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Metabolomics and glycemic control in diabetes 

Blood metabolomic measures associate with present and future glycemic 
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Objective We studied in people with type 2 diabetes whether blood metabolomic measures 
are associated with insufficient glycemic control and if this association is influenced 
differentially by various diabetes drugs. We then tested whether the same metabolomic 
profiles  associate with initiation of insulin therapy.  
Methods One-hundred-and-sixty-two metabolomic measures were analyzed using a NMR-
based method in people with type 2 diabetes from four cohort studies (n=2641) and one 
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replication cohort (n=395). Linear and logistic regression with adjustment for potential 
confounders followed by meta-analyses was done to analyze associations with HbA1c levels, 
six glucose-lowering drug categories, and insulin initiation during seven year follow-up 
(n=698).  
Results After Bonferroni correction twenty-six measures were associated with insufficient 
glycemic control (HbA1c>53 mmol/mol). The strongest association was with glutamine 
(OR=0.66 (95%CI 0.61;0.73), P=7.6x10-19). In addition when compared to treatment naïve 
patients thirty-one metabolomic measures were associated with glucose-lowering drugs use 
(representing various metabolite categories, all P≤3.1x10-4). In drug-stratified analyses, 
associations with insufficient glycemic control were only mildly affected by different 
glucose-lowering drugs. Five of the 26 metabolomic measures (ApoA1 and M-HDL 
subclasses) were also associated with insulin initiation during follow-up in both discovery 
and replication. With the strongest association observed for M-HDL-CE (OR=0.54 
(95%CI=0.42;0.71); P=4.5x10-6).  
Conclusion In conclusion blood metabolomic measures were associated with present and 
future glycemic control and may thus provide relevant cues to identify those at increased risk 
of treatment failure. 

In a metabolomics study of persons with type 2 diabetes we found 26 metabolomic measures 
associated with insufficient glycemic control. Five also associated with insulin initiation during follow-
up. 

Introduction 

Type 2 diabetes is a very heterogeneous disease, which is also reflected in the heterogeneity 
in response to glucose-lowering treatment. Previously, we showed distinct trajectories of 
glucose control in people with type 2 diabetes, with most achieving good glycemic control 
(1). People with type 2 diabetes who are not treated optimally are at increased risk of 
developing diabetes-related complications(1,2). As such, there is a growing interest to 
discover factors associated with poor treatment response to facilitate personalized 
therapeutics. 

Recent technologic advances allow simultaneous detection of a wide range of metabolites 
in biological samples to gain information on multiple pathways relevant for a person’s 
metabolic state(3). The rapid developments in technology to determine a blood metabolomic 
profile in combination with highly standardized, reproducible and affordable measurements 
may all facilitate introduction of metabolomics in daily clinical practice aiming to advance 
the personalization and effectiveness of treatment of type 2 diabetes. 

Blood metabolomic measures such as the branched chain amino acids (BCAAs), alpha-
hydroxybutyrate, 2-aminoadipic acid, various lipids and other metabolites have been 
associated with risk of type 2 diabetes(4-6). Changes in the blood metabolomic profile may 
reflect early changes in the disease process of type 2 diabetes but may also influence the 
progression. As such, metabolomics might be a useful tool in early identification and 
stratification of those at increased risk of type 2 diabetes and to gain knowledge about disease 
etiology and progression(4). While previous findings show that metabolomic profiles add 
information on top of well-known clinical risk factors in prediction of developing type 2 
diabetes(7), only few studies have investigated their utility in assessment of treatment 
response and disease progression. These studies mostly investigated which metabolites 
respond to initiation of glucose-lowering drugs(8,9), however, often limited to only a single 
drug and in small cohorts.  

In search of better markers for successful treatment response, we herein use 
metabolomics data of four independent type 2 diabetes cohorts from the Netherlands. The 
metabolomic measures investigated belong to several classes including: amino acids, 
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glycolysis measures, ketone bodies and fatty acids, as well as the lipid concentrations and 
compositions of 14 lipoprotein subclasses. We assess the cross-sectional and glucose-
lowering drug-stratified associations of these metabolomic measures with glycemic control. 
Three cohorts provide data to examine the prospective association of metabolomic measures 
with diabetes progression. 

