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Male offspring born to mildly ZIKV-infected mice 
are at risk of developing neurocognitive disorders 
in adulthood



Stephanie Stanelle-Bertram1, Kerstin Walendy-Gnirß1, Thomas Speiseder1, Swantje Thiele1,  
Ivy Asantewaa Asante1, Carola Dreier1, Nancy Mounogou Kouassi1, Annette Preuß1,  
Gundula Pilnitz-Stolze1, Ursula Müller1, Stefanie Thanisch1, Melanie Richter2, Robin Scharrenberg2, 
Vanessa Kraus3, Ronja Dörk3, Lynn Schau3, Vanessa Herder4,5, Ingo Gerhauser   4,  
Vanessa Maria Pfankuche4,5, Christopher Käufer   6, Inken Waltl6, Thais Moraes7, Julie Sellau8,  
Stefan Hoenow8, Jonas Schmidt-Chanasit8,9, Stephanie Jansen8, Benjamin Schattling   10,  
Harald Ittrich11, Udo Bartsch12, Thomas Renné13, Ralf Bartenschlager   7, Petra Arck14,  
Daniel Cadar8, Manuel A. Friese   10, Olli Vapalahti15, Hanna Lotter8, Sany Benites16, Lane Rolling16, 
Martin Gabriel8, Wolfgang Baumgärtner4,5, Fabio Morellini3, Sabine M. Hölter   17,18,  
Oana Amarie17,18, Helmut Fuchs18, Martin Hrabe  de Angelis18,19,20, Wolfgang Löscher6,  
Froylan  Calderon de Anda2 and Gülsah Gabriel   1,9,21,22*

Congenital Zika virus (ZIKV) syndrome may cause fetal microcephaly in ~1% of affected newborns. Here, we investigate 
whether the majority of clinically inapparent newborns might suffer from long-term health impairments not readily visible at 
birth. Infection of immunocompetent pregnant mice with high-dose ZIKV caused severe offspring phenotypes, such as fetal 
death, as expected. In contrast, low-dose (LD) maternal ZIKV infection resulted in reduced fetal birth weight but no other 
obvious phenotypes. Male offspring born to LD ZIKV-infected mothers had increased testosterone (TST) levels and were less 
likely to survive in utero infection compared to their female littermates. Males also presented an increased number of imma-
ture neurons in apical and basal hippocampal dendrites, while female offspring had immature neurons in basal dendrites only. 
Moreover, male offspring with high but not storm TST levels were more likely to suffer from learning and memory impairments 
compared to females. Future studies are required to understand the impact of TST on neuropathological and neurocognitive 
impairments in later life. In summary, increased sex-specific vigilance is required in countries with high ZIKV prevalence, where 
an impaired neurodevelopment may be camouflaged by a healthy appearance at birth.



Zika virus (ZIKV) was first isolated 1947 from sentinel Rhesus 
primates in Uganda. It is transmitted to humans via Aedes 
mosquitoes and may cause mild febrile disease accompa-

nied by a maculopapular rash1. Since 2007, ZIKV has spread from 
Micronesia to French Polynesia in 2013 and later to Brazil in 2015, 
causing several outbreaks. ZIKV strains cluster into an African and 

an Asian lineage, with the latter representing the current epidemic 
lineage2,3. In 2015, maternal ZIKV infection during pregnancy was 
associated with fetal loss, spontaneous abortions and neurological 
disorders, such as microcephaly in neonates4–6. Retrospective stud-
ies estimate that ZIKV-associated microcephaly is a very rare phe-
nomenon. In Polynesia, the estimated risk of microcephaly due to 
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ZIKV infection in the first trimester of pregnancy is 0.95%, whereas 
in Brazil, it varies between 0.8 and 13.2%, if infection occurs par-
ticularly during the first trimester7. However, recent clinical studies 
including a larger cohort size also report serious adverse outcomes 
until the third trimester on symptomatic maternal ZIKV infection6. 
Most importantly, speculations are growing that those children who 
do not present clinical manifestations at birth might suffer from 
health impairments in later life8. However, the long-term develop-
mental trajectory for these clinically asymptomatic children, who 
represent the majority of newborns to ZIKV-infected mothers, 
remains currently unknown8.



To date, severe and fatal birth defects due to ZIKV infection were 
reported in a series of murine pregnancy models, including systemi-
cally infected immunodeficient9,10 or locally infected immunocom-
petent11,12 mice. However, a fully immunocompetent pregnancy 
model of systemic ZIKV infection, which would allow a longitu-
dinal monitoring of vital and clinically inapparent offspring with 
potential predictive value for human ZIKV infection, is still missing.

In this study, we sought evidence for the urgent medical question 
in the field whether ‘healthy’-appearing offspring born to ZIKV-
infected mothers, which represent the majority of newborns, might 
suffer from long-term health impairments8.

Results
We systemically infected immunocompetent pregnant mice13 at 
early gestation using a low-dose (LD) or as a control a high-dose 
(HD) 2016 ZIKV (Supplementary Fig. 1). Pregnant mice infected 
either with LD or HD 2016 ZIKV showed mild but significant dif-
ferences in gestational weight gain compared to phosphate-buff-
ered saline (PBS)-treated dams (Fig. 1a). To exclude that impaired 
maternal weight gain might be due to viral infection in general, 
we used dengue virus type 2 (DENV2) as a non-related flavivirus 
control. Maternal DENV2 infection did not affect maternal weight 
gain (Supplementary Fig. 2a–c), suggesting that ZIKV infection is 
specifically responsible for the detected impairment in gestational 
weight. However, to see whether the observed effects are further 
specific for the 2016 ZIKV outbreak strain, we used the historical 
MR766 strain as an additional control (herein referred to as 1947 
ZIKV), where no maternal or fetal abnormalities were reported in 
humans before. Maternal 1947 ZIKV infection did not result in 
significant alterations in gestational weight similar to the infection 
courses in non-pregnant mice (Supplementary Fig. 2d,e). The pro-
posed increased replicative fitness of the 2016 ZIKV strain com-
pared to the 1947 ZIKV strain was further confirmed in human 
cells (Supplementary Fig.  2f). All 2016 ZIKV-infected pregnant 
mice seroconverted, presenting immunoglobulin M (IgM) and 
IgG antibodies (Supplementary Table 1), thus confirming success-
ful viral infection. The 2016 ZIKV-infected dams showed elevated 
serum levels of the inflammation markers interleukin 6 (IL-6) 
and monocyte chemoattractant protein 1 (MCP-1) (Fig. 1b,c) cor-
relating with peak systemic vRNA titres on day 1 post-infection 
(Supplementary Fig.  2g). However, IL-17A levels, a key marker 
of maternal immune activation (MIA) involved in fetal neuro-
development on maternal poly(I:C) treatment14, were not altered 
(Fig.  1d). These findings suggest that maternal ZIKV infection 
triggers alternative pathways that are not IL-17A- but probably 
IL-6-dependent, which is another major factor elevated during 
MIA involved in fetal neurodevelopment15.

Sex hormone levels are altered on neurotropic maternal 2016 
ZIKV infection. Maternal sex steroids play a key role in repro-
ductive outcome and fetal neurodevelopment16. HD ZIKV infec-
tion resulted in significantly increased progesterone and reduced 
testosterone (TST) levels unlike oestradiol levels on day 6 post-
infection compared to PBS-treated groups (Fig. 1e,f; Supplementary 
Fig.  2h). LD ZIKV infection resulted in elevated TST levels  

Q3

compared to controls (Fig.  1f). Progesterone modulates the syn-
thesis and release of angiogenic factors by placental and decidual 
cells, which in turn may promote the invasion of trophoblast cells 
and affect uterine artery remodelling17. TST is involved in fetal pro-
gramming, including neurodevelopment, particularly if hormonal 
alterations occur during early gestation18. Corticosterone levels, 
commonly used to assess prenatal stress, were not significantly 
altered (Supplementary Fig.  2i). Interestingly, maternal infection 
severity during pregnancy correlated with a significant increase in 
spleen weight in 2016 ZIKV-infected pregnant and non-pregnant 
mice compared to PBS 


controls (Supplementary Fig. 2j)19. Thus, an 

altered expression pattern of steroid hormones, particularly of pro-
gesterone and TST, could be detected in ZIKV-infected mothers at 
early gestation. Next, we analysed whether the 2016 ZIKV strain 
isolated from fetal brain also replicates in the maternal murine adult 
brain since no information was available from the affected human 
case2. In non-pregnant mice, among LD ZIKV-infected animals, 
one out of five tested presented ZIKV RNA in their brains on day 3 
post-infection and 3/5 were ZIKV-positive on day 6 post-infection 
(Supplementary Table 2). In HD ZIKV-infected mice, all tested ani-
mals (5/5) were ZIKV RNA-positive on days 3 and 6 post-infection. 
Similarly, in pregnant mice, ZIKV RNA was detected in LD- and 
HD-infected dams, albeit the level of virus-positive probes was 
higher in the HD-infected maternal brains at 3, 6 and 14 days post-
infection (Supplementary Table 2). Consistently, virus titres in the 
maternal brain were highest in the HD ZIKV group compared to 
the LD group on days 3 and 6 post-infection (Fig. 1g). Particularly 
glial cells, such as astrocytes, oligodendrocytes and microglia, were 
ZIKV-positive in the maternal brain (most profoundly in the brain-
stem and cerebellum; Fig. 1h). The 2016 ZIKV strain productively 
infected human neuronal progenitor cells (Fig. 1i), as reported pre-
viously20, further supporting the relevance of our murine model in 
mimicking clinical observations.

