knowledge into the modeling
process? The answer to this question matters far more than the choice of the
machine learning algorithm for subsequent supervised learning.



42 Daniel Berrar et al.

References

Angelini G, De Angelis L (2017) PARX model for football match predictions.
Journal of Forccasting DOT 10.1002/for.2471

Berrar D, Bradbury I, Dubitzky W (2006) Instance-based concept learning
from multiclass dna microarray data. BMC Bioinformatics 7(1):73

Berrar D, Lopes P, Davis J, Dubitzky W (2017) The 2017 Soccer Prediction
Challenge URL http://doi .org/10.17605/0SF. 10/FTUVA

Brodley CE, Smyth P (1997) Applying classification algorithms in practice.
Statistics and Computing 7(1):45-56

Chen T, Guestrin C (2016) XGBoost: Reliable large-scale tree boosting system.
In: Shah M, Smola A, Aggarwal C, Shen D, Rastogi R (eds) Proceedings
of the 22nd ACM SIGKDD Conference on Knowledge Discovery and Data
Mining, San Francisco, CA, USA, pp 785-794

Chen T, He T, Benesty M, Khotilovich V, Tang Y (2017) xghoost: Ex-
treme Gradient Boosting. URL https://CRAN.R-project.org/package=
xgboost, R package version 0.6-4. Further documentation at https://
xgboost. readthedocs. io/er/ latest/model - html

Constantinou A, Fenton N (2012) Solving the problem of inadequate scoring
rules for assessing probabilistic football forecast models. Journal of Quanti-
tative Analysis in Sports 8(1)

Cover T, Hart P (1967) Nearest neighbor pattern classification. IEEE Trans-
actions on Information Theory IT-13(1)(1):21-27

Dixon M, Coles S (1997) Modelling association football scores and inefficiencies
in the football betting market. Applied Statistics 46(2):265-280

Dubitzky W, Lopes P, Davis J, Berrar D (2018) The Open International Soccer
Database. Machine Learning To appear. Preprint available at http://doi.
org/10.17605/0SF. 10/FTUVA

Dudoit S, Fridlyand J, Speed T (2002) Comparison of discrimination methods
for the clagsification of tumors using gene expression data. Journal of the
Amcrican Statistical Association 97(457):77 87

Elo AE (1978) The rating of chessplayers, past and present. Batsford London

Forrest D, Goddard J, Simmons R (2005) Odds-setters as forecasters: The case
of english football. International Journal of Forecasting 21(3):551-564

Friedman J (2001) Greedy function approximation: a gradient boosting ma-
chine. The Annals of Statistics 29(5):1189-1232

Goddard J (2005) Regression modecls for forccasting goals and match results
in association football. International Journal of Forecasting 21(2):331-340

Hill T (1974) Association football and statistical inference. Applied Statistics
23(2):203-208

Hvattum LM, Arntzen H (2010) Using ELO ratings for match result prediction
in association football. Intcrnational Journal of Forecasting 26(3):460 470

Kennedy J, Eberhart R (1995) Particle swarm optimization. In: Proceedings
of IEEE International Conference on Neural Networks, vol 4, pp 1942-1948

Maher M (1982) Modelling association football scores. Statistica Neerlandica
36(3):109-118



Incorporating Domain Knowledge for Soccer Outcome Prediction 43

Moskovitz TJ, Wertheim LJ (2011) What’s really behind home field advan-
tage? Sports Ilustrated Jan(17):64-72

O’Donoghue P, Dubitzky W, Lopes P, Berrar D, Lagan K, Hassan D, Bairner
A, Darby P (2004) An evaluation of quantitative and qualitative methods of
predicting the 2002 FIFA World Cup. Journal of Sports Sciences 22(6):513
514

R Core Team (2017) R: A Language and Environment for Statistical Com-
puting. R Foundation for Statistical Computing, Vienna, Austria, URL
https://ww._R-project.org/

Reep C, Benjamin B (1968) Skill and chance in association football. Journal
of the Royal Statistical Society, Series A (General) 131(4):581-585

Rudin C, Wagstafl KL (2014) Machine learning for science and society. Ma-
chine Learning 95(1):1-9

Sambhita L. Gross H (2013) The Clever Hans Phenomenon revisited. Com-
municative & Integrative Biology 6(6):¢27,122, http://doi .org/10.4161/
cib.27122

ShiY, Eberhart R (1998) A modified particle swarm optimizer. In: Proceedings
of IEEE International Conference on Evolutionary Computation, pp 6973

Spann M, Skiera B (2008) Sports forecasting: a comparison of the forecast
accuracy of prediction markets, betting odds and tipsters. Journal of Fore-
casting 28(1):55-72

Van Haaren J, Dzyuba V, Hannosset S, Davis J (2015) Automatically discov-
ering offensive patterns in soccer match data. In: Fromont E, De Bie T, van
Leeuwen M (eds) Lecture Notes in Computer Science, International Sym-
posium on Intelligent Data Analysis, Saint-Etienne, France, 22-24 October
2015, Springer, pp 286-297

Van Haarcn J, Hannossct S, Davis J (2016) Strategy discovery in professional
soccer match data. In: Proceedings of the KDD-16 Workshop on Large-Scale
Sports Analytics (LSSA-2016), pp 14

Wu X, Kumar V, Quinlan JR, Ghosh J, Yang Q, Motoda Hea (2008) Top 10
algorithms in data mining. Knowledge and Information Systems 14(1):1-37

Zambrano-Bigiarini M, Rojas R (2013) A modcl-independent particle swarm
optimisation software for model calibration. Environmental Modelling &
Software 43:5-25, DOI http://dx.doi.org/10.1016/j.envsoft.2013.01.004