Materials and Methods 

Type 2 diabetes cohorts 
Data of type 2 diabetes patients (n=2641) from four different cohorts from the Netherlands 
were used; the Hoorn Diabetes Care System cohort study (DCS, n=995)(10), the Maastricht 
study (Maastricht, n=848)(11), the Cohort on Diabetes and Atherosclerosis Maastricht 
(CODAM, n=134)(12) and the Netherlands Epidemiology of Obesity study (NEO, 
n=664)(13). Prospective data from follow-up visits were available in two studies (DCS and 
CODAM, n=698) and in an independent replication study, the Rotterdam study (n=395)(14). 
All studies were conducted in accordance with the declaration of Helsinki, approved by the 
relevant local medical ethics committees and participants gave written informed consent 
before entering the study. Detailed cohort descriptions and study characteristics are described 
below and shown in table 1 and Supplemental tables 1-5. 

The Hoorn Diabetes Care System cohort study (DCS).  
The DCS provides routine diabetes care to patients living in the West-Friesland region (10). 
Patients visit the DCS research center annually during which blood is drawn in the fasting 
state for routine biochemistry. Furthermore, the patients get a full medical exam, advice about 
their health and treatment and receive education on their disease during their annual visits to 
the DCS research center. In addition, patients are invited to join our research and biobanking 
studies (n=5000+). From the DCS biobank we included a random cross-sectional sample for 
which a baseline plasma sample and yearly follow-up data were available (n=750). For case-
control analyses this sample was supplemented with subjects selected for the inability to 
reach the glycemic target (HbA1c>53 mmol/mol) and/or suffering from diabetic 
complications (n=245). For the prospective study we used data from 596 patients from the 
random sample who weren’t using insulin at the time of blood sampling for metabolomics 
and for which follow-up data was available. Follow-up time was 7 (interquartile range 6-7) 
years. Hemoglobin A1c (HbA1c) determination was based on the turbidimetric inhibition 
immunoassay for hemolysed whole EDTA blood (Cobas c501, Roche Diagnostics, 
Mannheim, Germany). 

The CODAM study 
The CODAM (Cohort on Diabetes and Atherosclerosis Maastricht) study was started in 1999. 
The baseline measurements of CODAM (n=574) were obtained between 1999 and 2002 (12). 
CODAM is a prospective, observational cohort. The general aim of CODAM is to investigate 
the effects of glucose metabolism, lipids, lifestyle and genetics on (development of) type 2 
diabetes and its cardiovascular complications (with focus on etiological relations). For the 
current study we included all subjects with type 2 diabetes for which a baseline plasma 
sample and Hemoglobin A1c (HbA1c) level was available (n=134). For the prospective 
studies we used data from 102 patients who were not using insulin at the time of blood 
sampling for metabolomics and for whom follow-up data was available. Average follow-up 
time was 7 years (interquartile range 6.9–7.1) (15). HbA1c determination was based on ion-
exchange high-performance liquid chromatography (HPLC). 

The Maastricht study 
The Maastricht Study is an extensive phenotyping study that focuses on the etiology of type 2 
diabetes, its classic complications (cardiovascular disease, nephropathy, neuropathy and 
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retinopathy), and its emerging comorbidities. The study represents a population-based cohort 
of 10,000 individuals that is enriched with type 2 diabetes participants. A detailed description 
of the study design can be found in: Schram et al. (11). For the current study we included all 
subjects with type 2 diabetes  for which a baseline plasma sample was available at the time of 
metabolite quantification (n=848). One subject for whom detailed medication data were not 
available was excluded from analyses involving medication data. HbA1c determination was 
based on ion-exchange high-performance liquid chromatography (HPLC). 

The NEO study 
The Netherlands Epidemiology of Obesity (NEO) study: The NEO was designed for 
extensive phenotyping to investigate pathways that lead to obesity-related diseases (13). The 
NEO study is a population-based, prospective cohort study that includes 6,671 individuals 
aged 45–65 years, with an oversampling of individuals with overweight or obesity. For those 
with type 2 diabetes at baseline plasma samples were measured in the present study (n=664). 
HbA1c was measured using HPLC boronate affinity chromatography.  