Mother-to-fetus 2016 ZIKV transmission is associated with pla-
cental insufficiency. To address the question whether the 2016 
ZIKV strain transmits from the mother to the fetus, we removed 
gravid and non-gravid uteri at 6.5 days gestation of ZIKV-infected 
dams and analysed them for the presence of viral RNA. Uteri from 
non-pregnant infected mice were in general ZIKV RNA-positive 
in the LD (4/5) and HD (5/5) groups at days 3 and 6 post-infec-
tion (Supplementary Table 2). In pregnant mice, at 3 dpi all ana-
lysed LD (6/6) and HD (7/7) uteri tested ZIKV-positive. On day 
6 post-infection, 3/5 LD and 5/5 HD uteri were virus-positive 
(Supplementary Table 2). ZIKV RNA levels were higher on day 3 
post-infection in the LD ZIKV pregnant compared to non-pregnant 
infected animals (Fig.  2a). Implantation sites were highly ZIKV 
RNA-positive on days 3 and 6 post-infection in both the LD (26/28 
and 9/27, respectively) and HD (60/69 and 34/40, respectively) 
groups (Supplementary Table  2). Consistently, ZIKV titres were 
higher in LD compared to HD implants (Fig.  2b). Haemorrhagic 
placentation sites in uteri were particularly severe in the HD ZIKV 
group (Fig.  2c). Furthermore, significantly increased necrosis in 
the ZIKV-infected implantation sites was detected (Supplementary 
Fig. 2k,l). Decidual, placental and fetal epithelial and stroma cells at 
the implantation site were abundantly ZIKV RNA-positive at E6.5, 
a stage when the fetal neuroepithelium is already present. Virus-
positive cells were most abundant at the interface between embryo 
and maternal tissue, including trophoblast giant cells and decidual 
cells (Fig. 2d; Supplementary Fig. 2m). The number of ZIKV RNA-
positive fetal cells increased with the maternal ZIKV infection dose 
as expected (Fig.  2d). Fetuses presented IgM titres in their sera 
on maternal LD and HD ZIKV infection at birth and adolescence 
(Supplementary Table  1). Since IgM antibodies do not cross the 
placenta, fetal IgM titres are indicative of successful fetal infection 
in utero, which is consistent with ZIKV positivity in fetal epithelia  
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Fig. 1 | Maternal ZIKV pathogenesis in immunocompetent allogeneic pregnant mice. a, Weight gain of pregnant mice infected with ZIKV (2016 ZIKVLD: n = 25; 
2016 ZIKVHD: n = 17) or PBS (PBS: n = 18). b–d, Cytokines IL-6 (b; PBS and 2016 ZIKVLD: n = 9; 2016 ZIKVHD: n = 6), MCP-1 (c, also known as CCL2, PBS and 2016 
ZIKVLD: n = 9; 2016 ZIKVHD: n = 6) and IL-17A (d; n = 6) detected in maternal serum. e,f, Progesterone (e) and testosterone (TST) (f) levels detected in maternal 
serum (PBS: n = 6; 2016 ZIKVLD: n = 5 for progesterone and n = 6 for TST; 2016 ZIKVHD: n = 6). (a–f, values are shown as means, error bars as s.d., two-way 
ANOVA, Bonferroni post-hoc tests, *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001.) g, ZIKV vRNA levels from brain of infected dams (2016 ZIKVLD: n = 6 and 14 days post-
infection (dpi) n = 14; 2016 ZIKVHD: 3 dpi n = 13 and 6 and 14 dpi n = 10; presented as copies per µ​l after normalization to a standard curve of ZIKV RNA, values 
are shown as means). h, Detection of viral RNA by fluorescence in situ hybridization (FISH) in the brain of ZIKV-infected dams (representative pictures are 
shown; PBS: n = 5; 2016 ZIKVLD: n = 6). Positive signal (yellow) present in the brainstem (arrows) and in the cerebellum (arrows) within the white (WM) and grey 
matter (GM). As a negative control, a non-ZIKV-specific probe was used (control). Scale bars, 100 µ​m. i, Human neural progenitor cells (NPCs) were infected 
with 2016 ZIKV at different multiplicities of infection (MOIs). At the indicated time points, virus titres were determined by plaque assay (n =​ 3). Total numbers 
are shown as n and represent biologically independent animal samples or experiments as indicated. hpi, hours post-infection; PFU, plaque-forming unit.
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Fig. 2 | Vertical ZIKV transmission. a, ZIKV RNA levels from the uteri of non-pregnant (NP) and pregnant (P) infected mice (2016 ZIKVLD: NP n = 5 and 
P n = 6; 2016 ZIKVHD: NP n = 5 and P n = 7). b, Viral burden from single implantation sites of three or seven ZIKV-positive uteri (2016 ZIKVLD: n = 26; 2016 
ZIKVHD: n = 60; only positive samples are depicted in the graph). (a,b, Presented as copies per µ​l after normalization to a standard curve of ZIKV RNA; 
values are shown as means, two-way ANOVA, Bonferroni post-hoc tests, *P <​ 0.05, ***P <​ 0.001.) c, Uteri from ZIKV-infected dams (the arrows indicate 
severe red discoloration; PBS: n = 5; 2016 ZIKVLD: n = 6; 2016 ZIKVHD: n = 5). d, Cytokeratin staining and detection of viral RNA by applying ZIKV-specific 
probes in the uteri of ZIKV-infected dams (representative pictures are shown; PBS: n = 50; 2016 ZIKVLD: n = 55; 2016 ZIKVHD: n = 51). Positive signal for 
ZIKV RNA (black) present in the embryo is indicated by the arrow heads. Scale bars, 100 µ​m; insert, 50 µ​m. e–f, Cytokines IL-6 (e), MCP-1 (f; also known 
as CCL2) and IL-17A (g) detected in maternal placenta (n = 9; values are shown as means, error bars as s.d.). h–k, Placenta area (h), labyrinth area (i), 
junctional zone area (j) and placental ratio by labyrinth per junctional zone area (k) obtained by histomorphometric analyses of Masson-stained placental 
tissue sections (PBS: n = 18; 2016 ZIKVLD: n = 15; 2016 ZIKVHD: n = 27; values are shown as means, error bars as s.e.m.). l, Relative mRNA expression of 
nutrient supply genes of placenta from ZIKV-infected dams. The relative expression of PBS was set to 1 for each gene after normalization against 




Ywhaz 

(n = 5; values are shown as means, error bars as s.e.m.). (h–l, two-tailed t-test, *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001). m, Human placenta epithelial cells (JEG-
3) were infected with 2016 ZIKV at different multiplicities of infection (MOIs). At the indicated time points, virus titres were determined by plaque assay 
(n = 2). Total numbers are shown as n and represent biologically independent animal samples or experiments as indicated. hpi, hours post-infection; PFU, 
plaque-forming unit.

Q5

Nature Microbiology | www.nature.com/naturemicrobiology

http://www.nature.com/naturemicrobiology


A B

DispatchDate:  14.08.2018  · ProofNo: 236, p.5

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327

ArticlesNature Microbiology

at early gestation. The presence of elevated IgM antibody levels 
in adult offspring was further confirmed by immunofluorescence 
in selected brains (Supplementary Fig.  3a). Further, we analysed 
whether maternal ZIKV infection affects placental cytokine/che-
mokine response that could affect fetal outcome. No significant dif-
ferences in IL-6, MCP-1 and IL-17A expression levels were detected 
at E17.5 in maternal placenta tissues (Fig. 2e–g) unlike in maternal 
sera. The placental labyrinth and the junctional zone, where nutri-
ent exchange occurs and hormones are produced, were significantly 
increased in LD and HD ZIKV-infected dams (Fig. 2h–k). The ratio 
of labyrinth over junctional zone, which indicates placental func-
tion, was significantly reduced in HD ZIKV-infected mothers. This 
indicates a placental insufficiency due to reduced exchange in the 
labyrinth21,22, opposed by an increased hormone production in 
the enlarged junction zone, possibly as an adaptive mechanism to 
maintain the pregnancy. An increase in placenta size correlates with 
adverse pregnancy outcomes, such as low birth weight in humans, 
probably due to insufficient transfer of nutrients from mother to 
fetus21,22. Transcription levels of growth factor receptor bound pro-
tein 10 (Grb10), insulin like growth factor 2 (Igf2) and two amino 
acid transporter genes Slc38a1 (solute carrier family 38 member 1) 
and Slc38a2 (solute carrier family 38 member 2) were significantly 
reduced in LD and HD ZIKV-infected maternal placenta tissues 
(Fig. 2l). Furthermore, the clinical 2016 ZKV strain efficiently repli-
cated in a human trophoblast cell line (Fig. 2m) consistent with our 
findings in mice. Thus, our murine model supports ZIKV transmis-
sion from mother to fetus probably via the cross-placental route as 
reported before in immunodeficient mice10 and humans6.

