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Abstract 124 

Background  125 

In order to investigate associations between air pollution and adverse health effects 126 

consistent fine spatial air pollution surfaces are needed across large areas to provide cohorts 127 

with comparable exposures. The aim of this paper is to develop and evaluate fine spatial 128 

scale land use regression models for four major health relevant air pollutants (PM2.5, NO2, 129 

BC, O3) across Europe.   130 

Methods 131 

We developed West-European land use regression models (LUR) for 2010 estimating annual 132 

mean PM2.5, NO2, BC and O3 concentrations (including cold and warm season estimates for 133 

O3). The models were based on AirBase routine monitoring data (PM2.5, NO2 and O3) and 134 

ESCAPE monitoring data (BC), and incorporated satellite observations, dispersion model 135 

estimates, land use and traffic data. Kriging was performed on the residual spatial variation 136 

from the LUR models and added to the exposure estimates. One model was developed 137 

using all sites (100%). Robustness of the models was evaluated by performing a five-fold 138 

hold-out validation and for PM2.5 and NO2 additionally with independent comparison at 139 

ESCAPE measurements. To evaluate the stability of each model’s spatial structure over 140 

time, separate models were developed for different years (NO2 and O3: 2000 and 2005; 141 

PM2.5: 2013). 142 

Results 143 

The PM2.5, BC, NO2, O3 annual, O3 warm season and O3 cold season models explained 144 

respectively 72%, 54%, 59%, 65%, 69% and 83% of spatial variation in the measured 145 

concentrations. Kriging proved an efficient technique to explain a part of residual spatial 146 

variation for the pollutants with a strong regional component explaining respectively 10%, 147 

24% and 16% of the R2 in the PM2.5, O3 warm and O3 cold models. Explained variance at 148 

fully independent sites vs the internal hold-out validation was slightly lower for PM2.5 (65% vs 149 

66%) and lower for NO2 (49% vs 57%). Predictions from the 2010 model correlated highly 150 

with models developed in other years at the overall European scale. 151 

Conclusions 152 

We developed robust PM2.5, NO2, O3 and BC hybrid LUR models. At the West-European 153 

scale models were robust in time, becoming less robust at smaller spatial scales. Models 154 

were applied to 100x100 m surfaces across Western Europe to allow for exposure 155 



assignment for 35 million participants from 18 European cohorts participating in the ELAPSE 156 

study. 157 

 158 

Keywords: LUR, spatiotemporal stability, PM2.5, NO2, ozone, black carbon  159 

 160 

Abbreviations 161 

CTM  Chemical Transport Models  162 

SAT Satellite-derived predictions 163 

FULL Models developed using 100% of the monitoring sites  164 

HOV Hold-Out-Validation models developed on 80% of the number of sites 165 

 166 

  167 



Highlights 168 

1. Robust PM2.5, NO2, BC and O3 hybrid LUR models at a 100x100 m resolution for 169 

Western Europe were developed 170 

2. Models included large scale satellite and chemical transport model estimates and fine 171 

scale traffic and land use and were further improved with kriging  172 

3. Models were robust in time at European scale, becoming less robust at smaller 173 

spatial scales.  174 



1. Introduction 175 

Ambient air pollution remains one of the main causes of morbidity and mortality in the world 176 

(Cohen et al. 2017). WHO’s global assessment of ambient air pollution exposure estimated 177 

that one in nine deaths annually are caused by ambient air pollution (WHO 2016). More 178 

recently, there is evidence showing that associations between mortality and morbidity and 179 

long-term exposure to outdoor air pollution might have no threshold, and extend to 180 

concentrations below current air quality limit values of the US EPA and EU (Beelen et al. 181 

2015). Recent studies conducted in North-America have shown long-term exposure to PM2.5 182 

is associated with mortality also at low exposures (i.e. below the current WHO guideline of 10 183 

µg/m3) (Crouse et al. 2015; Di et al. 2017; Pinault et al. 2017). Particularly in North-America 184 

and Europe, tougher air quality policies have led to a reduction in emissions and a gradual 185 

decline in ambient air pollution concentrations (EEA 2017). Little, however, is known about 186 

the shape of the exposure-response curve at low concentrations, and thus the impact of low 187 

level concentrations on large populations remains uncertain. 188 

The ELAPSE (Effects of Low-Level Air Pollution: A Study in Europe) study aims to fill this 189 

gap by investigating the relationship between long term air pollution and morbidity and 190 

mortality at low PM2.5 (Particulate Matter <2.5 µg), nitrogen dioxide (NO2), black carbon (BC) 191 

and ozone (O3) exposures. Low levels are defined as air pollutant concentrations below EU 192 

and/or US air quality limit values and/or WHO guidelines. ELAPSE includes 11 cohorts with 193 

in-depth individual data on lifestyle and 7 large administrative/national cohorts across Europe 194 

(http://www.elapseproject.eu/). Cohorts were selected to represent a contrast in air pollution 195 

exposures between and within study areas. The 11 detailed individual-level cohorts will be 196 

analyzed as a pooled cohort, whereas the administrative cohorts will be analyzed separately. 197 

Taken together, the evidence should allow collective consideration and evaluation. This 198 

study therefore needs consistent models that can provide valid exposures at two different 199 

spatial extents in a Western Europe: combining all study regions of the detailed individual-200 

level cohorts for the pooled analysis; and the national extents for the administrative/national 201 

cohorts. The previously developed ESCAPE LUR models (Beelen et al. 2013; Eeftens et al. 202 

2012a) do not meet the requirements for the ELAPSE project because they do not cover the 203 

full national study areas. Secondly, methodological work by Basagana and Wang has shown 204 

that more stable models can be developed based on larger number of model training sites 205 

than the 20 sites that the ESCAPE PM models were based upon (Basagaña et al. 2012; M 206 

Wang et al. 2013). Finally, ESCAPE did not evaluate Ozone.”  207 

Cohorts in the ELAPSE study have different recruitment and follow-up periods going back as 208 

early as the 1990’s. Epidemiological studies have used the back-extrapolation method to 209 

estimate exposures back in time (Beelen et al. 2014; Chen et al. 2017). The method uses a 210 

http://www.elapseproject.eu/


well validated air pollution surface as the base and assumes that the spatial structure of this 211 

surface remains stable over time. Monitoring data from routine monitoring sites are then used 212 

to re-scale the surface back or forward in time (Cesaroni et al. 2012; Chen et al. 2010). Few 213 

studies have been able to document the stability of spatial surfaces, mostly focusing on NO2 214 

and at the city level (Cesaroni et al. 2012; Eeftens et al. 2011; R Wang et al. 2013) or 215 

national scale (Gulliver et al. 2013). We thus evaluated the stability of these surfaces over 216 

time by comparing modelled estimates with historic monitoring data and by developing 217 

models for other years. 218 

The aims of the paper are to:  219 

1. develop and evaluate performance of fine spatial scale hybrid land use regression 220 

models for four major health relevant pollutants PM2.5, NO2, BC, O3 across Western 221 

Europe;  222 

2. investigate the temporal stability of the spatial contrast at the West-European and 223 

national scale.  224 

This paper follows our recently published West-European fine scale air pollution exposure 225 

models for PM2.5 and NO2 (de Hoogh et al. 2016). Models were based on both 2010 226 

ESCAPE and the European Environment Agency (EEA) AirBase routine monitoring data, 227 

and documented the contribution of satellite data and chemical transport models (CTM) to 228 

LUR models. An important finding was that models performed well when validated with data 229 

from the other measurement network (i.e. ESCAPE model validated with AirBase sites and 230 

vice versa). In the current paper we substantially extended this work, firstly by adding black 231 

carbon (BC) and ozone (O3) which are both health relevant pollutants. We also improved the 232 

testing of the robustness of models by evaluating structure and predictions using five-fold 233 

hold-out-validation (HOV), following a study on land use regression models for ultrafine 234 

particles (van Nunen et al. 2017). We further assessed improving the LUR models using 235 

kriging and added new predictor variables with improved granularity, including 1x1 km 236 

satellite PM2.5 to the previously used 10x10 km satellite data. Finally we added an 237 

assessment of the temporal stability of the models. 238 

 239 

2. Materials and methods 240 

2.1 Air pollution monitoring data 241 

PM2.5, NO2 and O3 daily concentration data for 2010 were derived from the AirBase v8 242 

dataset (EEA). Only sites with ≥ 75% completeness of the total hours (NO2 and O3) or days 243 

(PM2.5) were accepted, and an annual average was calculated for PM2.5 and NO2.  For O3, we 244 



calculated the maximum running 8-hour mean for each day and then averaged to obtain an 245 

annual, warm season (April through September) and cold season (January through March 246 

and October through December) average maximum running 8-hour mean. For BC, which is 247 

not available through AirBase, we used the ESCAPE annual mean BC concentrations 248 

(measured as PM2.5 absorbance based on reflectance measurement of the filters) reflecting 249 

the time period 2009-2010. A detailed description of the ESCAPE measurement campaign 250 

can be found elsewhere (Eeftens et al. 2012b). Table S1 describes the number of sites and 251 

summary statistics of the air pollution measurement data. The locations of the monitoring 252 

sites used for the 2010 models are shown in Figure S1. For temporal stability analysis we 253 

additionally included NO2 and O3 daily concentration data for 2000 and 2005 from AirBase v8 254 

and daily PM2.5 concentration data for 2013 from Air Quality e-Reporting 255 

(www.eea.europa.eu/data-and-maps/data/aqereporting-8). There were insufficient PM2.5 sites 256 

across Western Europe before 2010.  257 

2.2 Predictor variables 258 

2.2.1 Satellite derived air pollution data 259 

In addition to the satellite (SAT) PM2.5 product (v3.01) used in the previous paper (de Hoogh 260 

et al. 2016), we tested two additional different SAT PM2.5 products, which have become 261 

available only recently, as potential predictors.  These were obtained from the global dataset 262 

reported in Van Donkelaar et al. (2015). Aerosol Optical Depth (AOD) retrievals from the 263 

NASA MODIS (Moderate Resolution Imaging Spectroradiometer), MISR (Multi-angle Imaging 264 

Spectroradiometer) and SeaWiFS instruments were related to near-surface concentrations 265 

using aerosol vertical profiles and scattering properties simulated by the GEOS-Chem CTM, 266 

to produce an annual average PM2.5 dataset at a 0.1° x 0.1° (~10km) resolution for 2010. In 267 

the previous paper we used a dataset inferred from 2009-2011 (optimized for 2010), here we 268 

additionally tested the inferred data from 2010 data only. We further included the current, 269 

purely geophysical, global PM2.5 dataset (V4.GL.02.NoGWR), which includes some 270 

information at the finer resolution of 0.01° x 0.01° (~1km) published by van Donkelaar et al. 271 