The Rotterdam study 
The Rotterdam Study is a prospective population-based cohort study in Ommoord, a district 
of Rotterdam, the Netherlands. The design of the Rotterdam Study has been described in 
more detail elsewhere (14). Briefly, in 1989 all residents within the well-defined study area 
aged 55 years or older were invited to participate of whom 78% (7983 out of 10275) agreed. 
The first examination took place from 1990 to 1993, after which, follow-up examinations 
were conducted every 3-5 years. This metabolomics study was based on plasma samples and 
baseline data collected during the third visit (1997-1999). Follow-up data were from the 
fourth visit (2002-2004). For the current study we used 395 subjects with type 2 diabetes who 
were not using insulin at the third study visit.  

Glucose-lowering drug use 
We defined six different treatment groups: (1) glucose-lowering drug treatment naive (‘No-
Meds’); (2) metformin monotherapy (‘Metf’); (3) sulfonylurea monotherapy (‘SU’); (4) Metf 
and SU combined (‘Metf+SU’); (5) insulin therapy, either with or without oral glucose-
lowering drugs (‘Insulin’) and (6) use of oral glucose-lowering medication other than Metf 
and/or SU (‘Other’). ‘Other’ consisted mainly of thiazolidinediones (TZD) users, either with 
or without Metf and/or SU. Clinical characteristics, medication use and the number of 
subjects per stratum per cohort are given in Supplemental Tables 1-3. 

Metabolomic measurements 
Fasted EDTA plasma samples were analyzed in a single experimental setup on a high-
throughput nuclear magnetic resonance (NMR) platform as described previously 
(www.nightingalehealth.com)(16,17). In total 162 metabolomic measures and or derived 
composite scores (n=12) were assessed which represent a broad molecular signature of 
systemic metabolism. This includes metabolites such amino acids, glycolytic intermediates, 
fatty acids and ketone bodies and 141 other metabolomic measures such as mono- and 
polyunsaturated fatty acids, glycerides, proteins as well as lipid concentrations and 
compositions of 14 lipoprotein subclasses (Supplemental Table 6). A heatmap showing the 
correlation structure of the metabolomic measures in the DCS cohort is shown in 
supplemental figure 1. These metabolomic measures were all in absolute molar concentration 
units.  

Statistical analysis 
Metabolomic measures in the different study samples were normalized using z-scaling after 
natural logarithmic transformation of the raw levels (ln(measure+1)) as suggested by the 
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manufacturer and to facilitate cross-cohort comparisons. HbA1c levels were logarithmically 
transformed (ln) prior to the analyses in each of the cohorts.  

In each of the cohorts linear and logistic per-measure regression models with adjustment 
for potential confounders (based on literature) were used to study continuous and binary 
outcomes, respectively. Only complete cases were used. Details are described below for each 
of the main analyses. Bonferroni correction was applied on all analyses to account for 
multiple testing (162 tests, α ≤ 3.1x10-4). We have chosen to use Bonferroni correction based 
on the number of metabolic measures tested but not to correct for the number of tests 
performed. Because of the high correlation between metabolites (~40 independent signals) 
this equates for the stratified analyses (n=5) to an almost similar cut-off (5x40=200 tests, p≤ 
2.5x10-4 versus 3.1x10-4). For the other endpoints (glycemic control and insulin initiation) 
where we performed less tests such a cut-off would be too strict. Therefore, for uniformity 
and readability of the manuscript we chose to use one significance threshold through-out the 
paper based on the number of metabolomic measures (p≤3.1x10-4).  SPSS v23.0 and R v3.4.0 
were used for data analysis. Random effect meta-analyses were used to combine the results of 
the different study samples using the R package meta (Meta v4.3-2)(18). 

Association between metabolomic measures and HbA1c. 
The associations between metabolomic measures (main independent variables) and HbA1c 
levels (outcome) at the time of blood draw were examined using linear regression models 
(ntotal=2641). Logistic regression was used to analyze associations of metabolomic measures 
with insufficient glycemic control defined as having an HbA1c above 53 mmol/mol (7%) at 
the time of the blood drawing. Two models were used: model 1 included as covariates age, 
sex, statin use (yes/no) and use of other lipid lowering medication (yes/no). In model 2 we 
additionally adjusted for BMI, use of oral glucose-lowering medication (yes/no), insulin use 
(yes/no) and duration of diabetes at the time of blood draw. Based on previous evidence we 
examined the influence of the six different treatment regimens on the association between 
metabolomic measures and HbA1c in drug stratified analyses. To examine differences 
between those without medication and other treatment groups interaction analyses were 
performed (treatment_group*metabolite). Sensitivity analyses were performed by excluding 
subjects with less than one year of diabetes and those only treated with a diet and in analyses 
stratified by sex. 