Male offspring are less likely to survive maternal 2016 ZIKV 
infection compared to their female littermates. Litter sizes in LD 
and HD ZIKV-infected mothers were lower compared to unin-
fected controls (Fig. 3a) with a high fetal loss rate in the HD ZIKV 
group (Fig.  3b). Early miscarriages were also reported in ZIKV-
infected pregnant women5. Of various fetal and maternal tissues 
tested at E17.5 (fetal head, yolk sac, umbilical cord and placenta), 
only the yolk sac embedding the HD ZIKV fetus was virus-positive 
(Fig. 3c). Small fetuses were particularly frequent in dams with large 
litter sizes, while those with smaller litters had more fetal demise 
(Supplementary Fig. 3b). Fetuses that survived ZIKV infection pre-
sented a significantly reduced birth weight in both LD- and par-
ticularly HD-infected groups compared to those born to uninfected 
mothers (Fig. 3d). Fetuses born to HD ZIKV-infected mothers were 
further opposed in size to fetuses born to LD ZIKV-infected moth-
ers (Fig. 3e,f; Supplementary Fig. 3c). However, reduced HD ZIKV 
fetal size was not associated with any developmental delays accord-
ing to the Theiler stages (Supplementary Fig.  3d) representing 
offspring being small for gestational age. Most significantly, male 
offspring were less likely to survive in utero ZIKV infection com-
pared to their female littermates. With increasing maternal ZIKV 
infection dose, survival rates of male offspring reduced while female 
survival significantly increased (Fig.  3g,h). To control that the 
observed effects on reproductive outcome are specific to 2016 ZIKV 
infection, we analysed fetal outcome in DENV2- and 1947 ZIKV-
infected mothers. There, no differences in litter size, fetal loss, fetal 
weight or sex-specific survival rates were observed (Supplementary 
Fig.  3e–j) further highlighting that the detected sex-specific sur-
vival on maternal infection is a feature of the 2016 ZIKV outbreak 
strain. In utero conditions may affect reproductive outcome par-
ticularly if they occur during early fetal development23. This could 
be confirmed in our murine model, where 2016 LD ZIKV infec-
tion of pregnant mice during late gestation (E12.5) did not result 
in any differences in maternal weight gain, litter size, fetal loss or 
fetal weight (Supplementary Fig. 4). These findings further support 
the concept that there is a critical window (early gestation) during 
pregnancy, where maternal infection results in adverse reproductive 

outcome. Next, we addressed the question of whether there might 
be a specific link between abnormal maternal serum TST levels 
and sex specificity in the offspring. Fetuses born to ZIKV-infected 
mothers displayed elevated serum TST levels at E17.5 depending on 
the maternal ZIKV infection dose (Fig. 3i). In adult offspring, no 
significant differences in serum TST levels were observed in females 
born to LD ZIKV-infected mothers compared to females born to 
PBS-treated dams (Fig.  3j). Remarkably, adult males born to LD 
ZIKV mothers clustered in two groups: those with increased (up to 
3 times; referred as TST high) and those with very high (up to 50 
times; referred as TST storm) TST levels unlike males born to unin-
fected mothers. In control experiments, elevated TST levels could 
not be observed in adult offspring born to DENV2- or 1947 ZIKV-
infected mothers (Supplementary Fig. 3k,l) further highlighting the 
direct impact of the epidemic caused by the 2016 ZIKV infection on 
reproductive outcome and sex.

Maternal TST treatment causes pregnancy termination but does 
not affect the sex of the offspring. We then addressed the question 
of whether there is a causal relationship between increased mater-
nal TST levels and reproductive outcome. Single TST injection or 
continuous release of TST at low levels (0.05 mg ml−1) did not affect 
maternal weight gain, reproductive outcome or the sex of the off-
spring (Supplementary Fig.  5, Fig.  3k–n). Conversely, very high 
levels of continuous TST release (5 mg ml−1) resulted in early preg-
nancy termination. Treatment of pregnant mice with a mid-range 
dose of 0.5 mg ml−1 resulted in two groups. Two of seven treated 
mice showed a delay in gestational weight gain and all fetuses were 
stillborn. Five of seven treated mice did not show differences in ges-
tational weight, reproductive outcome or the sex of the offspring 
(Fig. 3k–n). These findings suggest that elevated TST levels during 
early gestation may affect pregnancy maintenance and reproduc-
tive outcome but do not influence sex differences in the surviving 
offspring. These findings are in line with previous reports that pre-
natal TST exposure in large mammals may result in intrauterine 
growth restriction in offspring without any sex bias24. Even though 
human studies are limited, there is growing evidence that adverse 
conditions during gestation may lead to dimorphic effects23. Herein, 
particularly malnutrition is a known parameter to affect sex ratios 
towards female offspring25. Since maternal ZIKV infection resulted 
in placental insufficiency in our murine model, reduced nutrient 
transfer from mother to fetus might be a potential contributor to 
reduced male but increased female in utero survival.

TST levels are elevated in ZIKV RNA-positive pregnant women 
and their newborns. We sought evidence whether our findings 
in the murine pregnancy model would be reflected in humans. 
Therefore, we analysed patient sera obtained from a mother–child 
cohort. ZIKV RNA-positive pregnant women showed elevated TST 
levels compared to ZIKV RNA-negative pregnant women. The 
elevated TST levels of the ZIKV RNA-positive pregnant women 
were also reflected in their newborns, unlike those children born 
to ZIKV RNA-negative mothers (Fig. 4). These data clearly reflect 
our findings in the murine model and suggest that elevated TST 
levels in children born to ZIKV RNA-positive mothers require fur-
ther attention.

Male offspring present more severe neuropathological altera-
tions in the hippocampus compared to their female littermates. 
TST plays a key role in fetal neurodevelopment18,26. Therefore, we 
addressed the question of whether murine offspring with elevated 
TST levels born to ZIKV-infected mothers may suffer from silent 
neuropathological disorders. None of the HD or LD fetuses presented 
ZIKV RNA in their brains on the day of birth (E17.5) (Supplementary 
Fig.  6a). However, fetal brains presented IgM antibodies against 
ZIKV, suggesting that active virus replication was probably cleared 
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error bars as s.d., two-way ANOVA, Bonferroni post-hoc tests, *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001). m, Fetal health assessment per litter of pump-implanted 
dams (placebo: n = 4; 0.05 mg ml−1 TST: n = 5; 0.5 mg ml−1 TST: n = 7; grouped in healthy-appearing, small for gestational age (SGA) and stillborn). n, Sex 
distribution in litters from pump-implanted dams (values are shown as means, error bars as s.d.; placebo: n = 4; TST each: n = 5). Total numbers are shown 
as n and represent biologically independent animal samples as indicated.
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to undetectable levels at birth. Supportively, no differences in brain 
MCP-1 or IL-17A levels were detected (Supplementary Fig.  6b,c) 
further indicating successful viral clearance. However, increased 
apoptotic cells in the brainstem could be detected compared to non-
infected controls (Supplementary Fig. 6d). The same brain regions 
showed increased numbers of ionized calcium-binding adapter mol-
ecule 1 (Iba1)-positive cells indicative of microglia activation as a 
marker of inflammatory response of the brain probably represent-
ing the remains of previous active virus replication (Supplementary 
Fig.  6e). Microglial activation could no longer be detected in the 
brains or retina reported to support ZIKV replication27 in adult 
mice (Supplementary Fig. 7)28. The 


observed neuropathology in our 

murine model is consistent with the clinical case described, where 
the isolated 2016 ZIKV displayed abundant apoptosis and macro-
phage infiltrates in the fetal brain2. Brain inflammation with acti-
vated microglia as well as differential TST exposure in utero may 
affect sexual differentiation of brain structures and learning in 
adulthood, particularly in males18. Therefore, we analysed whether 
the detected alterations in these parameters may affect the adult off-
spring brain on maternal LD ZIKV infection, focusing on the hip-
pocampus, which is known to support ZIKV replication and plays 
a key role in neurocognitive disorders29. In particular, we examined 
hippocampal CA1 neurons in adult male and female offspring. The 
complexity of apical or basal dendrites was similar in all offspring 
born to LD ZIKV-infected mothers (Supplementary Fig. 8 and 9). 
In distal dendritic branches from apical dendrites, both female 
and male LD ZIKV offspring presented increased spine densities 
(Fig.  5a–d). However, apical spine maturity (mushroom-shaped 
neurons) was only affected in male but not female offspring. Male 
offspring had a significantly reduced number of mushroom-shaped 
mature spines in apical dendrites unlike female offspring (Fig. 5e–
h). Similarly, in basal dendrites, we could detect that neurons of 
male offspring showed increased spine density compared to neurons 
from PBS-treated controls (Fig. 5i,j). Conversely, the basal dendrites 
of female offspring presented reduced spine densities compared to 
their respective controls (Fig. 5k,l). However, both LD ZIKV male 
and female offspring presented significantly less mushroom-shaped 
spines in the analysed basal branches compared to their controls 
(Fig. 5m–p). Thus, males with elevated TST levels in general (irre-
spective of its concentration since both TST high and storm TST 
males showed similar defects (Supplementary Fig.  10)) present a 
more severe brain defect with an increased number of immature 
spines in apical and basal dendrites in contrast to females, which 
do not have elevated TST levels and show more immature spines in 
basal neurons only (Supplementary Table 3).