(2016). The pre-Geographically Weighted Regression dataset used here includes AOD from 272 

multiple satellite products (MISR, MODIS Dark Target, MODIS and SeaWiFS Deep Blue, and 273 

MODIS MAIAC) together with simulation-based sources, with information content below 274 

~10km provided by the MAIAC AOD retrieval. PM2.5 satellite data was offered as a predictor 275 

to the PM2.5 models. No BC satellite data were available and because BC is a major 276 

component of PM2.5, PM2.5 satellite data were also offered to the BC models.  277 

NO2 SAT estimates for 2010 were derived from the tropospheric NO2 columns measured with 278 

the OMI (Ozone Monitoring Instrument) on board the Aura satellite. Like PM2.5, the satellite 279 

http://www.eea.europa.eu/data-and-maps/data/aqereporting-8


column-integrated retrievals were related to ground-level concentrations using the global 280 

GEOS-Chem model, producing an annual gridded NO2 surface at a 10km resolution (Bechle 281 

et al. 2013, 2015; Novotny et al. 2011). NO2 satellite predictors were offered to the NO2 282 

models. No O3 satellite data were available but, because NO2 is related to O3 formation and 283 

scavenging, NO2 satellite data was also offered to the O3 models. 284 

2.2.2 Chemical transport model (CTM) data 285 

Pollutant estimates for 2010 from two long range CTM’s were obtained as potential predictor 286 

variables for the models. Annual PM2.5, NO2 and O3 estimates were derived from the MACC-287 

II ENSEMBLE model at a 0.1º x 0.1º (~10km) resolution (Inness et al. 2013). The 288 

ENSEMBLE model provides a value at each pixel which is defined as the median value of 289 

seven individual CTMs: CHIMERE, EMEP, EURAD, LOTOS-EUROS, MATCH, MOCAGE 290 

and SILAM. Annual MACC-II ENSEMBLE averages for PM2.5, NO2 and O3 were offered to 291 

the respective LUR models. We additionally acquired a second CTM dataset from the Danish 292 

Eulerian Hemispheric Model (DEHM_v31102016) for PM2.5, NO2, O3 and BC at a monthly  293 

50x50 km  resolution (Brandt et al. 2012). Annual DEHM averages were calculated for all 294 

pollutants and offered to the respective LUR models, while warm and cold averages of O3 295 

were offered to the warm and cold season models.    296 

2.2.3 Other predictor variables  297 

The GIS predictor variables used in this study are described in more detail elsewhere (de 298 

Hoogh et al. 2016; Vienneau et al. 2013). In brief, road data, classified as ‘all’ and ‘major’ 299 

roads, were extracted from the 1:10,000 EuroStreets digital road network (version 3.1 based 300 

on TeleAtlas MultiNet TM, year 2008). Land cover data were extracted from European 301 

Corine Land Cover 2006 data (ETC-LC) except for Greece for which Corine Land Cover 302 

2000 was used (ETC-LC). The 100 m resolution Corine datasets, with an initial 44 land 303 

classes, were grouped into six main land cover groups. Elevation was extracted from the 304 

SRTM Digital Elevation Database version 4.1 which has a resolution of one arc second 305 

(approximately 90 m) and a vertical error <16 m (CGIAR-CSI). We additionally obtained 1x1 306 

km population data for 2011 from Eurostat (European Commission (Eurostat).  307 

Both road and land cover databases were intersected with a 100x100 m base polygon and 308 

the sum of road length (for ‘all’ and ‘major’ roads) and sum of land cover area (for the six 309 

grouped land classes) were calculated. The 100x100 m polygons were converted to grids 310 

and a focalsum procedure was applied to calculate these predictor variables for different 311 

distances, i.e. “buffers”. All potential predictor variables are listed in Table S2, and GIS 312 

analysis was conducted in ESRI ArcGIS 10.5. 313 



2.3 Model development and evaluation 314 

A two-stage statistical procedure was applied to explain the spatial variation in the 315 

measurement data. Firstly, separate standard LUR models were developed based on all 316 

measurements for each pollutant. LUR models were developed according to the ESCAPE 317 

protocol; i.e. supervised stepwise linear regression as used in our previous paper (de Hoogh 318 

et al. 2016). Predictor variables were only allowed to enter the model if they adhered to the 319 

predefined direction of effect (see Table S2). We allowed significant predictor variables to 320 

enter the model when they added to the adjusted R2 of the previous model step. Secondly, 321 

using the urban and rural background sites only, we explored the remaining broad scale 322 

variation in the residuals. Ordinary kriging was applied to the residuals using the GSTAT R 323 

package (LUR + kriging). If kriging was not successful (i.e. we could not fit a kriging function 324 

through the residuals) we offered longitude and/or latitude to the LUR model as additional 325 

predictors.  326 

For each pollutant, six LUR models for 2010 were developed. The main model was 327 

developed using all sites (FULL). To test the robustness and stability of this model we 328 

additionally developed five hold out validation (HOV) models (HOV1, HOV2,…, HOV5), each 329 

built on 80% of the monitoring sites with the remaining 20% used for validation. Sites were 330 

selected into five groups (20% of sites) at random, stratified by site type and country. 331 

HOV was performed after the LUR modelling and after the kriging (when applicable) using 332 

the criteria R2 and root mean square error (RMSE). The main model (FULL, developed on all 333 

available sites) was evaluated against the 5 HOV samples. 334 

For PM2.5 and NO2 we were able to perform an additional independent comparison with the 335 

ESCAPE monitoring datasets.  Comparisons were performed at different scales: 1) overall 336 

(all ESCAPE sites); 2) overall ELAPSE (ESCAPE sites falling in ELAPSE study areas); and 337 

3) matched to individual ELAPSE study areas (both detailed individual-level and 338 

administrative cohorts). Since the BC model was developed using the ESCAPE 339 

measurements, no independent comparison was possible.  340 

2.4 Stability of spatial structure 341 

In back extrapolation we assume that the spatial structure remains the same going back in 342 

time. To investigate the stability of the spatial structure of the models, and to test this 343 

assumption, we developed models for NO2 and O3 (2000 and 2005) using the same methods 344 

described in section 2.3. For PM2.5 it was not possible to develop models for 2000 and 2005 345 

due to the lack of monitoring data (12 and 165 in 2000 and 2005 respectively), instead we 346 

developed a model for 2013 (number of included monitoring sites = 732). The FULL models 347 



were mapped at a 100x100 m resolution across the study area and for the different years we 348 

visually inspected the spatial patterns. 349 

As we did not have access to cohort geocodes, we created a random point file of 150,000 350 

points across the full rectangular extent of the study area. After intersecting with the study 351 

area boundary, approximately 44,000 points remained which was considered a sufficient 352 

number to evaluate the stability. These points were intersected with all the raster surfaces: 353 

2010 for PM2.5, NO2 and O3 (annual, cold season and warm season); 2013 for PM2.5; and 354 

2005 and 2000 for NO2 and O3. Comparisons of model predictions were made for the West-355 

European countries combined and at the national scale reporting R2, RMSE and fractional 356 

bias (FB). In addition we calculated population weighted annual means for PM2.5, NO2 and 357 

O3, using the 1x1 km GEOSTAT population database (European Commission (Eurostat).  358 

We additionally evaluated the correlation of annual average measurements (plus summer 359 

and winter average for O3) for those AirBase stations with measurements going sufficiently 360 

back in time. 361 

2.5 Population exposure 362 

For 2010, we calculated the total population of West-European countries (based on  the 363 

GEOSTAT 2011 population grid dataset (European Commission (Eurostat)) residing in PM2.5 364 

and NO2 concentration classes. 365 

 366 

3. Results 367 

3.1 Air pollution models 2010  368 

The performance statistics (squared Pearson correlation (R2) and RSME) and model 369 

structure of the FULL hybrid models for all pollutants are presented in Table 1 including the 370 

LUR component and, where applicable, the combined LUR + kriging component. The 371 

variograms of the kriging models for PM2.5, O3 in the warm and cold season are shown in 372 

Figure S2. A detailed model description, including constants, coefficients, incremental R2 and 373 

RMSE can be found in Table 2 for PM2.5 and the Supplementary material for the other 374 

pollutants (Table S3) and years (Table S4). Figure 1 shows the mapped surfaces at a 375 

100x100 m resolution of the FULL models for all pollutants. 376 

<INSERT Table 1 around here> 377 

<INSERT Table 2 around here> 378 

3.1.1 PM2.5 models 379 



The PM2.5 LUR model developed on all available monitoring sites (FULL) explained 62% of 380 

spatial variation of the measured PM2.5 concentrations (Table 1). Apart from satellite and 381 

CTM estimates, the LUR model included altitude, all roads, natural areas, ports and 382 

residential area. The satellite variable was the strongest predictor in all models explaining 383 

approximately 48% of the spatial variation in measured PM2.5 concentrations. Comparing the 384 

predicted increase in PM2.5 across a change from the 1st to the 99th percentile of each 385 

predictor, satellite and CTM PM2.5 were associated with the largest contrast in PM2.5. The 386 

model included large scale predictors (CTM, SAT at 10x10 km) and small-scale road, natural 387 

and residential land (50-200m) predictors. Kriging increased the explained variation to 72%.   388 

The difference between the calibration and HOV R2 of the FULL PM2.5 model was small (72% 389 

vs 66%) confirming that overfitting was unlikely to be a big problem in the model 390 

development (Table 2). Similar predictor variables as in the FULL model were retained in the 391 

validation models, with only ports and urban green not always present in each model. 392 

Consistently, predictions of the six models (FULL and 5 HOV) at the 44,000 randomly 393 

selected sites were very highly correlated documenting the robustness of the model (Figure 394 

S3).  395 

The mapped FULL PM2.5 model (see Figure 1) showed predicted levels of PM2.5 > 20 µg/m3 396 

in major cities and the Po area (the Po river basin running from the Western Alps to the 397 

Adriatic Sea) in Italy. Large parts of Northern Europe had low (<10 µg/m3) predicted PM2.5 398 

concentrations.  399 

<INSERT Figure 1 around here> 400 

We tested the three different PM2.5 satellite products in preliminary PM2.5 model development 401 

and found that the 0.1° x 0.1°inferred 2009-2011 product v3.01 produced the best results 402 

(see the Supplementary material section 1 and Table S5 for a more detailed description).  403 

3.1.2 NO2 models 404 

The FULL NO2 model explained 59% of the spatial variation (Table 1 and Table S3). In all 405 

models the CTM variable was the strongest predictor explaining approximately 29% of 406 

variation in NO2 concentrations, followed by the small (100-300m) and larger scale (2000m) 407 

road variables. All roads, major roads, natural and residential predictor variables consistently 408 

appeared in every model. Predictions of the six models (FULL and 5 HOV) models at the 409 