Associations between glucose-lowering drug use and metabolomic measures 
In a cross-sectional design we applied linear regression analyses to examine the association 
between different types of glucose-lowering medication (main independent variable) and 
metabolomic measures (outcomes). Separate analyses for each treatment group with the 
treatment naive group as the reference were used for each cohort separately. Analyses were 
restricted to DCS, Maastricht and NEO cohorts because the numbers per stratum were too 
small in CODAM. Age, sex, statin use (yes/no) and use of other lipid lowering medication 
were added as covariates (model 1). In model 2 we additionally adjusted for BMI, duration of 
diabetes, HbA1c, fasting glucose and estimated glomerular filtration rate (eGFR) at the time 
of blood draw. eGFR was estimated using the CKD-EPI equation(19).  

Association between metabolomic measures and initiation of insulin therapy 
The metabolomic measures that were identified as cross-sectionally associated with HbA1c 
>53 mmol/mol in the previous analyses were included in the current analyses. The 
association between these baseline metabolomic measures (main independent variables) and 
initiation of insulin therapy during the follow-up period (outcome) were examined with 
logistic regression in the prospective cohorts. For these analyses we only included people 
who did not use insulin at the time of blood sampling (n=698). Baseline values of age, sex, 
BMI, statin use, other lipid lowering use (model 1) and diabetes duration, SU use, metformin 
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use, other diabetes medication use, HbA1c and fasting glucose (model 2) were included as 
covariates. For replication in the Rotterdam study we used a slightly different model that 
included age, sex, BMI, lipid lowering medication use, oral glucose-lowering medication use 
and fasting glucose, as not all covariates were available.  

Sensitivity analyses: It is known that for various reasons people who should use insulin 
because of prolonged elevated HbA1c levels aren’t using this drug. Therefore, we performed 
sensitivity analyses in the largest prospective cohort, DCS. Propensity scores for insulin use 
at baseline were calculated using graded boosting as implemented in the gbm package in R 
(v2.1.3)(20). Sex, age, BMI, diabetes duration, biobank year, HbA1c, fasting glucose, total 
cholesterol, HDL and LDL cholesterol, cholesterol ratio, triglycerides and eGFR were used 
as variables. 

RESULTS 

Cohort characteristics are shown in Table 1 and Supplemental Tables 1-5. Differences 
between cohorts in for instance diabetes duration and glucose-lowering medication use were 
accounted for by using random effects meta-analyses. A schematic overview of the study and 
its main results is shown in Figure 1. 

Association between metabolomic measures and HbA1c 
Using a linear regression model including age, sex and use of statins or other lipid lowering 
medication as covariates, we found significant associations between metabolomic measures 
and HbA1c levels in all four cohorts. In the meta-analyses, 81 measures were significantly 
associated with HbA1c levels after multiple testing correction (Model 1, Supplemental Table 
7). The most significant association was observed with the Fischer ratio (BCAA/aromatic 
amino acids; β=0.05±0.00, P=4.6x10-42). After further adjustment for BMI, glucose-lowering 
drug use, insulin use and diabetes duration 75 measures were significant (67% overlap, 
Model 2, Supplemental Table 7).  

We next tested in a logistic regression model whether metabolomic measures were also 
associated with the inability to achieve the glycemic target of an HbA1c below 53 mmol/mol. 
Twenty-six measures (8 metabolites; 18 others) belonging to various metabolomic classes 
were significantly associated. The most significant association was found for glutamine 
(OR=0.66 (95%CI 0.61;0.73), P=7.6x10-19, Table 2, Supplemental Table 8). Most of these 26 
were also significant in the linear regression model mentioned above (21/26) but not always 
in the extended model 2 (15/26). 

In a sensitivity analysis, exclusion of people with less than one year duration of diabetes 
and those only treated with a diet did not materially affect the results. This suggests that the 
observed associations were not driven by those with newly discovered or mild/screen 
detected diabetes. We also did not observe major differences between men and women (data 
not shown).  