Q6

Male offspring with high but not storm TST levels show altera-
tions in behaviour and hippocampal learning deficiencies. The 
hippocampus has been implicated before in behavioural responses 
to stress and in the pathophysiology of mood and anxiety disor-
ders30. Thus, we addressed the question of whether the differ-
ences detected in brain morphology between males and females 
might result in potential differences in learning and memory or 
may cause anxiety disorders in their adulthood. First, we analysed 
visual function by assessing spontaneous exploratory behaviour 
in the virtual drum of all LD ZIKV offspring to exclude that any 
potential alterations in behaviour studied later might be due to 
visual impairments in the offspring. However, visual acuity was 
not significantly affected in any of the LD ZIKV offspring assessed 
(females as well as TST high and TST storm males) (Supplementary 
Fig. 11a). In the novel environment of the open field arena, per-
formance of male offspring born to LD ZIKV-infected mothers 
strongly depended on TST concentrations. TST high males showed 
most profound impairments in the exploration of the open field as 
indicated by distance moved and centre time (Fig. 6a,b). In con-
trast, TST storm males did not show any significant differences 
in behaviour as assessed in the open field (Fig. 6a,b). Female off-
spring born to LD ZIKV-infected mothers also showed a reduced 
exploration behaviour in the open field as indicated by a marginal 
but still significant reduced distance moved (Fig. 6a) and the time 
spent in the centre (Fig.  6b). No differences in behaviour were 
detected in LD ZIKV offspring by negotiating the Y-maze or in 
object recognition tests (Supplementary Fig. 11b,c). These findings 
suggest that TST high males are at risk for potential anxiety dis-
orders as assessed in the open field test compared to females. This 
is in line with previous reports of a negative correlation between 
time spent in the centre of the open field and neuropathological 
alterations in the brain caused by MIA14 (Supplementary Table 3). 
However, male offspring with extremely high TST levels seem to 
be able to compensate for some behavioural alterations despite 
substantial brain defects, at least those functions assessed in this 
particular behavioural test. Next, we performed the Morris water 
maze (MWM) test to assess whether sex-specific differences in 
brain morphology might affect spatial (hippocampal-dependent) 
learning and memory31. All LD ZIKV offspring learned to find the 
hidden platform over the ten days of the experiment (Fig. 6c–d). 
However, inter-group differences were particularly observed in 
the search strategies described previously32 (Fig. 6e–g). First, most 
mice preferred either to swim along the wall of the pool (thigmo-
tactic or wall-hugging swim32) or found the hidden platform by 
chance with occasional inner area searches of the pool32. Later, as 
training progressed, mice started to search the entire pool surface 
area, first randomly, and later by selective scanning of the inner 
pool area with the escape platform. Finally, focal search of the tar-
get quadrant containing the platform, or a direct swim strategy 
towards it, suggested the development of spatial memory32. The 
majority of PBS male offspring changed their search strategy from 
random or systematic (non-spatial) to spatial over the ten days of 
testing, while LD ZIKV male offspring used non-spatial search 
strategies significantly more often, indicating a hippocampal  
deficit (Fig.  6f). This was particularly pronounced in TST high 
unlike TST storm males (Fig. 6f). No significant inter-group dif-
ferences in search strategies were detected in female offspring, 
although a general tendency towards increased non-spatial 
search strategies was observed (Fig.  6g). It has been previously 
shown that mice can change their search strategy from spatial 
(hippocampal-dependent) to systematic non-spatial (striatum-
dependent) after disruption of hippocampal function33,34. These 
findings show that TST high males present a hippocampal defi-
cit in learning strategies unlike females and TST storm males. 
Similar to the findings in the open field assessing mainly anxiety,  
hippocampal learning is different between females and TST high 
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Fig. 4 | TST levels of pregnant women and newborns. TST levels were 
detected in sera obtained from ZIKV RNA-positive and ZIKV RNA-negative 
mothers during their last term of pregnancy as well as post-partum 
from their clinically inapparent newborns within the first month of life 
(n = 10; values are shown as means, error bars as s.d., two-tailed t-test, 
***P< 0.001). Total numbers are shown as n and represent individual 
patients. qPCR, quantitative PCR.
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males. Consistently, TST storm males could compensate for defi-
ciencies in learning strategy suggesting a dose-dependent func-
tion of TST (Supplementary Table 3).

Discussion
Generally elevated TST levels in male offspring correlate with 
increased brain damage as assessed by the presence of immature 
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Fig. 5 | Apical and basal dendrites of adult male and female offspring. Spine density and distribution of spine types in apical (upper two panels) 
and basal (lower two panels) dendrites of CA1 pyramidal neurons in secondary and tertiary branches from male (left two panels) and female (right 
two panels) offspring of control and ZIKV-infected dams. a,c, Spine density in apical dendrites from male (a) and female (c) offspring. Scale bar, 5 µ​
m. b,d, Spine density quantification of apical dendrites of CA1 pyramidal neurons from male (b, PBS: second (2°) n = 30 and third (3°) 




 n =​ 28; 2016 

ZIKVLD: n = 30 segments from 7 cells from 4 brains) and female (d, PBS: n = 25 segments from 6 cells from 3 brains; 2016 ZIKVLD: 2° n = 28 and 2° 
n = 30 segments from 6 cells from 4 brains) offspring (values are shown as means, error bars as s.e.m., two-tailed t-test, *P <​ 0.05, ***P <​ 0.001). e–h, 
Distribution of spine types in apical dendrites of 2° for male (e, PBS: n = 30; 2016 ZIKVLD: n = 30 dendritic segments) and female offspring (g, PBS: n = 25, 
2016 ZIKVLD: n = 26 dendritic segments) and 3° branches for male (f, PBS: n = 428; 2016 ZIKVLD: n = 30 dendritic segments) and female offspring (h, PBS: 
n = 25; 2016 ZIKVLD: n = 26 dendritic segments; values are shown as means, error bars as s.e.m., two-way ANOVA with Šidák’s multiple comparison). i, k, 
Spine density in basal dendrites of CA1 pyramidal neurons from male (i) and female (k) offspring. Scale bar, 5 µ​m. j,l, Spine density quantification of basal 
dendrites of CA1 pyramidal neurons from male (j, PBS: 2° n = 40 and 3° n =​ 50; 2016 ZIKVLD: 2° n = 43 and 3° n =​ 50 segments from 8 cells from 3 brains) 
and female (l, PBS: n =​ 40; 2016 ZIKVLD: n =​ 30 segments from 8 cells from 3 brains) offspring (values are shown as means, error bars as s.e.m., two-tailed 
t-test, *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001). m–p, Distribution of spine types in basal dendrites of 2° for male (m, PBS: n = 38; 2016 ZIKVLD: n = 43 dendritic 
segments) and female offspring (o, PBS: n = 40; 2016 ZIKVLD: n = 30 dendritic segments) and 3° branches for male (n, PBS: n = 47; 2016 ZIKVLD: n = 49 
dendritic segments) and female offspring (p, PBS: n = 40; 2016 ZIKVLD: n = 30 dendritic segments; values are shown as means, error bars as s.e.m., two-
way ANOVA with Šidák’s multiple comparison, *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001). Total numbers are shown as n and represent biologically independent 
samples as indicated.
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Fig. 6 | Assessment of spatial learning and memory of adult male and female offspring. a,b, Distance moved (a) and centre time in the first 5 min (b) 
in the open field test (values are shown as means, error bars as s.e.m., n = 15 per group, except TST high (n = 6) and storm TST (n = 9); one-way ANOVA 
or unpaired two-tailed t-test *P <​ 0.05, **P <​ 0.01 versus PBS). c,d, Time to platform (escape latency) for male (c) and female (d) offspring from PBS and 
2016 ZIKVLD-infected dams in the MWM (values are shown as means, error bars as s.e.m., n = 8 per group except TST high and storm TST (n = 4); ANOVA 
with Fisher’s least significant difference test versus day 1; *P <​ 0.05, **P <​ 0.01, ***P <​ 0.001). Average swim velocity per trial ranged between 18 and 
27 cm s–1 and was not significantly different between groups. e, Spatial (hippocampus-dependent) and non-spatial (striatum-dependent) search strategies 
used by individual mice in all groups. f,g, Search strategy use over the ten days of hidden platform testing. Search strategy use differed between male 
offspring of PBS and 2016 ZIKVLD-infected dams (f); the majority of PBS controls changed their search strategy from random (non-spatial) to spatial over 
the ten-day testing period, while the 2016 ZIKVLD mice significantly more often (P <​ 0.05; Barnard’s test) used non-spatial search strategies, indicating 
hippocampal deficit. This was particularly pronounced in ZIKVLD mice with high TST levels (f). g, Search strategies used by female mice. h–j, Correlation 
of TST levels with brain morphology (immature spines in CA1 hippocampal neurons) (h), behaviour in the open field test (centre time) (i) or learning 
strategies (hippocampus dependency) in the MWM test (j) summarized from data shown under Figs. 3j, 5 and 6a–g and Supplementary Fig.s 8, 9 and 10. 
Total numbers are shown as n and represent biologically independent animals.
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neurons in apical and basal dendrites compared to female offspring, 
where immature spines were present in basal neurons only. Very 
high TST concentrations in TST storm males did not result in more 
severe morphological alterations in the brain suggesting that an 
elevated TST level in general is sufficient for profound brain dam-
age (Fig. 6h). Consistently, elevated TST levels in TST high males 
also correlated with impairments in behaviour (Fig. 6i) and learn-
ing strategies (Fig. 6j) compared to females with normal TST levels. 
However, TST storm males did not show differences in behaviour 
and learning despite neuronal changes. As shown previously, brain 
structure is not always predictive of behaviour35. Moreover, effects 
of TST on behaviour were reported to be curvilinear rather than 
linear and particular sex-dependent (reviewed in Celec et al.36). 
However, future studies are clearly required to assess the impact 
and the mode of action of TST concentrations on neurodevelop-
ment and behaviour in later life.