44,000 randomly selected sites were very highly correlated (Figure S3). None of the 410 

variogram models adequately fit the residuals at the NO2 background monitoring sites, nor 411 

did including longitude and/or latitude help explain the residuals (p-value of coefficient not 412 

significant). The mapped NO2 estimates (Figure 1) showed more variation compared to 413 



PM2.5. Major roads and cities clearly stood out with predicted concentrations generally > 30 414 

µg/m3. Away from sources in rural areas, NO2 levels dropped below 15 µg/m3. 415 

3.1.3 O3 models 416 

Around half of the spatial variation in the annual O3 measurements was explained by the 417 

CTM (MACC-O3) variable. Other variables consistently entering all 6 annual models were 418 

roads, residential land cover and altitude (Table S3). Ports entered the FULL model and 4 of 419 

the 5 HOV models. The CTM was associated with much larger contrast in O3 than the other 420 

predictors. Predictions of the 6 models (FULL and 5 HOV) models at the 44,000 randomly 421 

selected sites were very highly correlated (Figure S3). No reliable kriging function could be fit 422 

through the residuals of O3 background monitoring sites. However, latitude and longitude 423 

variables were fit to the models. The FULL model had a R2 of 65% (HOV models ranging 424 

from 63 to 68%).   425 

Like the annual O3 model, the cold season O3 model was dominated by the MACC predictor 426 

variable, explaining nearly 60% of the spatial variation in measured O3 concentrations. 427 

Roads, residential land and altitude variable entered in all 6 cold season models. Kriging 428 

explained, on average, an additional 16% of the spatial variation, bringing the final 429 

performance of the FULL O3 cold model to 83% (80% to 85% for the 5 validation models).  430 

The O3 warm season models also contained a CTM variable, but unlike the annual and cold 431 

season O3 models where the annual MACC CTM variable entered, here the warm season 432 

DEHM CTM variable was the stronger predictor. Other variables entering in all models were 433 

roads, ports, residential land and altitude. The performance of LUR models was moderate 434 

(R2 ranging from 44 to 48%) but with additionally fitted kriging functions, we increased the 435 

explained variation to 70% for the FULL model (67% to 73% for the 5 validation models).  436 

Maps of the FULL O3 models (Figure 1 and S4) showed similar general patterns for annual 437 

and cold season, with the highest predicted O3 concentrations in Southern Europe and lower 438 

concentrations in more central areas (England, the Netherlands, Germany and northern 439 

Italy). Areas of high altitude also tended to have higher predicted O3 levels compared areas 440 

of lower altitudes. Predicted O3 concentrations for the warm season showed a somewhat 441 

different spatial pattern with a much clearer negative North-South gradient than the cold 442 

season model. 443 

3.1.4 BC models 444 

For the FULL BC LUR model we achieved an explained variation of 54% (FULL model) and 445 

between 52 and 57% for the 5 HOV models (Table 1, Table S3). For all 6 models, the CTM 446 

MACC-PM2.5 contributed 24 to 30% of the explained spatial variation. Roads, PM2.5 SAT 447 



estimates, urban green land, residential land and natural land were also included consistently 448 

in FULL and HOV models. Predictions of the 6 (FULL and 5 HOV) models at the 44,000 449 

randomly selected sites were very highly correlated (Figure S3). The BC model included 450 

large contributions from large-scale predictors (CTM PM2.5, Y-coordinate and residential 451 

density) and small-scale predictors (roads and residential density). 452 

Due to the clustered nature of the BC monitoring data it was not possible to perform kriging.  453 

Latitude was best able to explain the residuals.  454 

When mapped across Western Europe (Figure 1), BC predicted concentrations showed a 455 

distinct North – South division, with low (<=0.8 10-5m-1) BC concentrations in Scandinavia 456 

and the north of the UK, and higher >0.8 10-5m-1 in the rest of Western Europe. 457 

Mediterranean Europe had the highest concentration > 1.2 10-5m-1. Traffic sources were also 458 

clearly identifiable in the inset with major roads visible around Paris. 459 

3.2 Comparison at ESCAPE sites  460 

We performed an independent external comparison for PM2.5 and NO2 FULL models using 461 

measured concentration data from the ESCAPE study. Table 3 shows the correlations at 462 

different scales including the mean and standard deviation of measured concentrations at the 463 

ESCAPE measurement sites.  464 

<INSERT Table 3 around here> 465 

The PM2.5 FULL model explained 65% of variance overall (n=416) with a small fractional bias 466 

(FB = -2%). The explained variance is almost identical to the HOV R2 of 66% (Table 1). 467 

Restricting the analysis to the overall area with ELAPSE cohorts (n = 255) led to a slight 468 

decrease in the explained variance (59%) and a small overestimation (FB = -10%). The 469 

comparison at each ELAPSE study areas separately (detailed individual-level and 470 

administrative cohorts) revealed a large range in the explained variation, 8% for EPIC Oxford 471 

and English administrative cohort to 66% for HNR, also with the FB varying from -2 to -30%. 472 

We note that the number of sites is relatively small for the individual area comparisons.  473 

NO2 FULL models also showed reasonable associations for overall (49%) and overall 474 

ELAPSE (46%). The explained variance was modestly lower than the HOV R2 of 57% (Table 475 

1). FB indicated a small overestimation of 13% for the ELAPSE overall area. At the ELAPSE 476 

detailed individual-level cohorts the correlations for NO2 were generally better than for PM2.5: 477 

all were >47% except for HUBRO (7%) and EPIC VARESE (34%). FB showed 478 

overestimation for all areas, except for ELAPSE areas in Italy.                479 

3.3 Air pollution models for different time periods and stability analysis 480 



3.3.1 Models for 2000, 2005 (NO2 and O3) and 2013 (PM2.5) 481 

The performance statistics of the PM2.5, NO2 and O3 models for different years are presented 482 

in Table S4. The 2013 PM2.5 LUR models explained 64% of spatial variation in the PM2.5 483 

measurements. The LUR models had some similarities with the 2010 models, with MACC, 484 

SAT, roads and natural land entering all models. Neither reliable kriging models nor 485 

longitude/latitude variables improved the models.  486 

No NO2 MACC CTM estimates were available for the years 2000 and 2005, so only DEHM 487 

NO2 for 2000 and 2005 estimates were offered to the NO2 model development. Otherwise 488 

the NO2 models showed a similar structure with the 2010 NO2 LUR models (CTM, roads, 489 

natural land, residential land and ports in all models), but performed slightly less well (R2 NO2 490 

2000 = 56%; R2 NO2 2005 = 52%).  491 

O3 models for 2000 and 2005 were able to respectively explain 60% and 49% (annual), 82 492 

and 42% (warm season), 52 and 70% (cold season) of the variation in measured 493 

concentrations. The 2000 and 2005 annual and warm O3 models contained DEHM CTM 494 

variables whereas no DEHM variable entered the cold season models. Kriging models 495 

explained an additional ~ 25% of spatial variation in the 2000 warm season and the 2005 496 

cold season models. Latitude and longitude variables were entered to the other models.  497 

Figure 1 shows the maps of PM2.5 (2013, 2010), NO2 and O3 warm season (2010, 2005, 498 

2000). Similar patterns over multiple years were observed with, for example, high predicted 499 

PM2.5 concentrations for both 2010 and 2013 in the Po valley in North Italy and low PM2.5 500 

concentrations in Scandinavia. Spatial patterns in the NO2 and O3 concentrations maps for 501 

the 3 years also appeared broadly similar.  502 

<INSERT Table 4 around here> 503 

3.3.2 Comparison of model predictions for Western Europe across years  504 

Table 4 (and Figure S5) shows the results of the stability tests at country level. Agreement in 505 

spatial variation was generally high at the overall EU country and combined ELAPSE country 506 

level (>76%) for all comparisons, except for the O3 cold season surface (44% when 2000 507 

model compared to 2010). At the national level, focusing on ELAPSE countries only, we 508 

observed some heterogeneity in the associations. Both 2000 and 2005 NO2 surfaces showed 509 

a high agreement with the 2010 NO2 surface (all ELAPSE countries >80%). The agreement 510 

between PM2.5 surfaces developed for 2010 and 2013 showed more variability, with four 511 

ELAPSE countries >80% (UK, Sweden, Belgium and Italy), the Netherlands 70% and the 512 

rest between 48 and 60%. There was a high variability between the associations of the 513 

different O3 surfaces. The agreement between O3 annual surfaces of 2000 and 2005 with 514 



2010 was reasonable, all ELAPSE countries had >60% explained spatial variability, with the 515 

exception of Sweden (2000) with 45%. Except for the 2005 O3 cold (all ELAPSE countries > 516 

60%), the O3 cold and warm season surfaces were less stable over time with large ranges of 517 

explained spatial variability. Italy performed poorly with 1.6%, 11.9% and 16.6% for 518 

respectively 2000 warm season, 2005 warm season and 2000 cold season (combined with 519 

the largest RMSE’s).  520 

NUTS areas are standard administrative divisions of EU countries for statistical purposes. 521 

We performed the stability analysis using the same 44,000 random points at the NUTS1 area 522 

level (see Figure S6) to gain a better understanding of the stability at the sub-national level. 523 

Similar to the national level, there was a good agreement for all areas for NO2 2000 and 524 

2005 when compared to the 2010 surface (R2 >0.60). For more details see the 525 

Supplementary material section 2.  526 

3.3.3 Comparison of measurements 527 

We additionally evaluated the relationship between measured average concentrations for 528 

those AirBase stations with measurements going sufficiently back in time between 2010 to 529 

2005 and 2000 (Table 5). In Western Europe the measured concentrations between the 530 

different years yielded high correlations. When focusing on ELAPSE participating countries, 531 

high correlations were also observed for the majority of the countries and years. 532 

<INSERT Table 5 around here> 533 

3.4 Population exposure 534 

Based on our modelled concentrations (FULL models), a respective 8 million (2%) and 371 535 

million (89%) people live in areas with estimated PM2.5 concentrations greater than the EU 536 

annual PM2.5 limit value of 25 µg/m3 and the WHO annual guideline of 10 µg/m3. 32 million 537 

(8%) of people live in areas with modelled NO2 concentration greater than the EU and WHO 538 

annual NO2 guideline of 40 µg/m3 (see Table S6). Table S7 shows that population weighted 539 

concentrations levels across the whole of our study area do not drastically fluctuate over time 540 

and are generally low (PM2.5 ~ 11 µg/m3 and NO2 < 20 µg/m3). 541 

 542 

4. Discussion 543 

We developed West-European LUR models at a 100x100 m spatial scale for four priority 544 

pollutants. The models including large scale satellite data and CTM and small-scale traffic 545 

and land use predictors explained between 54% (BC) and 83% (O3 cold season) of the 546 

measured variability in concentrations. The explained variance at fully independent sites was 547 



only slightly less than the internal hold-out validation:  65% vs 66% for PM2.5 and 49% vs 548 