We also tested whether use of different glucose-lowering drugs affected the observed 
associations. For this we first evaluated whether the different treatment regimens in patients 
were associated with the metabolomic measures as compared to those who did not use any 
type of glucose-lowering drug. Supplemental Table 9 shows the results of the meta-analyses 
for the age, sex, BMI, statin use and other lipid lowering medication adjusted model (5 
metabolites; 21 others significant,). With addition of diabetes duration, HbA1c, fasting 
glucose and eGFR into the model, 31 measures (3 metabolites; 28 others) remained 
significantly different in one or more of the treatment groups compared to those who did not 
use any type of glucose-lowering drug (Table 3, Supplemental Table 10). The metabolomic 
measures represent various categories including, amino-acids, phospholipids, 
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apolipoproteins, cholesterols and various lipoprotein subclasses. The strongest association 
was observed for ApoA1 and metf + SU dual therapy (β=-0.148 (0.026); P=1.7x10-8) 

In treatment group stratified meta-analyses for the 26 measures identified in the logistic 
regression model for insufficient glycemic control we found only modest evidence for an 
effect of medication on these associations (Supplemental Table 11). Only those in the small 
SU monotherapy or “other” groups sometimes show aberrant responses. However, in the 
interaction analyses of treatment_group*metabolite there were no significant associations (all 
p≥8.5x10-3, data not shown). Altogether, these results imply that, in general, the major 
glucose lowering drugs had little effect on the observed associations between metabolomic 
measures and HbA1c. 

Association between metabolomic measures and initiation of insulin therapy 
Diabetes progression was defined as initiation of insulin therapy during follow-up. Because 
the exact starting date of insulin therapy was not always known we used logistic regression 
models for the prospective studies, however, cox regression in the DCS cohort showed highly 
similar results (data not shown). In a meta-analysis of the two cohorts with prospective data 
we tested whether the 26 metabolomic measures identified above were also associated with 
initiation of insulin therapy during  seven year follow-up (n=698, 123 cases). Out of the 26 
metabolomic measures, eleven were significantly associated with insulin initiation (model 1, 
Table 4) compared to 15 of the remaining 136 metabolites (P for enrichment=3.8x10-4). The 
most significant association was again with ApoA1 (OR=0.52 (95%CI=0.40;0.67), 
P=7.97x10-7). Further adjustment for age, sex, BMI, statin use, other lipid lowering use, 
diabetes duration, SU use, metformin use, other diabetes medication use, HbA1c and fasting 
glucose reduced the number of significant associations to six (model 2, Table 4). The most 
significant association was with M-HDL-CE (OR=0.54 (95%CI=0.42;0.71); P=4.5x10-6). 
Independent replication (Rotterdam study, 40 cases/355 controls, 5 years follow-up) showed 
that five of these also showed directionally consistent evidence for nominal association 
(P≤0.05) in the smaller replication study (Supplemental Table 12).  

It is known that for various reasons people who should use insulin because of prolonged 
elevated HbA1c levels are not using this drug and therefore we performed some sensitivity 
analyses in the DCS study. We first calculated propensity scores for using insulin at baseline 
based on the baseline characteristics of participants either using or not using insulin. Adding 
these propensity scores to the regression models did not largely impact the results. Next, we 
re-classified as insulin initiators 11 persons who had elevated HbA1c levels on at least two of 
the yearly follow-up visits (HbA1c>64). This analysis did not materially affect our results nor 
did the exclusion of these persons from our analysis (data not shown).  

DISCUSSION 

This study has several main findings (Figure 1). First, in cross-sectional analyses we showed 
that 26 measures were associated with insufficient glycemic control, which was largely 
independent of the effects of glucose-lowering medications. Second, we identified 31 
measures that differ between individuals treated with different glucose-lowering drugs. 
Thirdly, we showed in prospective analyses that five of the 26 measures associated with 
insufficient glycemic control were also associated with insulin initiation during follow-up. 

Metabolomic measures and glycemic control 
Increased levels of BCAAs, as observed in our study, were previously shown associated with 
insulin resistance and risk of prevalent and incident diabetes(4,21). We now showed that this 
association extends to glycemic control in people with type 2 diabetes. Glutamine, ranked 1st 
in our analyses, is known to be associated with insulin sensitivity and reduced diabetes risk, 
which is in line with our observed inverse correlation(6,22,23). Furthermore, we showed 
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positive associations with several markers of fatty acid composition and saturation and  
respectively positive and negative associations with concentrations of various VLDL, LDL 
and HDL subclasses. Previous studies have shown that these measures are associated with 
various degrees of glucose tolerance, insulin resistance and/or diabetes risk(24-27). In 
general, our data suggest that metabolomic measures that were previously shown to be 
associated with type 2 diabetes risk are also associated with worse glycemic control. 