In summary, our data support the concept that maternal ZIKV 
infection during early embryogenesis affects fetal development in 
utero. As a consequence, offspring that do not show any clinical 
manifestations at birth might suffer from neuronal abnormali-
ties, as well as learning and memory deficiencies, in their adult-
hood. Since morphological alterations in adult offspring brain 
were not detectable by standard non-invasive imaging techniques 
(Supplementary Fig.  12), targeted monitoring becomes par-
ticularly important. Interestingly, silent neuropathologies were 
also reported recently in offspring born to ZIKV-infected pigtail 
macaques (Macaca nemestrina)37 further supporting the findings in 
our immunocompetent allogenic murine pregnancy model. Taken 
together, our data suggest that a complex interplay of maternal 
and viral factors contribute to neurodevelopmental and memory 
impairments in offspring´s later life (Supplementary Fig. 13). This 
study might provide a basis for future longitudinal clinical studies 
to identify children who might be at increased risk to develop sub-
clinical neurocognitive impairments in later life to allow timely and 
adequate disease management.

Methods
Ethics statement. Animal experiments were performed in strict accordance 
with the guidelines of German animal protection law. All animal protocols 
were approved by the relevant German authority (Behörde für Gesundheit und 
Verbraucherschutz). Tests performed at the German Mouse Clinic were approved 
by the responsible authority of the district government of Upper Bavaria, Germany.

Viruses and cells. We used the 2016 outbreak strain, FB-GWUH-2016 ZIKV 
(herein referred to as 2016 ZIKV), belonging to the Asian lineage (Supplementary 
Fig. 1), which was isolated from a human fetal brain with substantial abnormalities 
at the University of Helsinki, Finland2. The mother, who did not have any known 
underlying diseases, was infected with ZIKV during her first trimester; the 
infection was detected after her return from Central America. Given the gravity 
of the disease burden, she decided to prematurely terminate the pregnancy 
at 21 weeks of gestation2. DENV2 strain 16681 was originally isolated from a 
patient from Thailand who suffered from dengue haemorrhagic fever38. The 
prototype ZIKV strain MR766 was isolated in 1947 from Rhesus monkeys in 
Uganda. It underwent serial cell passages but is still genetically more similar 
to the 2016 outbreak strain than the DENV2 isolate; therefore, it was used as a 
genetically related control group. All isolates were propagated and titrated on 
African green monkey kidney epithelial (Vero E6; ATCC CCL81) cells. Vero E6 
and A549 cells (DSMZ Braunschweig) were grown in DMEM medium (Sigma-
Aldrich), supplemented with 10% fetal bovine serum (FBS; Biochrom), 1% 
penicillin-streptomycin (Sigma-Aldrich), and 1% L-glutamine (Sigma-Aldrich), 
and cultivated at 5% CO2, 96% relative humidity and 37 °C. Human placenta 
cells (JEG-3; provided by Udo Markert, University of Jena) were grown in Ham’s 
F12 Nutrient Mixture (Thermo Fisher Scientific), supplemented with 10% FBS, 
1% penicillin-streptomycin and 1% L-glutamine, and cultivated at 5% CO2 at 
37 °C. Human neural progenitor cells (hNPCs; provided by Priit Pruunsild and 
Hilmar Bading, Heidelberg University) were grown in DMEM-F12 medium 
containing 2 mM GlutaMAX, 1% N2 supplement, 2% B27 supplement, 50 μ​M β​
-mercaptoethanol, penicillin-streptomycin (1:200), 10 ng ml−1 epidermal growth 
factor (all from Thermo Fisher Scientific) and 10 ng ml−1 fibroblast growth factor 2 
(PeproTech), and were cultivated at 5% CO2 at 37 °C. All cell lines have been tested 
free of Mycoplasma contamination with the Venor GeM Classic Mycoplasma PCR 
Detection Kit (Minerva Biolabs).

ZIKV replication in cell culture. A549 cells were infected with ZIKV at a 
multiplicity of infection (MOI) of 0.2. JEG-3 and hNPCs cells were infected with 
ZIKV using MOIs of 0.2, 1 and 5. Virus titration was performed at 24, 48 and 72 h 
post-infection on Vero E6 cells by plaque assay.

Animal experiments. Animal experiments were performed in strict accordance 
with the guidelines of German animal protection law. All animal protocols 
were approved by the relevant German authority (Behörde für Gesundheit und 
Verbraucherschutz; protocols 124/12 and 38/16). Female C57BL/6 and male 
BALB/c mice (8–10 weeks old) were purchased from ENVIGO and were set up 
for semi-allogeneic mating. Mice were kept under standard housing conditions 
(21 ±​ 2 °C, 40–50% humidity, food and water ad libitum) with a 12:12 light–dark 
cycle. Animals with an unclear pregnancy status were excluded from subsequent 
experiments. Non-pregnant and pregnant mice at embryonic (E) days E3.5 or 
E12.5 were anaesthetized with isoflurane and inoculated by the retrobulbar route 
with 1 ×​ 105 50% cell culture infectious dose (TCID50) for LD ZIKV or 2.5 ×​ 107 
TCID50 for HD ZIKV in 100 µ​l 1×​ PBS. The range of ZIKV infectious dose used 
was chosen to reflect flavivirus infectious particles detected during a mosquito 
bite39. Control groups received 1×​ PBS. Full-term vital fetuses were counted to 
assess reproductive outcome on E17.5 gestation, corresponding to 1 day before 
birth, to avoid infected mothers killing their sick offspring directly after birth, 
which would limit the assessment of the reproductive outcome. For the TST 
treatment experiment, an ALZet Model 1002 micro-osmotic pump




 (Charles River) 

that releases TST or, as a control, a placebo was implanted subcutaneously during 
E3.5 gestation under isoflurane narcosis. Weight loss/gain was monitored for 14 
or 5 days post-infection and blood samples were collected on days 1, 3 and 6 post-
infection. Blood was centrifuged for 10 min at 2,000g and 4 °C, and the respective 
sera were stored at −​80 °C. On days 3, 6 and 14 post-infection, at least 5 animals 
per group were sacrificed and their organs (head, spleen and uterus or yolk sac) 
as well as placenta, umbilical cord and fetuses were removed and stored in 4% 
formalin or in RNAlater RNA Stabilization Reagent (QIAGEN). Mother and fetal 
heads, as well as uteri and placentas, were fixed in 4% formalin and embedded in 
paraffin for further immunohistochemical and pathological analysis, as well as 
determination of viral burden. Formalin-fixed uteri were processed for sectioning, 
as described previously40. Uteri, yolk sacs, placentas and umbilical cords were kept 
in RNAlater RNA Stabilization Reagent for the determination of virus titres. Eyes 
from eight-week-old offspring from ZIKV-infected and PBS control dams were 
fixed in 4% paraformaldehyde for further immunohistochemical analysis.