57% for NO2. Predictions from the 2010 model correlated highly with models developed for 549 

2000 and 2005 (2013 for PM2.5) at the overall European scale, with squared correlations 550 

larger than 76%, except for the O3 cold season of 2000 (44%). The temporal correlation was 551 

more variable when evaluated at the country and especially at the NUTS1 level. Correlations 552 

between measured concentrations at the EU level between 2010 - 2005 and 2010 - 2000 for 553 

NO2 and O3 (R2 between 68% to 87%) and for PM2.5 2010 - 2013 (R2 79%) were even higher 554 

than modeled concentrations. Based on our modelled surfaces, 371 million and 32 million 555 

people in Western Europe live in areas with air pollution levels exceeding the WHO annual 556 

guidelines for PM2.5 and NO2 respectively.  557 

4.1 Interpretation of 2010 models 558 

PM2.5 SAT and CTM available at a 10x10 km scale were the strongest predictors in the PM2.5 559 

models, consistent with PM2.5 being a largely regionally varying pollutant. Eeftens et al. 560 

(2012a) reported that 81% of the variability in the ESCAPE annual average PM2.5 561 

concentrations was due to between study area contrast. The modest contrast related to the 562 

small-scale road variable is consistent with the overall mean ratio of 1.14 comparing traffic 563 

and background sites within ESCAPE (Eeftens et al. 2012a). Roads, ports and residential 564 

areas represent the contribution of local sources, with altitude, and nature/urban green 565 

representing pollution sinks. Applying kriging to the residuals of the LUR model explained an 566 

extra 10% of the variation, suggesting that the SAT and CTM predictors did not fully capture 567 

the large scale variation of PM2.5 across Europe. Alternatively, the number of sites was 568 

insufficient to train the model. Kriging was not feasible for the 2013 model, possibly due to 569 

the larger number of sites.  570 

In the BC models, satellite and CTM PM2.5 also contributed strongly, raising potential 571 

concerns when applying the PM2.5 and BC models in the epidemiological analysis as it might 572 

be difficult to tease apart their respective contribution to health effects. Compared to the 573 

PM2.5 models, small-scale road predictors contributed more to the BC prediction. The FULL 574 

model contained three road variables with a similar magnitude to the CTM and SAT 575 

predictors. This is consistent with the observation in ESCAPE that 52% of the variability was 576 

due to within-study area variability (Eeftens et al. 2012a). The overall ratio of BC 577 

concentrations measured at traffic /urban background sites was 1.38 (Eeftens et al. 2012a). 578 

The residuals of our initial model showed a clear north-south gradient, which was captured 579 

by a Y-coordinate in the model, documenting that the models did not predict the large scale 580 

contrast of BC across Europe sufficiently. MACC and satellites do not represent BC, whereas 581 

DEHM modelled BC at a larger scale (50x50 km scale). It is likely that limitations in emission 582 

data for BC may have impacted the performance of the models.  583 



After the CTM predictor variable, small-scale road variables were the strongest predictors in 584 

the NO2 models. Motorized traffic is a dominant source of local NO2 concentrations, as 585 

illustrated by the overall ratio of 1.63 for concentrations measured at traffic vs. urban 586 

background ESCAPE monitoring sites  (Cyrys et al. 2012). In ESCAPE, 60% of the variability 587 

of NO2 was due to within-study area variability (Cyrys et al. 2012). The NO2 models could not 588 

be further improved by kriging or geographical coordinates, suggesting that the CTM 589 

adequately captured the large scale variation across Europe. We previously suggested that 590 

CTM’s were better developed for NO2 than for PM2.5 when discussing the contribution of 591 

CTM and SAT to PM2.5 and NO2 LUR models (de Hoogh et al. 2016).    592 

In O3 models, CTM (the ensemble MACC for the annual and cold period and DEHM for the 593 

warm season) were the dominant predictor variables, consistent with O3 being a regional 594 

pollutant. The model further predicted higher concentrations at higher altitude, in accordance 595 

with a previous European LUR model (Beelen et al. 2009). Predicted lower concentrations 596 

near roads was consistent with scavenging of O3 by NO2. In both the warm and cold season, 597 

kriging substantially improved the models, likely illustrating limitations in the CTM. Kriging did 598 

not contribute to the annual model, possibly because the annual average combined the two 599 

different spatial patterns of the cold and warm seasons.  600 

Few studies have combined LUR and kriging in air pollution models.  Young et al. (2016) 601 

evaluated the additional value of satellite data and/or kriging on NO2 LUR models across the 602 

USA for 1990 – 2012. Models with both satellite data and kriging performed best, increasing 603 

the average cross-validation R2 from 0.72 (just applying LUR) to 0.85. Satellite or kriging 604 

alone yielded respective average R2’s of 0.81 and 0.84. Although we found improvement of 605 

model performance with kriging for the PM2.5 and O3 models, we did not see the same result 606 

in our NO2 models. This might be due to the difference in scale of the two studies. Young et 607 

al. (2016) estimated NO2 concentrations at a 25 x 25 km resolution, thereby not explaining 608 

intra-urban variation but rather focusing on more regional background. This study operates at 609 

a much smaller resolution (100x100 m) and, at least for NO2, the residual concentrations 610 

after LUR were too variable, even at background sites, for reliable kriging functions. In a 611 

previous study distinguishing global, regional and urban scales, universal kriging improved 612 

PM10, O3 and NO2 European models compared to regression models (Beelen et al. 2009). In 613 

that study, the analysis was based on 1 * 1 km estimates.  614 

Relatively few studies have tested the robustness by developing HOV models and assessing 615 

the structure of the models. Johnson et al. (2010) evaluated PM2.5, NOx and benzene LUR 616 

models in New Haven, CT, USA by including hold-out validation using varying sizes of 617 

training/testing groups. van Nunen et al. (2017) performed a 10-fold cross validation when 618 

developing UFP LUR models in six study European areas.  We observed that the model 619 



predictions from our FULL model correlated very highly with the 5 HOV models at the 44,000 620 

independent sites, suggesting that the developed models were robust. The correlations in 621 

our study were higher than that observed for the UFP models based on short-term 622 

monitoring at 160 sites in some of the cities (van Nunen et al. 2017).  623 

4.2 Comparison with other European models 624 

Previously we published the development of hybrid PM2.5 and NO2 LUR models for the same 625 

study area, showing that satellite-derived (SAT) estimates and CTM estimates contribute 626 

considerably to the explained variance in PM2.5 and NO2 measurements (de Hoogh et al. 627 

2016). The models presented in this paper confirm our previous findings. Moreover, by 628 

additionally including kriging to explain residuals at background monitoring sites, we 629 

improved the PM2.5 hybrid models from 62 to 72% (R2). This improvement was also observed 630 

when tested using the independent ESCAPE monitoring dataset, showing an improvement 631 

from 53 to 65% (R2). For NO2 models, where the inclusion of longitude explained some of the 632 

residuals, the R2 remained the same (both 58%); but the improved NO2 model described 633 

here yielded a higher independent validation (R2) of 49% compared to 43% in de de Hoogh 634 

et al. (2016). Additionally we evaluated the performance of SAT and CTM derived estimates 635 

by comparing monitored AIRBASE data and satellite derived PM2.5 (R2 = 0.48) and NO2 (R2 = 636 

0.13) and MACC PM2.5 (R2 = 0.41) and NO2 (R2 = 0.29). SAT and CTM (MACC) surfaces 637 

explain less of the measured spatial variation than when these datasets are used within a 638 

hybrid LUR framework as presented as in this paper. 639 

Vienneau et al. (2013) also developed European NO2 and PM10 LUR models, for 2005-2007, 640 

showing that the inclusion of satellite data substantially improved model performance. The 641 

NO2 model explained a comparable fraction of the variation (46-56%) to our models. The 642 

CTM predictor outperformed the satellite data in our NO2 model, a predictor variable not 643 

available in the study by Vienneau et al. (2013).   644 

To date few studies have attempted to model pollutants other than NO2 and PM. European 645 

O3 LUR models have been previously developed by Beelen et al. (2009)  for the year 2001 at 646 

the global (R2 = 0.53), rural (R2 = 0.63) and urban (R2 = 0.06) scale. Our annual O3 model 647 

performance for 2000 yielded a higher R2 (0.63) possibly due to the inclusion of DEHM 648 

estimates in our model. In addition we further developed seasonal O3 models. 649 

4.3 Application of 2010 models in epidemiological studies  650 

The models developed and described here will be used for the exposure assessment in 651 

ELAPSE for 7 administrative cohorts and a pooled cohort comprising of 11 local cohorts 652 

across 11 countries in Europe (Norway, Sweden, Denmark, United Kingdom, the 653 



Netherlands, Belgium, Germany, France, Switzerland, Austria and Italy). For the pooled 654 

cohort, the (moderately) high explained variance in hold-out validation and external validation 655 

over the full area suggests that exposure assessment is robust. For individual cohorts, 656 

comparison with ESCAPE data in the respective study areas showed more variable results, 657 

especially for PM2.5. This implies that our West European model should be applied with 658 

caution in a small area (part of a country) unless local validation is possible. The difference 659 

between NO2 and PM2.5 could be due to the relatively small number of sites for PM2.5 and the 660 

smaller contrast in PM2.5 within cohorts compared to NO2.  661 

For the administrative cohorts, direct comparisons of the Dutch, Rome and to some extent 662 

national English and Swiss (NO2 only) study areas with the ESCAPE data are possible due 663 

to overlaps between the ESCAPE and ELAPSE study areas/regions. The West European 664 

ELAPSE models explained variation well, except for PM2.5 in the Netherlands (possibly due 665 

to small variation) and NO2 in Switzerland. The findings for Switzerland do not directly apply 666 

to the Swiss cohort, as the evaluation was limited to three cities whereas the Swiss cohort 667 

includes the entire population including those in rural and Alpine areas. We have no ready 668 

explanation for these findings, and can only speculate that a more locally generated model 669 

may better capture area-specific small-scale concentration differences than a pan-European 670 

model, which tends to smooth intra-urban differences over several very different study areas.  671 

4.4 Spatial stability of models and measurements over time 672 

This is one of the few studies which has tested the stability of spatial structure of air pollution 673 

exposure models at a continental scale, by developing models for different time points and 674 

comparing the respective estimates. Most studies evaluated LUR models at a national or 675 

sub-national scale by linear regression using historical monitoring data, allowing the constant 676 

and coefficient to change (Cesaroni et al. 2012; Chen et al. 2010; Eeftens et al. 2011; 677 