Most of the significant associations with insufficient glycemic control are only marginally 
influenced by different diabetes drugs in the stratified analysis. In all treatment groups 
insufficient glycemic control is, for instance, positively associated with the Fischer ratio and 
most BCAAs, however, in the SU group there is no or even an inverse association 
(Supplemental Figure 2). For most of the  fatty acids and lipoprotein subclasses we note a 
similar picture in the SU treatment group, associations are less pronounced or the reverse of 
what is observed for the other treatment groups. It seems that those in the “other” group in 
general show stronger but directionally consistent associations. However, due to small 
numbers in the both these groups differences are not statistically significant and thus require 
further studies. Metabolites such as glutamine and lactate showed much more similar 
associations in all treatment groups suggesting a more generalized association of these 
metabolites with glycemic control. The differences in associations observed in the various 
treatment groups were not explained by differences in glycemic control, obesity or diabetes 
duration. It is therefore reasonable to assume that they were related to differences in the 
working mechanism of these drugs targeting either predominantly beta-cell function or 
insulin action and further studies are needed to investigate this in detail. 

Diabetes treatment and metabolomic measures  
To our best knowledge we are the first to show the association of different types of glucose-
lowering drugs with various metabolites and or metabolomic measures in a large series of 
type 2 diabetes patients treated according to routine clinical care. Our results suggest that the 
observed differences were not strongly driven by differences in glycemic control or disease 
duration between groups. In general it seemed that the direction and size of the effects were 
comparable between treatment groups, although not always reaching formal levels of 
significance which is likely attributable to small number of patients in some subgroups. For 
example, it was previously shown that, among others, the phospholipid content of very large 
HDL (XL-HDL-PL) was lowered by metformin treatment (8,28). Our data suggest this was 
not specific for metformin, but rather universal for most or all glucose-lowering drugs 
(Supplemental Figure 3). Furthermore, individuals in most treatment groups except the 
“other” glucose-lowering drug group had lower levels of HDL subclasses compared to those 
without glucose-lowering treatment (Supplemental Figure 3). As thiazolidinediones are 
included in this “other” group this might relate to known HDL cholesterol increasing effects 
of these drugs(29). 

In addition to the generic effects of glucose-lowering drugs we also observed drug-
specific associations. For instance, increased alanine levels in relation to metformin therapy 
have been reported before(8,30). Here we show that compared to treatment naive patients, 
alanine levels are most strongly increased in metformin mono or dual therapy with SU 
groups. BCAAs (Val, Leu and Ile) and the Fischer ratio (ratio of BCAA over aromatic amino 
acids) were increased in those treated with metformin, but like alanine not or much less in 
those treated with SU or other glucose-lowering drugs. This might be related to differences in 
the working mechanism of these drugs.  

Metabolomic measures and initiation of insulin therapy 
For patients not able to achieve good glycemic control on oral glucose-lowering drugs, 
initiation of insulin therapy is often the final treatment option. Type 2 diabetes patients who 
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require insulin therapy have often been treated for years with oral glucose-lowering drugs 
without achieving sufficient glycemic control. This leads to an unwanted and prolonged 
exposure to high glucose levels and increased risk of developing diabetes related 
complications(2). Early indicators of treatment failure and rapid progression towards insulin 
therapy are thus urgently needed. We show that a subset of the metabolomic measures that 
were cross-sectionally associated with insufficient glycemic control, were also associated 
with progression towards insulin therapy during follow-up.  

Interestingly, the BCAAs whilst shown to be causally related to development of T2D(21), 
were not associated with progression to insulin use. Also other metabolites associated with 
insufficient glycemic control in our study were not significantly associated with incident 
insulin use. Our data show that high levels of ApoA1 and M-HDL lipoprotein subclasses 
were associated with an almost two-fold reduced risk of incident insulin use. These findings 
refine the results of previous studies that identified low HDL-cholesterol as a risk factor for 
initiation of insulin therapy(31) and progression of glycemia in type 2 diabetes (32). Insulin 
resistance impairs VLDL metabolism by, 1) reducing the LPL-mediated generation of 
VLDL-remnants and, 2) simultaneously increasing the flux of adipose tissue derived FA to 
the liver. Both processes lead to increased production of VLDL. The increased abundance of 
VLDL drives CETP mediated transfer of CE from HDL to VLDL, leading to a reduction in 
HDL-levels. Increased plasma VLDL and decreased HDL are characteristic of the so-called 
diabetic dyslipidemia (reviewed in Goldberg(33)). Diabetic dyslipidemia represents a more 
advanced stage of insulin resistance and may thus identify those individuals that are more 
likely to progress towards insulin use. Alternatively, ApoA1 and HDL have also been 
suggested to modulate pancreatic β-cell function via incretin-like effects(34). Further detailed 
studies are needed to clarify this in detail.  