Measurement of cytokine/chemokine and hormone levels. Maternal cytokine 
and chemokine levels in serum were measured using a custom-made Bio-Plex 
Pro Mouse Cytokine I 4-plex assay (Bio-Rad), analysing IL-6 and MCP-1 levels 
according to the manufacturer’s instructions in a Bio-Plex 200 System with 
high-throughput fluidics (HTF; Bio-Rad) or for IL-17A by enzyme-linked 
immunosorbent assay (ELISA; EMELCA Bioscience). Cytokine levels in the 
placenta and fetal brain were measured using a Bio-Plex Pro Mouse Cytokine 
kit (Bio-Rad), analysing IL-6, IL-17A und MCP-1 levels according to the 
manufacturer’s instructions in a Bio-Plex 200 System with HTF (Bio-Rad). 
Progesterone (Cayman Chemical) and corticosterone (ARBOR ASSAYS) levels 
in maternal serum were evaluated by ELISA following the manufacturer’s 
instructions. For progesterone analysis, serum was diluted 1:100 or 1:200 and 
measured after 70 min of substrate incubation. Serum levels of oestradiol 
(Calbiotech) were also determined by ELISA according to the manufacturer’s 
instructions, except for a 50% reduced incubation time during enzyme conjugate 
incubation, and a 1:2 dilution of samples using standard 0 as diluent. All ELISAs 
were measured on a Saphire2 ELISA microplate reader (Tecan) and evaluated using 
a four parameter logistic regression (MyAssays). To determine serum TST levels, a 
chemiluminescence immunoassay (ADVIA Centaur Testosterone II assay; Siemens 
Healthcare Diagnostics)




 was employed. Measurement was performed with the 

ADVIA Centaur XP (Siemens Healthcare Diagnostics).

Determination of viral titres. Viral RNA was isolated from serum or tissue using 
the QIAamp Viral RNA Mini Kit (QIAGEN) according to the manufacturer’s 
instructions. ZIKV RNA levels were determined by quantitative reverse 
transcription real-time PCR (qRT–PCR) using the RealStar Zika Virus RT–PCR 
Kit 1.0 (altona Diagnostics). Recommendations from the manufacturer for sample 
preparation were incorporated into the RNA isolation procedure. These included 
the use of an internal control, which served both as a control for the sample 
preparation and as the RT–PCR inhibition control, as well as an extended dry 
spin step for 10 min at 17,000 g and room temperature. Approximately 50 mg of 
RNAlater-fixed organs were homogenized with eight sterile, stainless steel beads 
(Ø 2 mm; Retsch) in 160 µ​l of diethyl pyrocarbonate-treated 1×​ PBS at 30 Hz and 
4 °C for 6 min in the mixer mill MM400 (Retsch). Supernatants were then used for 
RNA isolation. RNA was eluted in RNase-free water and 1 U µ​l−1 RiboLock RNase 
Inhibitor (Thermo Fisher Scientific) was added. Total RNA from formalin-fixed, 
paraffin-embedded (FFPE) mother or fetal heads was isolated using the RNeasy 
FFPE Kit (QIAGEN). Samples were deparaffinised using xylene. RNase-free 
DNAse Set (QIAGEN) was used for on-column DNase I treatment according to the 
manufacturer’s instructions.
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Detection of DENV2 non-structural protein 1. The DENV2 non-structural 
protein 1 (NS1) protein in mouse sera was detected by ELISA according to the 
manufacturer’s instructions (EUROIMMUN AG). Measurements were performed 
at a 450 nm absorbance and a reference wavelength of 630 nm 20 min after the stop 
solution was added on a Saphire2 ELISA microplate reader.

Virus IgG and IgM assay. An immunofluorescence assay was performed in 
ZIKV-infected Vero E6 cells as described previously41. Briefly, infected Vero E6 
cells were incubated with serial serum dilutions (1:20 and 1:160), washed with 1×​ 
PBS and stained with conjugated fluorescein isothiocyanate goat anti-mouse IgG 
antibody (Jackson ImmunoResearch). IgG titres of 1:20 or more were considered 
positive. For IgM detection, a commercial anti-ZIKV indirect immunofluorescence 
test (EUROIMMUN AG) was used according to the manufacturer’s instructions. 
Serum samples were treated with the EzWay mouse IgG Depletion Solution 
(KOMABIOTECH) to pre-absorb IgG and rheumatic factors. Samples were diluted 
1:10 and 1:20. Samples were evaluated by fluorescence microscopy with a 20-fold 
magnification (Leica DMI6000), by comparing the fluorescence signals of ZIKV-
infected versus non-infected cells.

Fluorescence in situ hybridization. Maternal FFPE tissue was cut at a 2–5 µ​
m thickness and mounted on glass slides. For fluorescence in situ hybridization 
(FISH), an RNA probe was generated (VF1-19981-06, 6000098-06; Affymetrix) 
and used with the ViewRNA ISH Tissue Assay Kit (Thermo Fisher Scientific) 
as well as the ViewRNA Chromogenic Signal Amplification Kit (Thermo Fisher 
Scientific) according to the manufacturer’s instructions. For RNA unmasking, a 
pretreatment buffer was used for 10 min at 85–90 °C, Protease OF




 was incubated 

for 20 min, and 2.2 M hydrogen chloride and 300 mM potassium chloride were 
applied for 15 min as described previously10. Phase contrast and Cy3 fluorescence 
images were taken using a colour video camera (DP72, 12.8 megapixel CCD; 
Olympus) and an IX50 microscope (Olympus) with the cellF software (version 3.3; 
Olympus). The fluorescence signal was shown either in red, yellow or black in the 
respective figures to allow better visualization depending on the figure background 
using ImageJ (Fiji).

Histomorphological analyses of placental tissue. Paraffin-embedded placental 
tissue was cut into 6 µ​m histological sections at the mid-sagittal plane using a 
microtome (Leica SM2010 R). Slides were allowed to dry and incubated overnight 
at 37 °C before storing. Masson-Goldner trichrome staining kit (VWR) was 
used to visualize the morphologically different areas of placental tissue. After 
rinsing in distilled water, tissue sections were dehydrated twice in ethanol 70%. 
Weigert’s iron haematoxylin (Waldeck GmbH&Co. KG) was prepared following 
the manufacturer’s instruction and applied to the tissue sections. Slides were 
rinsed in tap water followed by 1% acetic acid in distilled water. Azophloxine 
staining solution (Goldner 1) and phosphotungstic acid-Orange G (Goldner 2) 
were subsequently added, followed by washing steps and counterstaining. The 
slides were mounted using vitroglut 




and cover slips and examined using a ZEISS 

Axioscope light microscope. Photo documentation was performed with a digital 
image analysis system (KS400 software; ZEISS).

Determination of nutrient supply genes in the placenta. Total RNA isolation 
from placentas was conducted using the innuPREP RNA 




Mini Kit (Analytik 

Jena) according to the manufacturer´s instructions. Tissue homogenization of 
~30–40 mg of RNAlater-fixed placentas was performed in 450 μ​l lysis buffer 
RL with 10 sterile, stainless steel beads (Ø 2 mm; Retsch) at 30 Hz and 4 °C for 
6 min in the mixer mill MM400. Supernatants were then used for RNA isolation. 
RNase-free DNase Set was used for on-column DNase I treatment. After elution in 
RNase-free water, 1 U μ​l−1 RiboLock RNase Inhibitor was added. cDNA synthesis 
was performed using random nonamer primers (Gene Link, pd(N)9, 26-4000-
06, final concentration: 5 μ​M) and the SuperScript III Reverse Transcriptase 
(Thermo Fisher Scientific) according to the manufacturer´s instructions using 
2 µ​g total RNA. cDNA was generated using the GeneAmp PCR System 9700 
(Applied Biosystems; cycle: 25 °C for 5 min, 50 °C for 60 min, 70 °C for 15 min, 
4 °C hold). DNA oligonucleotides (Sigma-Aldrich) for the genes of interest 
(GOIs) and the reference gene Ywhaz (tyrosine 3-monooxygenase/tryptophan 
5-monooxygenase activation protein, zeta)42. The following primer sequences 
were used for RT-qPCR: Ywhaz forward 5´-CACGCTCCCTAACCTTGCTT-3´, 
reverse 5´- ATCGTAGAAGCCTGACGTGG-3´; Grb10 
forward 5´- AAGCGAAGACCGAGATGAAG-3´, 
reverse 5´- CATAGGTGCGTTGAAAGGAG-3´; Igf2 
forward 5´-CTTGGATCCCAGAACCCAAGAA-3´, 
reverse 5´- CCCCTTGGTGACATGGGGAC-3´; Slc38a1 
forward 5´- CGGGAGAGTAGGAGGAGTCT-3´, reverse 
5´-GTCTGCTCCCACACATCGTT-3´; Slc38a2 forward 
5´-AATGCGATTGTGGGCAGTGG-3´, reverse 5´- AGC 
TTTCCAGCCAGACCATAC-3´. Briefly, singleplex reactions (20 μ​l) were  
set up manually in PCR grade water (Roche) in LightCycler 480 Multiwell Plate 
96 Reaction Plate (Roche Life Science): 10 μ​l FastStart Essential DNA Green 
Master (Roche Life Science); 300 nM of forward and reverse primer each; and 2 μ​
l cDNA template. RT-qPCR runs were conducted on the LightCycler 96 system 