Gulliver et al. 2013; Gulliver and de Hoogh 2015; Levy et al. 2015). Gulliver et al. (2016), 678 

however, produced separate NO2 LUR models for 1991 and 2009 for the UK and found that 679 

the year-specific 1991 model yielded similar exposures as the back-extrapolated 2009 680 

model. R Wang et al. (2013) developed NO2 LUR models for 2003 and 2010 for Vancouver, 681 

Canada, and when applied to measurements of the other year were able to explain 52 to 682 

61% (2003 model to 2010 measurements) and 44 to 49% (2010 model to 2003 683 

measurements) of the spatial variation. These studies suggest that the spatial structure of 684 

the different models were similar, at least at a national or city level. It is difficult to compare 685 

the findings of the analyses carried out in this study with the studies conducted at the sub-686 

continental scale. In this study we specifically assessed the stability of the spatial structure 687 

by comparing the concentration surfaces of the different models based on a set of ~44,000 688 

random points spread across the study area. At the EU scale (all countries combined and 689 



ELAPSE countries combined) there was a high squared correlation (>76%) between the 690 

other year models (PM2.5 2013, NO2 and O3 2000, 2005) and the corresponding 2010 691 

models, with the only exception the O3 2000 cold season model (~45%). Other countries that 692 

performed poorly for O3 2000 cold were Germany and the Netherlands. The poorer temporal 693 

correlation for O3 may be due to the smaller spatial contrast when evaluating at a smaller 694 

spatial scale. Another explanation may be that there are different CTM predictions used in 695 

the LUR models for 2010 (MACC-O3 for annual and cold O3) compared to 2000 and 2005 for 696 

which only the DEHM model was available.  697 

Correlations between annual average measured concentrations at sites that were in 698 

operation for an extended time period were even higher. The higher correlation for 699 

measurements was probably due to the only moderately high explained variance of the 700 

models and difference in availability of predictor variables across years. A difficulty in the 701 

interpretation of monitoring data is the limited number of sites with continuous data, 702 

especially for PM2.5.   703 

The temporal stability of the estimated spatial surface for most of the pollutants has positive 704 

consequences for further application in long-term epidemiological studies especially those 705 

including cohorts which started one or two decades ago and which will have had several 706 

follow-ups since then. The 2010 surfaces produced here can be used with some confidence 707 

as the base for back-extrapolation. 708 

For several areas we now have study-area specific ESCAPE models and Europe wide 709 

ELAPSE models. The ESCAPE models are based upon a smaller number of training sites 710 

but may be more specific for the area. The spatial extent of ESCAPE PM models has limited 711 

the analysis of some ESCAPE cohorts (e.g. only Paris in the national French E3N cohort and 712 

Copenhagen in the Danish DCH cohort). The ELAPSE model can be applied to larger areas 713 

e.g. entire France, Denmark. In general, Europe wide models may be better when large 714 

areas are studied. In international multi-center studies, the use of a single harmonized  715 

model is important to standardize exposure assessment. We do not recommend the use of 716 

our ELAPSE models in single cohort analyses e.g. in a cohort exclusively based in 717 

Stockholm, unless local validation data documents that the European model can explain 718 

small-scale variation in the specific city 719 

5. Conclusions 720 

We were able to develop robust PM2.5, NO2, BC and O3 LUR models. At the West-European 721 

scale models were robust in time, becoming less robust at smaller spatial extents.  In terms 722 

of model performance we improved on previously published European NO2 and PM2.5 723 

models and developed new models for BC and O3 explaining large fractions of the variance. 724 



We showed, by five-fold hold-out validation plus an independent comparison, that the models 725 

were spatially robust at the West-European and, to a lesser degree, at the national scale. At 726 

the West-European scale, PM2.5, NO2 and O3 models were robust in time. For BC models we 727 

were not able to perform a stability analysis. At smaller spatial scales, models were less 728 

robust in time, especially for O3. The models presented here will be used to assign 729 

exposures in the ELAPSE study and will be made available for other studies in Europe. 730 
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Table 1. Model structurea and performance of 2010 LUR models 

Pollutant Stage Method N sites R2 RMSEb Full LUR modelc 
       
PM2.5  Training LUR  543 62.2 3.17 3.19 +13.24*SAT-PM25 +7.08*MACC-PM25 – 3.82* ALT + 2.17*ALRD100 -2.07*NAT50 

+2.39*POR800 +1.41*RES200   LUR +Kriging   72.2 2.71 
 HOV LUR  58.7 3.30 
  LUR +Kriging   66.4 2.97 
BC4 Training LUR 436 54.4 0.56 0.99 + 0.85* MACC-PM25 + 0.30* SAT-PM25 + 0.68*MJRD100 +0.40* ALRD50 + 0.45* 

ALRD700 +0.90*RES3000 -0.12*UGR1000 – 1.16*Y  HOV LUR  51.4 0.58 
NO2

d Training LUR 2399 58.8 9.38 3.30 + 22.73*MACC-NO2 + 7.04* ALRD50 + 3.92* ALRD300 + 12.32* MJRD100 + 
15.73*ALRD2000 -3.38*NAT400 + 4.1*POR700 + 5.8*RES300  HOV LUR  57.5 9.51 

O3 
annuald 

Training LUR 1747 65.1 6.73 40.54 +25.51*MACC-O3 -2.49*ALRD50 – 4.75* ALRD200 – 3.24* MJRD200 –1.57*POR4000 -
1.94*RES500 -4.13*RES2000 +8.82*ALT + 2.48*X – 10.05*Y HOV LUR  63.4 6.87 

O3 warm Training LUR 1730 45.5 10.07 30.00 +32.57*DEHM-O3 -6.87* ALRD200 –6.03* MJRD100 -5.95*PORT5000 -4.79*RES2000 
+5.70*ALT   LUR +Kriging   69.6 7.51 

 HOV LUR  44.5 10.15 
  LUR +Kriging   59.9 8.63 
O3 cold Training LUR 1716 67.7 7.43 1.00 + 37.62*MACC-O3 -3.35* ALRD200 -3.48* MJRD50 -1.61* MJRD 700 +5.81*NAT700 -

4.18*RES1200 -1.10*TBU100+2.21*UGR1000 +6.84*ALT   LUR +Kriging   83.3 5.33 
 HOV LUR  66.5 7.55 
  LUR +Kriging   75.3 6.99 

 
a. Regression slope in µg/m3, except BC (10-5m-1), multiplied by the difference between the 1st and 99th percentile of each predictor to allow comparison across predictors 
b. RMSE in µg/m3, except BC (10-5m-1) 
c. ALT = altitude, ALRD = all roads, MJRD = major roads, IND = industry, POR = ports, UGR = urban green, TBU = total build up, NAT = natural land, RES = residential, POP = sum of 

population, X = North-South trend, Y = East–West trend, SAT = satellite, MACC = MACC dispersion model, DEHM = DEHM CTM. Number in subscript depicts the buffer size (e.g. ALRD100 = 
sum of all road length within 100 m) 

d. No valid variograms were possible on the residuals of these models



Table 2. Structure and performance of LUR modelsa for PM2.5 for full dataset and five hold-
out validation datasets for 2010  

Theme Variableb FULLc HOV1 HOV2 HOV3 HOV4 HOV5 
        
 (Constant) 3.19 3.46 3.53 3.14 3.49 3.32 
Satellite SAT-PM25 13.24 12.98 12.39 13.19 12.68 13.55 

CTM MACC-
PM25 

7.08 7.32 7.45 7.17 7.09 6.93 

Altitude ALT -3.82 -3.82 -4.10 -3.93 -3.54 -3.73 
Roads ALRD100 2.17 2.89  2.23 2.00  
 MJRD50      1.98 
 MJRD100   2.26    
Urban green UGR700  -1.08     
 UGR800     -0.98  
Nature NAT50 -2.07 -2.24   -2.72 -2.26 
 NAT100   -2.31 -2.12   
 NAT300       
 NAT400       
Ports POR800 2.39 3.19  2.95 2.46 2.35 
Residential RES50  0.89     
 RES200 1.41  1.72 1.44 1.48  
 RES300      1.39 
Training  
(LUR) 

R2 62.2 62.0 63.1 61.1 60.8 66.0 
RMSE 3.17 3.26 3.10 3.30 3.22 2.95 

HOV  
(LUR) 

R2 58.7 62.2 53.9 67.4 68.1 50.3 
RMSE 3.30 2.93 3.67 2.68 3.01 3.94 

Training  
(LUR + Kriging) 

R2 72.2 71.4 70.5 76.8 76.0 63.3 
RMSE 2.71 2.55 2.94 2.26 2.61 3.38 

HOV  
(LUR + Kriging) 

R2 66.4 67.7 66.0 72.3 74.0 57.9 
RMSE 2.97 2.71 3.15 2.47 2.72 3.61 

a. Regression slope µg/m3 were multiplied by the difference between the 1st and 99th percentile of each predictor to 
allow comparison across predictors 

b. ALT = altitude, ALRD = all roads, MJRD = major roads, IND = industry, POR = ports, UGR = urban green, TBU = total 
build up, NAT = natural land, RES = residential, POP = sum of population, X = North-South trend, Y = East-West 
trend, SAT = satellite, MACC = MACC dispersion model, DEHM = DEHM CTM. Number in subscript depicts the buffer 
size (e.g. ALRD100 = sum of all road length within 100 m)    

c. FULL refers to all sites; HOV1 is first holdout validation dataset (80% stratified random sample)   
  



Table 3. Comparison of PM2.5 and NO2 ELAPSE models at ESCAPE monitoring sites 
 

 Pollutant PM2.5  
   Measurements  
 Name ESCAPE area R2 RMSE FBa Mean SD Nb 
Overall  64.8 3.41 -0.02 15.86 5.73 416 
Overall ELAPSE 58.7 2.85 -0.10 14.16 4.43 255 
ELAPSE cohorts        
HUBRO Oslo, NO 18.4 2.04 -0.30 8.59 2.20 19 
CEANS Stockholm County, SE 39.0 1.32 -0.04 8.29 1.64 19 
DCH Copenhagen, DK 40.1 1.26 -0.18 11.12 1.58 20 
EPIC-NL NL 12.6 1.71 -0.02 17.35 1.80 34 
EPIC OXFORD London- Oxford, Manchester, UK 7.6 2.23 -0.26 10.55 2.29 39 
HNR Ruhr Area, GER 65.5 0.97 -0.06 18.52 1.61 20 
KORA Munich-Augsburg, GER 31.5 1.44 -0.16 14.34 1.70 20 
VHM&PP Vorarlberg, AU 22.4 1.74 -0.19 13.34 1.92 20 
E3N Paris, FR 38.7 3.30 -0.24 16.02 4.10 20 
EPIC VARESE n.a. - - - - - - 
DNC n.a. - - - - - - 
Administrative ELAPSE cohorts       
Dutch NL 12.6 1.71 -0.02 17.35 1.80 34 
English London- Oxford, Manchester, UK 7.6 2.23 -0.26 10.55 2.29 39 
Rome Rome, IT 43.0 2.51 0.16 19.77 3.24 20 
Danish n.a. - - - - - - 
Norwegian        
Swiss3 Lugano. CH - - - - -  
Belgian3 Antwerp, BE - - - - -  
 Pollutant NO2  
     Measurements  
 ESCAPE area R2 RSME FB Mean SD N 
Overall  49.4 11.47 -0.08 29.32 16.12 1396 
Overall ELAPSE  45.8 10.28 -0.13 29.74 13.95 780 
ELAPSE cohorts        
HUBRO Oslo, NO 7.0 12.74 -0.19 24.29 13.05 39 
CEANS Stockholm County, SE 55.0 5.03 -0.50 15.49 7.44 39 
DCH Copenhagen, DK 59.0 5.99 -0.54 17.82 9.21 41 
EPIC-NL NL 75.9 5.10 -0.26 28.76 10.32 68 
EPIC OXFORD London -Oxford, Manchester, Bradford, 