Strengths of this study are the use of large numbers of patients, incorporation of at least 
three independent cohorts in all main analyses, the use of a targeted metabolomics platform 
that is already approved for clinical care and the use of stringent corrections for multiple 
hypothesis testing to reduce the chance of false positive findings. Limitations are the use of 
cross-sectional metabolomics data. Given this design we could not study the within subject 
effects on the metabolomic measures after initiation of glucose-lowering treatment in 
treatment-naive individuals. Another limitation is the relatively small number of subjects in 
some of the treatment groups and in the prospective studies limiting the power to detect more 
modest associations. The use of logistic regression models for the prospective studies is a 
limitation, however, cox regression in the DCS cohort showed highly similar results. In 
addition, although we were able to show that several metabolomic measures were associated 
with incident insulin use further studies using for instance lasso regression are warranted to 
find the best combination of clinical and metabolomic predictors of initiation of insulin 
therapy. However, this is beyond the scope of this manuscript. Finally, the metabolomics 
platform we used targets a relatively small and correlated number of metabolomic measures 
and is thus not representative of the whole metabolome. Because of the known correlation 
structure between the measures, signals are not all independent but rather provide detailed 
information on the underlying biology. Further detailed metabolomic and lipidomic studies 
using specialized platforms allowing for more comprehensive and detailed analyses are 
needed to elucidate the underlying biology. 

In conclusion, this is the first study to show that blood metabolomic measures are 
associated with glycemic control. We also show that, although the blood metabolome shows 
differences between patients who are on different types of glucose-lowering medication, 
glucose-lowering medication did not materially affect the associations with glycemic control. 
Finally, we show that baseline levels of the metabolomic measures that were associated with 
insufficient glycemic control were also prospectively associated with initiation of insulin 
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therapy. This shows that metabolomic profiles may be useful for the identification of those at 
increased risk of treatment failure on non-insulin therapies. 
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Figure 1. Schematic overview of the study design and main results. 

Table 1. Baseline clinical characteristics of the study samples 

 DCS Maastricht CODAM NEO 
 Random sample (n=750) Selected sample (n=245) n=848 n=134 n=664 
Age (years) 62.7 ± 10.2 63.5 ± 10.9 62.8 ± 7.6 61.1 ± 6.3 57.8 ± 5.4 
Sex (M) 527 (57) 145 (59) 580 (68) 90 (67) 370 (58) 
BMI (kg/m2) 30.7 ± 5.5 30.3 ± 5.4 29.9 ± 4.9 30.0 ± 4.3 33.0 ± 5.3 
HbA1c (mmol/mol) 46 (43-53) 53 (47-62) 50 (45-56) 50 (43-57) 48 (42-54) 
HbA1c (%) 6.4 (6.1-7.0) 7.0 (6.4-7.8) 6.7 (6.3-7.3) 6.7 (6.1-7.4) 6.2 (5.8-6.9) 
HbA1c >53 (mmol/mol) 158 (21) 120 (49) 275 (32) 47 (35) 153 (23) 
Diabetes duration (years) 6.3 ± 4.7 7.6 ± 4.8 7.3 ± 6.8 3.2 ± 5.2 4.0 ± 5.1 
Diabetes duration <1 year (n) 36 (5) 8 (3) 134 (17) 77 (58) 277 (42) 
Age at onset (years) 56.9 ± 10.1 56.4 ± 10.6 55.6 ± 9.1 57.9 ± 7.1 52.0 ± 7.0 
      
Statin use 524 (70) 162 (66) 627 (74) 31 (23) 344 (52) 
Other lipid lowering drug use 22 (0.3) 10 (0.4) 54 (6.4) 3 (2.2) 4 (0.6) 
      