Q10

Q11

Q12

(Roche Life Science) with end point fluorescence detection: 10 min at 95 °C and 
50 amplification cycles (15 s at 95 °C, 10 s at 65 °C and 20 s at 72 °C). Analysis 
was performed in triplicate for each GOI and Ywhaz in each sample. Negative 
controls and sample without reverse transcriptase were included to detect possible 
contaminations. Relative expression values were determined using the E-ΔΔCt 
method42. The Rn values were exported from the LightCycler 96 software (Roche 
Life Science) to Microsoft Office Excel and N0 values for the starting concentration 
of the transcript in the original sample were obtained with the LinRegPCR software 
version 11.160. The averaged N0 value of the GOI (n =​ 3 technical replicates) 
was then normalized with the averaged N0 value for Ywhaz (N0 (Ywhaz)) of the 
respective sample. The relative N0 (GOI)/N0 (Ywhaz) expression values of the biological 
replicates are presented. The relative N0 (GOI)/N0 (Ywhaz) expression of PBS was set to 
1 for each gene.

Immunohistochemistry of fetal tissues. Sagittal sections of fetal heads, including 
brains, were cut without decalcification for haematoxylin and eosin 




(H&E) 

evaluation, terminal deoxynucleotidyl transferase dUTP nick end labelling 
(TUNEL) assay staining and ionised calcium-binding adapter molecule 1 (Iba1) 
immunostaining. Sagittal sections from perfused 4-week-old offspring brains were 
cut, with IgM-specific antibody (Thermo Fisher Scientific) and 4,6-diamidino-
2-phenylindole (DAPI; PanReac AppliChem) as nuclear counterstaining. In the 
pregnant uterus of ZIKV-infected and control mice, the presence of necrosis, 
haemorrhages, inflammation, as well as a blastocyst/embryo and invasion of 
epithelial cells, was determined for each placentation site on H&E and cytokeratin-
stained slides (polyclonal rabbit anti-cytokeratin, Dako; 1:500; pretreatment: 
20 min microwave in citrate buffer, pH =​ 6.0), respectively. TUNEL assay and 
cytokeratin immunohistochemistry were performed as described previously1,43. All 
TUNEL-positive cells in an area of 0.25 µ​m² were counted within the brainstem of 
ZIKV-infected and control mice. Primary antibodies against Iba1 (1:1500; Wako 
Chemicals) were visualized using the avidin-biotin complex method with 3,3′​
-diaminobenzidine as the substrate. Slides were analysed using a NanoZoomer 
2.0-RS digital slide scanner and NDP.view2 software (both Hamamatsu). Microglia 
cells were defined by morphology and counted manually with the help of the 
ImageJ software. The eyes from offspring were dehydrated in an ascending series of 
sucrose, embedded in Tissue-Tek (Sakura Finetek) and sectioned at a thickness of 
25 µ​m. Central (that is, in the plane of the optic disc) retina sections were selected, 
blocked for 1 h in PBS containing 0.1% bovine serum albumin and 0.3% Triton 
X-100 (both Sigma-Aldrich) and incubated with anti-glial fibrillary acidic protein 
(GFAP) antibodies (Dako) to stain astrocytes, anti-Iba1 (Wako Chemicals) to stain 
microglia cells, anti-recoverin antibodies (Merck Millipore) to stain rod and cone 
photoreceptor cells and biotinylated peanut agglutinin (PNA; Vector Laboratories) 
to stain cone photoreceptor cells. Primary antibodies and biotinylated PNA 
were detected with Cy3-conjugated secondary antibodies and Cy3-conjugated 
streptavidin (Jackson ImmunoResearch) respectively, and sections were stained 
with DAPI (Sigma-Aldrich) and mounted onto slides. For each antigen, sections 
of eight offspring from ZIKV-infected and eight offspring from control dams were 
coded and analysed in a blinded manner. Photomicrographs are Z projections 
of image stacks through the entire thickness of the sections and were taken from 
retina regions close to the optic disc using an Axio Observer.Z1 microscope with 
ApoTome.2 (ZEISS).

Golgi staining. Whole brains were harvested from the 8-week-old male 
offspring of ZIKV-infected and control dams and stained using the FD Rapid 
GolgiStain Kit (FD NeuroTechnologies). Briefly, brains were rinsed with 
double-distilled water and then immersed in a 1:1 mixture of FD Solution 
A:B. Solution A:B was replaced within the first 24 h and then kept for 2 weeks 
at room temperature in the dark. Brains were then transferred to FD Solution 
C and kept in the dark at 4 °C for 48 h. Solution C was replaced after the first 
24 h. Afterwards, in preparation for vibratome sectioning, individual brains 
were placed in sterile 30% sucrose at 4 °C for 24 h. Coronal sections of 120 µ​m 
thickness were cut and collected consecutively in a 24-well plate in PBS. This 
thickness enabled optimal staining and preservation of spines on secondary 
and tertiary dendritic segments, while the complete basal dendritic arbor was 
acquired as needed for Sholl analysis. Sections were mounted on SuperFrost 
Ultra Plus microscope slides (Thermo Fisher Scientific) and allowed to dry for 
5–10 min. Sections were then developed exactly as described in the FD Rapid 
GolgiStain instructions. The development solution should be prepared just 
before use combining FD Solution D:E:double-distilled water in a 1:1:2 mixture. 
Glass slides were immersed for 3–5 min, rinsed in double-distilled water twice 
(4 min each) and allowed to dry briefly. Each slide was embedded using 120–
150 µ​l Mowiol (Sigma-Aldrich). Two-to-three independent coronal sections per 
mouse, which contained the dorsal hippocampus (bregma: −​1.22 to −​2.06 mm; 
interaural: 2.58 to 1.74 mm)44 were imaged. CA1 pyramidal neurons were 
identified by localization within the hippocampus and because of their distinct 
morphology. Presence of a completely unclipped basal or apical dendritic arbor 
was a prerequisite for selection and imaging of the cell. Z stacks of Golgi-
stained dendritic trees (60–90 µ​m total on the Z axis; optical section thickness 
per Z section: 1 µ​m) were taken at  ×​60 magnification on a Nikon Ti-E research 
microscope




 fitted with a CoolSNAP HQ2 




camera.
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Golgi spine analysis. Z stacks were opened in ImageJ. The image was overlaid with 
4 concentric circles (20 µ​m distance each) using the ROI manager tool to define 
medial (2°, 30–50 µ​m distance to soma centre) and distal (3°, 50–70 µ​m distance 
to soma centre) dendritic segments. For apical dendrites, the same procedure was 
followed but with branching points at the main dendrite as the focal point. Spine 
analysis was performed on selected dendritic segments according to standardized 
parameters described previously45 using the ImageJ selection tools combined 
with the ROI manager. In short, to sort spines into categories, spine head width 
and length were considered as well as their ratio. Numbers of analysed spines per 
segment were then converted into densities.

Sholl analysis. To perform the Sholl analysis, basal dendritic arbors of pyramidal 
cells of CA1 were traced with the ImageJ segmented line tool to create a two-
dimensional image of the basal dendritic tree. This image was then analysed with 
the Sholl analysis plugin with the radii set to 5 µ​m intervals46.

Heat maps and assessment of dendritic coverage. Heat maps were generated to 
create a visual representation using ImageJ on the basis of the dendritic filaments 
of individual cells. The dendritic width of these filaments was reduced to 1 px, thus 
taking each dendritic section equally into account. Neurons were matched in their 
orientation and aligned (angular position of apical dendrite; centroid of soma). 
Subsequently, filaments were projected onto each other followed by the application 
of a mean filter (radius =​ 5px). To put an emphasis on areas with a higher 
occurrence of dendritic material, an LUT 




(warm metal) was applied. To assess 

dendritic coverage within the dendritic field, coordinates of non-background pixels 
were extracted from the images of the dendritic filament and evaluated regarding 
their angular position. Therefore, the centroid of the soma was used as a reference, 
as well as a vector marking 0°. Applying equation (1), the angular distribution was 
assessed, correcting for angles >​ 180°. These values were then divided into 30° bins 
with the result depicted as the average percentage dendritic material per cell in a 
customized rose plot generated with Excel.