UK 
53.9 8.64 -0.17 29.82 12.67 119 

HNR Ruhr Area, GER 54.0 6.74 -0.20 33.16 9.76 40 
KORA Munich-Augsburg, GER 64.0 5.79 -0.13 26.82 9.58 40 
VHM&PP Vorarlberg, AU 47.0 5.29 -0.10 22.59 7.17 40 
E3N Paris, Grenoble, Lyon, Marseille, FR 52.6 12.37 -0.01 34.42 17.90 160 
EPIC VARESE Varese, IT 34.0 13.78 0.10 36.53 16.54 20 
DNC n.a. - - - - - - 
Administrative ELAPSE cohorts       
Dutch NL 75.9 5.10 -0.26 28.76 10.32 68 
English London-Oxford, Manchester, Bradford, 

UK 
53.9 8.64 -0.17 29.82 12.67 119 

Rome Rome, IT 51.0 9.72 0.23 42.64 13.71 40 
Danish n.a. - - - - - - 
Norwegian n.a. - - - - - - 
Swiss Basel, Geneva, Lugano. CH 13.7 7.55 -0.16 30.03 8.09 121 
Belgianc Antwerp, BE - - - - -  

 
a. FB = Fractional Bias calculated as  2 * (mean observations - mean predictions)/(mean observations + mean predictions)  
b. N = number of ESCAPE monitoring sites (the same for black carbon and PM2.5) 
c. Covers only a small part of the area, with insufficient number of sites 

 



Table 4. Stability analysis at country level: predictions of the 2010 LUR model versus models from other years at randomly selected points (in squared correlation, R2 in 
percentages, RMSE in µg/m3) 

 PM2.5 2013 NO2 2005 NO2 2000 O3 2005aa O3 2000aa O3 2005ca O3 2000ca O3 2005wa O3 2000wa  

Region R2 
(%) RMSE R2 

(%) RMSE R2 
(%) RMSE R2 

(%) RMSE R2 
(%) RMSE R2 

(%) RMSE R2 
(%) RMSE R2 

(%) RMSE R2 
(%) RMSE N 

All West-European 
countries 

88.2 1.9 91.9 1.9 90.9 2.0 85.8 3.5 78.8 4.3 80.4 4.3 44.3 7.3 84.3 4.6 76.4 5.6 44.000 

ELAPSE countries                    
Combined 89.3 1.9 92.6 2.0 91.4 2.1 82.7 3.2 82.0 3.3 87.0 3.3 45.1 6.9 81.6 4.6 78.3 5.0 34762 
                    
Austria 60.1 2.0 86.7 1.3 87.4 1.9 81.9 3.7 82.7 4.1 80.9 3.4 67.4 6.7 82.5 3.4 64.5 3.9 1050 
Belgium 84.1 1.0 90.9 1.4 84.6 2.3 81.5 1.9 87.4 1.9 89.6 1.9 81.7 2.4 86.5 2.0 70.6 2.5 352 
Switzerland 52.5 1.9 91.5 1.2 92.6 1.8 94.6 2.4 95.2 2.7 88.2 3.3 85.5 5.1 87.9 3.5 88.7 4.6 503 
Germany 57.6 1.2 85.0 1.3 80.5 2.2 64.0 2.7 69.2 3.0 75.5 3.1 29.4 4.7 47.3 3.8 63.7 4.4 4232 
Denmark 48.8 1.1 88.8 0.8 84.8 1.6 73.0 1.2 71.1 1.3 71.0 1.6 59.6 1.8 63.6 1.5 73.2 1.6 527 
France 57.4 1.5 89.0 1.1 82.9 1.9 83.2 2.7 80.4 3.5 87.6 3.0 55.0 5.2 76.3 3.4 86.8 4.1 6475 
Italy 82.6 1.7 81.9 1.6 82.6 2.3 59.9 4.4 64.8 4.9 90.0 4.3 16.6 9.8 11.9 5.2 1.6 12.3 3548 
Netherlands 70.1 0.9 87.9 1.6 81.9 2.7 60.4 2.2 71.8 2.1 73.0 2.3 35.6 3.0 79.3 2.2 53.1 2.6 454 
Norway 59.3 0.9 83.3 0.5 83.4 0.8 88.6 1.7 79.4 2.4 79.0 2.2 71.7 3.1 61.1 3.0 79.4 2.4 3449 
Sweden 86.2 0.9 93.1 0.5 91.3 0.8 65.5 1.6 45.1 2.2 78.9 1.7 63.3 2.9 76.6 1.6 87.4 1.7 5353 
United Kingdom 89.8 1.2 95.3 1.1 93.0 2.0 71.8 2.0 78.1 2.1 81.9 3.3 74.3 3.4 52.2 2.5 53.0 3.3 2845 
Non ELAPSE  
countries                    

Greece 64.4 1.2 86.5 0.9 83.3 1.6 40.9 3.7 49.5 3.8 14.2 6.6 6.0 7.6 34.7 3.9 19.4 5.1 1549 
Finland 44.2 1.0 92.7 0.4 89.7 0.8 52.4 1.0 46.3 1.2 25.2 2.4 67.9 1.6 70.2 1.3 69.7 1.6 4008 
Hungary 53.9 0.9 84.3 0.9 84.8 1.2 50.8 1.3 38.4 1.6 21.6 3.9 59.4 2.5 54.1 1.2 38.6 2.3 1118 
Ireland 73.9 0.8 92.7 0.6 90.2 1.0 52.0 1.3 49.1 1.4 79.1 2.4 68.8 2.2 61.1 1.2 61.6 2.3 841 
Lithuania 56.3 0.9 89.7 0.6 85.1 1.0 52.9 1.1 40.8 1.2 65.3 1.9 74.7 1.4 54.8 0.9 24.4 1.7 780 
Luxembourg 68.3 0.9 89.0 1.3 77.9 2.2 73.9 1.3 75.4 1.4 74.1 2.6 78.3 2.2 47.2 1.8 57.7 1.4 31 
Portugal 63.8 1.1 85.4 1.0 87.0 1.6 71.3 1.9 67.4 2.2 62.1 3.3 51.5 3.5 33.0 2.4 37.4 3.9 1015 
Spain 69.4 1.1 77.8 1.2 79.7 1.7 65.6 2.8 58.5 3.6 62.8 4.4 41.4 5.6 42.9 3.4 38.9 7.0 5974 

a. O3 a for annual, c for cold season and w for warm season. 

  



Table 5. Correlations between concurrent AirBase measurements (background sites only) in 2010 with 2000 and 2005 (NO2, O3 annual, warm and 
cold season) and 2013 (PM2.5) in R2 (number of sites) for EU and separately for ELAPSE countries. 

*not significant (p>0.05) 

 NO2 O3 annual O3 warm O3 cold PM2.5 
 2000 2005 2000 2005 2000 2005 2000 2005 2013 
EU 85.8 (546) 86.7 (794) 71.6 (572) 72.3 (836) 68.3 (576) 67.7 (843) 77.9 (555) 79.5 (817) 79.3 (247) 
          
Austria 86.1 (66) 94.6 (77) 87.8 (77) 89.9 (86) 72.1 (79) 79.5 (88) 91.3 (75) 92.4 (84) 96.7 (8) 
Belgium 95.4 (16) 93.2 (26) 88.2 (22) 88.1 (28) 76.7 (22) 75.9 (29) 91.5 (22) 94.6 (25) 85.5 (19) 
Switzerland 97.7 (21) 94.7 (21) 90.9 (21) 89.2 (23) 75.0 (21) 86.0 (23) 97.5 (21) 92.1 (23) n.a. (0) 
Germany 90.9 (185) 93.5 (213) 73.3 (181) 77.6 (206) 58.4 (182) 59.9 (206) 80.5 (175) 88.3 (201) 46.4 (63) 
Denmark n.a. (2) 93.4 (6) n.a. (0) 41.0 (6)* n.a. (0) 18.6 (6)* n.a. (0) 72.7 (6) 95.5 (3)* 
France 86.0 (169) 90.1 (261) 70.9 (179)* 82.5 (301) 66.3 (184) 82.0 (307) 80.1 (173) 85.7 (294) 52.5 (57) 
Great Britain 88.2 (27) 90.0 (44) 72.9 (35) 71.7 (55) 67.5 (31) 66.1 (51) 77.7 (35) 76.8 (54) 59.4 (28) 
Italy 65.9 (30) 73.7 (109) 38.0 (26) 20.5 (87) 20.3 (26) 1.2 (90)* 74.9 (23) 68.4 (88) 84.5 (44) 
Netherlands 89.2 (23) 92.5 (26) 30.0 (19) 30.0 (25) 1.1 (19)* 2.6 (25)* 59.5 (20) 69.6 (23) 68.3 (15) 
Norway n.a. (2) 100 (3) 2.8 (6) 49.7 (7) 46.3 (6)* 72.4 (7) 73.2 (6) 91.1 (7) 15.5 (5)* 
Sweden 96.6 (5) 96.8 (8) 67.5 (6) 0.8 (12)* 40.9 (6)* 15.4 (11)* 93.2 (5) 30.1 (12) 84.5 (5) 



Supplementary material 

1. Analysis of different PM2.5 satellite products 

We offered three different PM2.5 satellite products to the PM2.5 model development; (1) 10km 
product inferred 2009-2011; (2) 10km product for 2010; (3) 1km product for 2010. In 
preliminary models, the first data set led to better PM2.5 models compared to the other 2 
datasets. We further investigated the raw squared correlation coefficients (R2) of the 3 data 
products (annual mean) with the annual mean PM2.5 measurements from AirBase for the 
year 2010 (see Table S5 for more details). The difference in explained variance seems to be 
in the time period of the 3 products. The products 2 and 3 focusing on the year 2010 yielded 
similar correlations, irrespective of the 10 or 1km spatial resolution, explaining around 40% of 
variation. Product 1, which was inferred for 2009 to 2011 and optimized for 2010, explained 
46% of variation. For the final PM2.5 model we therefore decided to only offer the first PM2.5 
product. 

