Supplemental information: Manganese causes neurotoxic iron accumulation via translational repression of Amyloid Precursor Protein (APP) and H-Ferritin

Vivek Venkataramani^{1,2*}, Thorsten R. Doeppner³, Desiree Wilkommen¹⁰, Catherine M. Cahill⁶, Yong-juan Xin^{4,5}, Guilin Ye^{4,5}, Yanyan Liu⁶, Adam Southon⁷, Allegra Aron⁹, Ho Yu Au-Yeung¹¹, Xudong Huang⁶, Debomoy K. Lahiri⁸, Fudi Wang^{4,5}, Ashley I. Bush⁷,

Gerald G. Wulf¹, Philipp Ströbel², Bernhard Michalke¹⁰, Jack T. Rogers⁶

¹Department of Hematology and Medical Oncology, ²Institute of Pathology, ³Department of Neurology, University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany; ⁴Department of Nutrition, Precision Nutrition Innovation Center, School of Public Health, Zhengzhou University, Zhengzhou 450001; ⁵Department of Nutrition, Nutrition Discovery Innovation Center, Institute of Nutrition and Food Safety, School of Public Health, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, China; ⁶Neurochemistry Laboratory, Department of Psychiatry, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA 02129, USA; ⁷Melbourne Dementia Research Centre, Florey Institute of Neuroscience and Mental Health, University of Melbourne, 30 Royal Parade, Parkville Vic, Australia 3052; ⁸Department of Psychiatry, Indiana Alzheimer Disease Center, Stark Neurosciences Research Institute, Indiana University School of Medicine; ⁹Department of Chemistry, University of California, Berkeley, CA 94720, USA; ¹⁰Helmholtz Zentrum München, Deutsches Forschungszentrum für Gesundheit und Umwelt (GmbH), Research Unit Analytical BioGeoChemistry, Ingolstädter Landstr. 1, 85764 Neuherberg; ¹¹Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China

*Corresponding author:

Address correspondence and reprint requests to Vivek Venkataramani, MD; Department of Hematology and Oncology and Department of Pathology; University Medical Center Göttingen (UMG), Robert-Koch-Str. 40, 37075 Göttingen, Germany; mail: <u>ramani@med.uni-goettingen.de</u>

Supplemental Fig. 1 (corresponding to Fig. 2): RT-PCR analysis of indicated iron responsive target genes (APP, H-Ferritin, TFR1 and FPN) from SH-SY5Y cells incubated for 24 h with 100 μ M DFO. All data are normalized to housekeeping gene β -actin and presented as relative fold-induction compared to untreated controls (n=4). N number indicates number of replicates. Data shown represent mean ± SD.

Supplemental Fig. 2 (corresponding to Fig. 3): Bioinformatics alignment of the 5'untranslated regions of APP mRNAs when aligned to the ferritin canonical IREs AGU and AGA tri-loops as a potential IRP 1 binding site (bold lettering).

Supplemental Fig. 3 (corresponding to Fig. 4): (a) SH-SY5Y cells or complete DMEM media alone were incubated with increasing Mn doses for 24 h, loaded with calcein-AM and analyzed for fluorescence. Data are presented as relative fluorescence compared to untreated fluorescence (n=6). (b) Cell-free background fluorescence of OptiMEM media \pm 100 µM Mn (empty) or OptiMEM media \pm 100 µM Mn loaded with either 5 µM RhoNOX-1 (left panel) or 20 µM IP-1 (right panel). Data are presented as absolute fluorescence units (F.U.) (n=3). (c) Absolute Fe2+ and Fe3+ values assed by IC-ICP-MS and CE-ICP-MS from SH-SY5Y lysates treated with DMEM media or 100 µM Mn. Corresponding relative Fe³⁺ to total iron and Fe²⁺ to total iron ratio are shown in Fig. 4b. Data are presented as mean \pm SD. N number indicates number of replicates. Differences were calculated using either two-way ANOVA followed by Bonferroni post-hoc analyses. (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

Supplemental Fig. 4 (corresponding to Fig. 5): Immortalized murine embryonal fibroblasts (MEFs) were isolated from wild-type mice (APP^{+/+}) or APP-knockout (APP^{-/-}) mice. APP^{+/+} and APP^{-/-} MEFs were either pretreated with 100 μ M FAC or media for 24 h and subsequently incubated with increasing doses of Mn for additional 24 h and analyzed for cell viability (n=3). Data are presented as mean ± SD. N number indicates number of replicates. Differences were calculated using two-way ANOVA followed by Bonferroni post-hoc analyses. (*, p < 0.05; **, p < 0.01; ***, p < 0.001).

Supplemental Fig. 5 (corresponding to Fig. 6): Corresponding western blots of IRP1 and IPR2 from whole brains lysates of either Sprague-Dawley rats treated with standard diet (SD group) or Mn (500 mg/kg) for 53 days. β -actin served as loading control. (b) Densitometric quantifications were normalized to β -actin (each group: n=6). (c) Representative western blots of autophagy marker Beclin-1 and LC3. β -actin served as loading control. (d) Densitometric quantifications were normalized to β -actin (each group: n=6). N number indicates number of individual animals. Data are presented as mean ± SD. Differences were calculated using unpaired t-test.