α α=
→ →

∣→∣ ∣
→

∣
< <∘ ∘a b

a b
cos( ) *

*
, 0 180 (1)

Open field analysis. The open field analysis was carried out during the first 
half of the light phase and as described previously47. It consisted of a transparent 
and infrared light-permeable acrylic test arena with a smooth floor (internal 
measurements: 45.5 ×​ 45.5 ×​ 39.5 cm3). Illumination levels were set at approximately 
150 lx in the corners and 200 lux in the middle of the test arena. Data were recorded 
and analysed using the ActiMot system (TSE Systems).

Y-maze. Spontaneous alternation in the Y-maze was tested during the first half of 
the light phase and as described previously48. The apparatus was made of opaque 
light grey polyvinyl chloride and had three identical arms (30 ×​ 5 ×​ 15 cm3) placed 
at 120° from each other; illumination in the centre of the maze was 100 lx. Each 
mouse was placed at the end of one arm and allowed to move freely through the 
maze during a 5-min session. Spontaneous alternations (defined as consecutive 
entries into all three arms without repetitions in overlapping triplet sets) were 
scored. The total numbers of arm entries were collected cumulatively over the 
5 min. Spontaneous alternation performance percentage is defined as the ratio of 
actual (total alternations) to possible alternations (total number of triplets) ×​ 100. 
When placed in the Y-maze as a novel environment, normal mice prefer to explore 
the least recently visited arm, and thus tend to alternate visits between the three 
arms. Therefore, alternation behaviour is a measure of spatial working memory 
since the mouse must maintain an ongoing record of the most recently visited arms 
to explore the three arms successively, and continuously update such records.

Object recognition. The object recognition test was carried out during the light 
phase and as described previously48. Briefly, each mouse was allowed to explore two 
identical objects three times for 5 min, with an inter-trial interval of 15 min. After 
a retention interval of 3 h, one of the previously encountered familiar objects was 
substituted by a new, unfamiliar one, which was again substituted by a novel object 
after a second retention interval of 24 h. For each retention test, the mouse was 
put again into the test box for 5 min and exploration time—defined as touching 
the object with the nose—was recorded by a trained observer with a handheld 
device. An object recognition index was calculated as the time spent investigating 
the unfamiliar object divided by the time spent investigating both the familiar and 
unfamiliar objects.

Virtual drum. A virtual optomotor response (OMR) system (OptoMotry System; 
CerebralMechanics) was used to test each animal’s visual function as described 
previously49,50. Briefly, the mouse was placed on a platform surrounded by a virtual 
rotating cylinder formed by four computer monitors that displayed rotating 
vertical sine wave gratings and was observed by a trained human experimenter. 
Positive reflexive head tracking movements in the direction of the grating rotation 
were used to determine spatial frequency thresholds. To determine spatial 
frequency thresholds, grating contrast was held at 100% while spatial frequency 
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was increased in a staircase paradigm until the response threshold was crossed49. 
All OMR stimulation was done at approximately the same time daily during the 
first half of the light phase for the duration of the experiment, with each testing 
session lasting about 10 min.

Morris water maze. The MWM test was performed during the light phase (water 
tank illuminated with white light (45 lx on average) as described previously)51. 
Following a habituation day (day 0), during which mice were placed on the 
submerged platform three times for 10 s to familiarize the animals with the test 
apparatus (a black circular plastic tank filled with water (24 °C) coloured opaque 
with milk (to make the black mice visible for the camera and software) with a 
submerged (hidden) black platform and external visual cues), place learning was 
performed over ten consecutive days with four 1-min trials per day. Each day, the 
animals were put into the pool at four different starting points; the starting point 
order in the four quadrants of the tank was changed from day to day, whereas the 
hidden platform stayed in the same quadrant of the maze throughout the testing 
period. For each trial, swim velocity, distance moved and escape latency were 
measured by a computerized tracking system (EthoVision). For each of the 1,280 
individual trials of this experiment, the search strategy used during navigation 
in the MWM in an individual trial was categorized into spatial or non-spatial as 
described previously33.

Phylogeny. The phylogenetic tree was inferred based on the complete genome 
sequences using the maximum likelihood method in PhyML 3.052 with 1,000 
pseudoreplicates; in parallel, the Bayesian Markov chain Monte Carlo tree-
sampling method—by using MrBayes 3.1.2. genome sequences of the isolates from 
this study and those retrieved from GenBank—were aligned using CLUSTALW 
in Geneious 9.1.5.




 Potential recombinant strains have been removed from the 

phylogenetic analysis. The Akaike information criterion was chosen as the model 
selection framework and the general time-reversible model of sequence evolution 
with gamma-distributed rate variation among sites (GTR +​ Γ​) as the best model. 
Statistical support of grouping from bootstrap replicates ( ≥​ 70%) and Bayesian 
posterior probabilities (clade credibility ≥​ 90%) is indicated with an asterisk.

Magnetic resonance imaging. For the ex vivo magnetic resonance imaging (MRI) 
examination, the heads of five offspring from ZIKV-infected and control dams 
were placed in 50 ml Falcon tubes filled with 4% formalin. Measurements were 
performed with a preclinical high-field scanner (7 T ClinScan; Bruker Biospin) 
equipped with a 660 mT m−1 gradient coil. Tubes were placed in a circular polarized 
1 H mouse whole body radiofrequency coil. A three-dimensional T2-weighted 
turbo spin-echo sequence with 40 slices of 200 µ​m thickness was planned axial to 
cover the brain.




 The field of view was 32 mm with a matrix of 320 ×​ 320 px resulting 

in a voxel size of 100 ×​ 100 ×​ 200 µ​m³. Further sequence parameters were TE (echo 
time) 23 ms, repetition time 2500 ms, turbo factor of 11 and number of average =​ 1. 
Exported DICOM (Digital Imaging and Communications in Medicine) images 
were analysed with ImageJ.

Patient recruitment, sample collection and sample processing. Pregnant 
women (aged 14–26) (gestation third trimester) were recruited based on clinical 
signs and symptoms (rash, muscle aches, eye pain, headache) for ZIKV or 
related flavivirus infections to take part in the longitudinal observational clinical 
study at the Hospital Regional Iquitos in Iquitos, Peru in 2017. Blood samples 
were collected from pregnant women by venepuncture as part of their routine 
examination and processed to serum using standard clinical laboratory protocols. 
Serum samples were subjected to qRT–PCR against ZIKV at the US Naval Medical 
Research Center No. 6 (NAMRU-6) in Lima, Peru. Depending on qRT–PCR 
outcome, patient samples were defined as ZIKV RNA-positive or ZIKV RNA-
negative mothers. One aliquot per pregnant woman was immediately frozen after 
processing to serum and stored until shipping at −​80 °C. Both patient groups were 
recruited back post-partum and blood samples from newborns (within their first 
month of life) were collected during routine paediatric examination and processed 
to serum using standard clinical laboratory protocols. None of the newborns was 
diagnosed with microcephaly or other clinically apparent phenotypes. Serum 
samples from newborns were subjected to qRT–PCR against ZIKV performed at 
NAMRU-6. One aliquot per newborn was immediately frozen after processing to 
serum and stored until shipping at −​80 °C. All frozen serum samples taken from 
mothers and children were then shipped on dry ice to the Heinrich Pette Institute, 
Hamburg, Germany for the detection of TST levels.

The study protocol was reviewed and approved by the Institutional Review 
Board of the Tropical Pathology and Infectious Disease Association (Cusco, 
Peru) with the study code IPTEI-2016/003. Eligible pregnant women were 
informed about the study purpose and ethical consent was obtained from the 
study participants. Newborns were enrolled based on the consent provided by 
their mothers.

Data analysis. Animal size estimates were calculated depending on the scientific 
question raised either by a Kruskal–Wallis one-way analysis of variance (ANOVA) 
or a Mann–Whitney U-test. No statistical methods were used to predetermine 
sample size regarding the in vitro experiments. Experiments were randomized and 
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investigators were blinded to data assessment of MWM and retina morphology/
pathology. In the German Mouse Clinic, a certified mouse phenotype assessment 
centre, experiments are conducted in a counterbalanced design to account for 
circadian effects (not blinded) and routinely performed by trained experimenters 
according to standard operating procedures. All data were analysed with the Prism 
software (GraphPad) using a two-way ANOVA followed by Bonferroni post-hoc 
correction or Šidák‘s multiple comparison, Fisher’s exact test




 or t-test as indicated 

in the respective legends. Behavioural data were analysed with two-way ANOVAs 
(factors: sex ×​ maternal treatment) or one-way ANOVAs (PBS, high and storm TST 
level groups) when appropriate. Data from the MWM were analysed with ANOVA 
followed by Fisher’s least significant difference test. The frequencies of search 
strategies were analysed with Barnard’s test.

Data availability



. Accession numbers of the ZIKV strains used to perform the 

phylogenetic analysis are indicated in Supplementary Fig. 1. The data that support the 
findings of this study are available from the corresponding author on request.




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