2. Stability analysis at regional (NUTS1) level 

NUTS areas are standard administrative divisions of EU countries for statistical purposes. 
The NUTS1 level is the first level. We also performed the stability analysis using the same 
44,000 random points at the NUTS1 area level (see Figure S6). Like at the country level, 
there is a good agreement for all areas for NO2 2000 and 2005 when compared to the 2010 
surface (R2 >0.60). For the other pollutants there is more heterogeneity in the correlation 
coefficients across areas. When comparing the PM2.5 surfaces (2010 vs. 2013), the majority 
of the NUTS1 areas have a correlation coefficient > 0.40, with only a handful of areas 
dropping between 0.20 and 0.40. The comparison of the O3 surfaces (2000, 2005 vs. 2013) 
shows a clear difference between annual and cold season versus the warm season. Both the 
2000 and 2005 comparisons for warm season show a number of areas in the south of 
Europe with correlations of less than 0.20. This pattern is not observed in the annual and 
cold season comparisons. 

  



Table S1. Descriptive statistics of PM2.5, NO2, BC, O3 concentrations for 2010 used in the 
modelling procedure. 

 

Air pollutant Type Na Mean 
(µg/
m3) 

Median 
(µg/m3) 

Std. 
Deviation 
(µg/m3) 

Percentiles 
(µg/m3) 

      5 25 75 95 
PM2.5 Traffic 149 16.28 16.63 4.93 8.33 12.75 19.67 23.76 
 Background 341 15.75 15.77 5.16 7.25 12.65 18.78 23.92 
 Industrial 53 15.12 15.27 5.45 7.51 10.36 19.18 25.73 
 All 543 15.84 15.88 5.13 7.65 12.42 19.25 23.94 
NO2 Traffic 740 40.23 38.69 14.62 19.90 30.39 47.75 66.06 
 Background 1287 21.47 21.01 9.82 5.67 14.81 27.94 37.27 
 Industrial 372 19.43 18.22 10.13 4.47 11.52 26.72 38.06 
 All 2399 26.94 25.12 14.59 6.73 16.34 34.70 53.69 
BCb Traffic 207 2.28 2.16 0.90 0.98 1.65 2.83 3.99 
 Background 229 1.51 1.47 0.54 0.74 1.08 1.85 2.44 
 Industrial 0 n.a. n.a. n.a. n.a. n.a. n.a. n.a. 
 All 436 1.88 1.78 0.83 0.84 1.26 2.33 3.50 
O3 annualc Traffic 228 65.01 63.86 12.26 45.80 57.10 73.44 88.72 
 Background 1323 72.10 70.92 10.66 56.25 65.71 77.76 91.86 
 Industrial 194 75.77 76.59 11.76 57.42 67.12 84.31 94.49 
 Allc 1747 71.59 70.61 11.35 53.75 64.54 78.31 91.85 
O3 warmc Traffic 225 81.62 81.34 15.03 57.65 70.69 92.51 106.04 
 Background 1311 89.99 89.30 12.99 69.09 82.22 98.45 111.84 
 Industrial 192 90.70 92.20 13.45 67.13 81.61 100.18 110.61 
 Alld  1730 88.98 88.95 13.62 66.39 80.97 97.96 111.08 
O3 coldc Traffic 223 48.31 47.13 12.29 29.96 39.44 57.52 72.03 
 Background 1304 54.05 53.18 12.69 35.34 44.92 62.17 77.63 
 Industrial 188 60.16 62.26 13.55 37.90 49.77 69.77 82.50 
 Alle 1716 53.98 53.04 13.05 34.11 44.34 62.72 77.42 

 
a. Number of sites 
b. BC monitoring data from ESCAPE, no industrial type monitoring sites were used. Measured as 

absorbance of PM2.5 (10-5m-1) 
c. O3 concentrations were calculated as the average of the daily maximum running 8-hour mean; warm 

season is from 1 April to 30 September; cold season is from 1 October to 31 March falling in the same 
year. 

d. These include 2 sites with site type ‘Unknown’ 
e. These include 1 site with site type ‘Unknown’ 
 

  



Table S2. GIS predictor variables 

Data set Predictor variable Name variable Year 
Buffer Size 
(radius in m) or 
point estimate 

Pre-specified 
direction of 
effect for 
PM2.5, NO2, BC 

(O3) 
PM2.5 (µg/m3) derived 
from MODIS on board 
the Terra satellite: 
~10km 

Surface PM2.5 
concentration derived from 
satellite 

SAT-PM25 2010, 2013 Point 

+ 

PM2.5 (µg/m3) derived 
from MODIS on board 
the Terra satellite: 
~1km 

Surface PM2.5 
concentration derived from 
satellite 

SAT-PM25-1k 2010, 2013 Point 

+ 

NO2 (µg/m3) derived 
from OMI on board 
the Aura satellite: 
~10km 

Surface NO2 concentration 
derived from satellite  SAT-NO2 2010 Point 

+(-) 

PM2.5, NO2, O3 
(µg/m3) estimated by 
MACC-II Ensemble 
model: ~10km 

Surface PM2.5,NO2 and O3 
concentration from 
dispersion model 

MACC-PM25 
MACC-NO2 
MACC-O3 

2010, 2013 Point 

+(-) 

PM2.5, NO2, O3 and 
BC (µg/m3) estimated 
by DEHM: ~50km 

Surface PM2.5, NO2, O3 
and BC concentration 
from dispersion model 

DEHM-PM2.5 
DEHM-NO2 
DEHM-O3 
DEHM-BC 

2000, 
2005, 2010 Point 

+(-) 

EuroStreets roads 
(length in m) 

Major roads  
All roads 

MJRD 
ALRD 2010 

50; 100; 200; 
300; 400; 500; 
700; 1000; 2000; 
5000; 10000 

+(-) 

Corine land cover: 
100m 

Industry/commercial 
Ports 
Urban green 
Total built upa 
Natural land 
Residentialb 

IND 
POR 
UGR 
TBU 
NAT 
RES 

2006 

50; 100; 200; 
300; 400; 500; 
600; 700; 800; 
1000; 1200; 
1500; 1800; 
2000; 2500; 
3000; 3500; 
4000; 5000; 
6000; 7000; 
8000; 10000 

 
 
+(-) 
+(-) 
-(+) 
+(-) 
-(+) 
+(-) 

GEOSTAT 2011 
population grid 
dataset: ~1km 

Sum of population POP 2011 Point 
+(-) 

Altitude SRTM DTM: 
~90 m Altitude – transformedc ALT  Point -(+) 

Trend North-South and East- 
West trend X, Yd  Point n.a. 

aResidential + Ind/comm + Port + transport infrastructure, airports, mines, dumps and construction sites  
bcontinuous urban fabric  ( high density housing) + discontinuous urban fabric (low density housing)  
cTransformed altitude is calculated as √(nalt/max(nalt)), where nalt = altitude − min(altitude).  
dCoordinates were truncated : X =x –xmin / (xmax – xmin); Y =y –ymin / (ymax – ymin)  

  



Table S3. Structure and performance of LUR models for BC, NO2 and O3 for full dataset and 
five hold-out validation datasets 

BC modelsa 

Theme Variablesb FULL HOV1 HOV2 HOV3 HOV4 HOV5 
 Constant 0.99 0.85 0.99 0.94 0.99 1.10 
CTM MACC-PM25 0.85 0.95 0.80 0.92 0.95 0.65 
Satellite SAT-PM25 0.30 0.34 0.39 0.32 0.22 0.34 
Major roads MJRD50  0.64     
 MJRD100 0.68  0.68 0.67 0.65 0.44 
All roads ALRD50 0.40   0.39 0.40 0.52 
 ALRD1000    0.34   
 ALRD700 0.45 0.67 0.40  0.43 0.57 
Residential RES2500   0.93 0.86   
 RES3000 0.90 0.86   0.86 0.94 
Urban green UGR1000 -0.12 -0.18 -0.14 -0.11 -0.19 -0.08 
Ycoord Y -1.16 -1.09 -1.16 -1.16 -1.16 -1.30 
Training 
(LUR) 

R2 54.4 52.2 52.3 53.9 57.6 55.3 
RMSE 0.56 0.59 0.56 0.58 0.54 0.572 

HOV  
(LUR) 

R2 51.4 56.7 56.9 53.8 43.2 49.3 
RMSE 0.58 0.52 0.62 0.52 0.67 0.54 

a. Regression slope in 10-5m-1 were multiplied by the difference between the 1st and 99th percentile of each predictor to 
allow comparison across predictors 

b. ALT = altitude, ALRD = all roads, MJRD = major roads, IND = industry, POR = ports, UGR = urban green, TBU = total 
build up, NAT = natural land, RES = residential, POP = sum of population, X = North-South trend, Y = East-West 
trend, SAT = satellite, MACC = MACC dispersion model, DEHM = DEHM CTM. Number in subscript depicts the buffer 
size (e.g. ALRD100 = sum of all road length within 100m) 

 

NO2 modelsa 

Theme Variableb FULL HOV1 HOV2 HOV3 HOV4 HOV5 
        
 Constant 3.30 3.30 3.70 4.70 3.30 3.20 
CTM MACC-NO2 22.73 22.73 23.30 22.73 22.16 22.73 
All Roads ALRD50 7.04  8.60 6.65 9.38  
 ALRD100  9.68    10.29 
 ALRD300 3.92   7.50   
 ALRD1000     12.27  
 ALRD2000 15.73 16.71 16.71   15.73 
Major roads MJRD50  5.70     
 MJRD100 12.32  12.32 10.67 12.32 12.32 
 MJRD200  6.95     
        
        
Natural NAT400 -3.38   -3.97 -3.09 -3.14 
 NAT500  -3.24 -3.89    
Ports POR200   1.82   1.80 
 POR700 4.10 4.51   2.87  
 POR1800    4.14   
Residential RES200    2.73   
 RES300 5.80  6.38    
 RES400  6.86    6.37 
 RES2500    14.10   
 RES8000     7.09  
Total build up TBU300     6.09  

Urban green UGR100    -3.20   
UGR200   -2.40    

Training 
(LUR) 

R2 58.8 59.1 58.3 58.4 59.0 59.6 
RMSE 9.38 9.38 9.39 9.38 9.36 9.36 

HOV  
(LUR)  

R2 57.5 57.8 59.9 60.2 54.8 54.7 
RMSE 9.51 9.36 9.44 9.44 9.81 9.51 

a. Regression slope in µg/m3 were multiplied by the difference between the 1st and 99th percentile of each predictor to 
allow comparison across predictors 



b. ALT = altitude, ALRD = all roads, MJRD = major roads, IND = industry, POR = ports, UGR = urban green, TBU = total 
build up, NAT = natural land, RES = residential, POP = sum of population, X = North-South trend, Y = East-West 
trend, SAT = satellite, MACC = MACC dispersion model, DEHM = DEHM CTM. Number in subscript depicts the buffer 
size (e.g. ALRD100 = sum of all road length within 100m) 

 
 

 

  



O3 modelsa 

  Annual Warm Cold 
Theme Variableb FULL HOV1 HOV2 HOV3 HOV4 HOV5 FULL HOV1 HOV2 HOV3 HOV4 HOV5 FULL HOV1 HOV2 HOV3 HOV4 HOV5 
 Constant 40.54 42.72 40.91 40.02 39.30 40.16 30.00 30.00 30.00 32.00 29.00 29.00 1.00 0.23 1.10 1.60 0.19 0.14 
MACC MACC-O3 25.51 25.04 24.93 25.38 26.35 26.45       37.62 37.62 37.62 36.87 37.62 37.62 
DEHM DEHM_O3c       32.57 32.57 32.57 31.71 33.43 33.43       
Roads ALRD50 -2.49 -3.70  -3.14    -3.04 -3.35 -4.87    -3.35     
 ALRD200 -4.75  -7.04 -4.25 -7.13 -6.29 -6.87    -6.09 -4.52 -3.53  -3.14 -4.52 -3.53 -3.34 
 ALRD500        -5.81 -6.18 -5.54         
 ALRD700      -5.17      -3.40       
 ALRD1000  -5.83             -3.04    
 ALRD2000           -4.99        
 MJRD50   -3.69   -3.03       -3.48  -3.48 -4.09  -2.66 
 MJRD100     -4.67  -6.03  -5.85  -6.63 -7.24  -3.32     
 MJRD200 -3.24 -4.42  -3.48    -5.85  -5.96       -4.01  
 MJRD700             -1.61 -1.90    -2.49 
Nature NAT700             5.81 6.11 5.07  5.81 6.56 
 NAT800                6.70   
Ports POR4000 -1.57  -1.67  -1.63      -5.68        
 POR5000    -1.63  -2.20 -5.95 -4.95 -5.45 -5.95  -7.43       
Residential RES100  -1.84         -1.75        
 RES200                  -3.38 
 RES400               -3.58    
 RES500 -1.94   -1.91 -4.29              
 RES700              -4.77     
 RES800                 -5.32  
 RES1000      -5.02             
 RES1200            -3.49 -4.18      
 RES1500                -5.16   
 RES2000 -4.13 -2.38 -6.02 -3.81   -4.79 -3.99           
 RES3000         -4.01 -3.54         
Industrial/ 
commercial IND50  -2.42            -2.20     

 IND200               -2.21    
Total build up TBU100             -1.10      
Urban green UGR1000             2.21 2.21  2.78 2.59  
Altitude ALT 8.82 7.82 10.02 9.33 8.67 8.38 5.70 4.99 6.56 5.99 5.13 5.27 6.84 6.13 8.12 7.13 6.98 6.27 
Coordinate X 2.48 1.65 3.57 2.55 2.62              
 Y -10.05 -11.01 -10.93 -9.34 -10.07 -8.82             
Training 
(LUR) 

R2 65.1 65.4 68.5 63.4 64.6 63.9 45.5 44.9 48.9 45.0 45.6 44.7 67.7 68.1 69.8 66.2 67.6 67.0 
RMSE 6.73 6.66 6.39 6.93 6.81 6.81 10.07 10.09 9.69 10.10 10.17 10.18 7.43 7.35 7.25 7.60 7.53 7.43 

HOV  
(LUR) 

R2 63.4 64.1 51.1 73.5 64.3 67.7 44.5 48.1 34.9 48.8 45.1 49.5 66.5 65.8 58.7 73.8 67.4 68.5 
RMSE 6.87 7.00 7.94 5.71 6.65 6.57 10.15 9.98 11.33 9.83 9.69 9.58 7.55 7.84 8.16 6.74 7.11 7.67 

Training R2       69.6 69.5 73.3 70.0 68.5 67.3 83.3 84.4 85.2 80.3 83.8 82.4 
(LUR + 
Kriging) RMSE       7.51 7.49 6.98 7.44 7.73 7.81 5.33 5.13 5.05 5.78 5.32 5.42 

HOV  
(LUR  + 
Kriging) 

R2       59.9 61.5 48.0 61.9 6.50 65.8 75.3 71.6 71.8 83.3 76.8 75.1 

RMSE       8.63 8.60 10.13 8.48 7.74 7.88 6.49 7.15 6.75 5.39 5.99 6.82 

a. Regression slope µg/m3 were multiplied by the difference between the 1st and 99th percentile of each predictor to allow comparison across predictors 



b. ALT = altitude, ALRD = all roads, MJRD = major roads, IND = industry, POR = ports, UGR = urban green, TBU = total build up, NAT = natural land, RES = residential, POP = sum of 
population, X = North-South trend, Y = East-West trend, SAT = satellite, MACC = MACC dispersion model, DEHM = DEHM CTM. Number in subscript depicts the buffer size (e.g. ALRD100 = 
sum of all road length within 100m) 

c. DEHM estimates were calculated for each season (annual, warm and cold) 



Table S4. Details of 2000,  2005 (NO2 and O3) and 2013 (PM2.5) FULL modelsa 

Theme Variableb PM2.5 
2013 

NO2 
2000 

NO2 
2005 

O3 
2000a 

O3 
2000w 

O3 
2000c 

O3 
2005a 

O3 
2005w 

O3 
2005c 

 Constant 0.45 6.48 8.39 56.06 35.88 59.90 72.00 61.92 56.60 
CTM MACC-PM25 13.21         
 DEHM-NO2  11.55 12.49       
 DEHM-O3c    11.19 32.33  7.24 20.34  
Satellite SAT-PM25 6.54         
Roads ALRD50 1.09 14.07 9.96    -6.39 -10.29 -8.16 
 ALRD100     -7.84 -6.07    
 ALRD200    -7.15   -6.76   
 ALRD1000   9.20       
 ALRD2000     -21.31   -17.76  
 ALRD5000  32.43  -16.57   -21.84   
 MJRD50    -6.78  -4.12    
 MJRD100   11.67  -6.92  -2.21 -5.96  
 MJRD500         -2.93 
 MJRD10000      -15.42   -16.64 
Nature NAT400   -3.23   3.87    
 NAT500  -4.05        
 NAT600         5.20 
 NAT1000 -3.17         
 NAT10000      5.16   4.85 
Urban green UGR100     6.00     
 UGR1000 -1.09         
Ports POR300        -2.18  
 POR1000  4.42        
 POR6000   3.73     -4.38  
Industrial/ 
commercial 

IND200         -5.07 

Residential RES300   4.64       
 RES700  8.20       -7.30 
Total build up TBU300 1.51         
 TBU400       -3.53   
 TBU500    -5.67      
 TBU600      -8.25    
Altitude ALT    15.30 14.38 18.36 12.75 9.85 12.60 
X-coord X    9.94  -12.42    
Y-coord Y    -11.83   -14.40 -11.52  
Training  
(LUR) 

R2 65.6 55.9 52.2 59.6 53.5 51.8 48.8 42.0 45.0 
RMSE 2.87 10.59 11.34 8.56 11.39 9.17 9.45 11.93 10.13 

HOV (LUR) R2 0.64 53.8 50.1 58.0 52.2 50.1 46.6 40.6 43.3 
RMSE 2.93 10.57 11.57 8.69 11.53 9.31 9.62 12.04 10.25 

Training 
(LUR + Kriging) 

R2     81.5    69.9 
RMSE     7.17    7.47 

HOV  
(LUR + Kriging) 

R2     63.8    63.4 
RMSE     10.02    8.24 

a. Regression slope µg/m3
 were multiplied by the difference between the 1st and 99th percentile of each predictor to allow comparison 

across predictors 
b. ALT = altitude, ALRD = all roads, MJRD = major roads, IND = industry, POR = ports, UGR = urban green, TBU = total build up, NAT = 

natural land, RES = residential, POP = sum of population, X = North-South trend, Y = East-West trend, SAT = satellite, MACC = 
MACC dispersion model, DEHM = DEHM CTM. Number in subscript depicts the buffer size (e.g. ALRD100 = sum of all road length 
within 100m) 

c. DEHM O3 estimates were calculated for each season (annual, warm and cold) 

 

  



Table S5. Comparison of predictions of different satellite derived PM2.5 (SAT) products with 
routine PM2.5 concentrations. 

AirBase Site type Inferred 2009-
2011, 10x10km, 

v3.01 

Inferred 2010, 
10x10km,  

v3.01 

Inferred 2010, 
1x1km, 

v4.GL.02.NoGWR 

 

 R2 RMSE R2 RMSE R2 RMSE N 
All sites 0.46 3.77 0.39 4.01 0.40 3.98 545 

No industrial sites 0.47 3.71 0.38 4.02 0.38 4.00 492 
Traffic only 0.46 3.62 0.42 3.75 0.42 3.76 149 

Background only 0.49 3.68 0.37 4.11 0.38 4.07 342 
 

 

 

Table S6. Population (2010) by classes of modelled air pollution estimates (PM2.5 and NO2 
FULL models)  

 
Pollutant Concentration 

class (µg/m3) 
Area 
(1,000,000 
m2) 

Percentage 
of total (%) 

Populationa 
(millions) 

Percentage 
of total (%) 

PM2.5 <5 1769.41 11.32 4.51 1.08 
 5-<10 3592.20 22.98 42.31 10.12 
 10-<15 7016.49 44.88 173.87 41.57 
 15-<20 2762.81 17.67 155.38 37.15 
 20-<25 404.38 2.59 33.68 8.05 
 25-<30 87.30 0.56 7.96 1.90 
 >30 2.17 0.01 0.53 0.13 
Total  15634.76  418.24  
      
NO2 <10 7335.38 46.93 32.72 7.82 
 10-<15 4156.22 26.59 60.36 14.43 
 15-<20 2351.02 15.04 77.17 18.45 
 20-<30 1500.96 9.60 139.49 33.35 
 30-<40 240.35 1.54 76.54 18.30 
 40-<60 45.95 0.29 30.92 7.39 
 >60 1.54 0.01 1.07 0.26 
Total  15631.42  418.26  

a. Population was derived from 2011 census data 

Table S7. Population weighted annual concentration (µg/m3) averaged over Western Europe  

 Pollutant (µg/m3) 
Year PM2.5 NO2 O3 annual O3 cold O3 warm 
2000  20.09 55.37 39.94 70.02 
2005  15.41 57.97 43.48 71.86 
2010 11.17 18.85 57.11 42.70 70.51 
2013 10.58     

 