No medication 91 (12) 9 (4) 189 (22) 70 (52) 322 (48) 
Metformin 275 (37) 40 (16) 264 (31) 7 (5) 153 (23) 
Metf+SU 142 (19) 56 (23) 136 (16) 16 (12) 76 (11) 
SU 50 (7) 19 (8) 20 (2) 28 (21) 17 (3) 
Insulin 154 (21) 109 (45) 175 (21) 11 (8) 77 (12) 
Other 38 (5) 12 (5) 63 (7) 2 (2) 19 (3) 

Date represent mean ± SD, median (IQR) or n (%). The DCS sample consists of a random sample of 750 and a 
total sample in which 245 subjects with diabetic complications and or not able to reach the clinical target of 
HbA1c where added to the random sample to increase power in case-control analyses. 

Table 2. Metabolomic measures significantly associated with insufficient glycemic control 
(HbA1c>53 mmol/mol). 

 Model 1 Model 2 
Metabolites 

Measure OR 95%CI P OR 95%CI P 
Gln 0.66 (0.61;0.73) 7.58x10-19 0.66 (0.57;0.76) 1.51x10-8 
Ile 1.41 (1.26;1.57) 1.06x10-9 1.40 (1.22;1.60) 1.63x10-6 
Leu 1.44 (1.31;1.59) 3.51x10-13 1.46 (1.23;1.74) 1.32x10-5 
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Val 1.46 (1.33;1.60) 2.74x10-15 1.40 (1.26;1.56) 5.21x10-10 
BCAA 1.51 (1.37;1.67) 4.41x10-17 1.48 (1.32;1.65) 3.84x10-12 
Fischer Ratio 1.59 (1.39;1.81) 3.53x10-12 1.49 (1.25;1.79) 1.61x10-5 
bOHBut 1.19 (1.10;1.30) 3.61x10-5 1.11 (0.99;1.24) 6.16x10-2 
Lac 1.26 (1.14;1.40) 1.20x10-5 1.27 (1.16;1.40) 5.41x10-7 

Other metabolomic measures 
Measure OR 95%CI P OR 95%CI P 
UnsatDeg 0.80 (0,73;0,87) 8.08x10-7 0.81 (0.74;0.90) 5.51x10-5 
FAw3-FA 0.83 (0,76;0,91) 6.22x10-5 0.90 (0.81;0.99) 3.68x10-2 
PUFA-FA 0.83 (0,77;0,91) 3.45x10-5 0.82 (0.73;0.93) 2.18x10-3 
SFA-FA 1.23 (1,10;1,36) 2.08x10-4 1.19 (1.04;1.36) 1.40x10-2 
LDL-TG 1.26 (1,15;1,38) 4.61x10-7 1.33 (1.20;1.48) 3.05x10-8 
ApoA1 0.80 (0,71;0,90) 1.54x10-4 0.96 (0.84;1.09) 4.82x10-1 
XS-VLDL-TG 1.26 (1,13;1,40) 2.47x10-5 1.31 (1.15;1.48) 4.17x10-5 
IDL-TG 1.27 (1,16;1,38) 1.57x10-7 1.32 (1.19;1.46) 6.47x10-8 
L-LDL-TG 1.25 (1,14;1,38) 4.46x10-6 1.33 (1.20;1.47) 7.79x10-8 
M-LDL-TG 1.21 (1,11;1,33) 2.33x10-5 1.29 (1.16;1.42) 1.25x10-6 
S-LDL-TG 1.19 (1,09;1,30) 6.95x10-5 1.26 (1.14;1.40) 3.31x10-6 
XL-HDL-FC 0.81 (0,73;0,90) 1.01x10-4 0.89 (0.80;0.99) 4.00x10-2 
M-HDL-P 0.83 (0,75;0,91) 8.86x10-5 0.96 (0.83;1.12) 6.36x10-1 
M-HDL-L 0.82 (0,75;0,90) 3.49x10-5 0.96 (0.82;1.12) 5.81x10-1 
M-HDL-C 0.79 (0,70;0,89) 6.70x10-5 0.90 (0.77;1.06) 2.17x10-1 
M-HDL-CE 0.78 (0,70;0,88) 5.05x10-5 0.89 (0.77;1.04) 1.57x10-1 
M-HDL-FC 0.80 (0,72;0,90) 2.19x10-4 0.94 (0.78;1.13) 4.99x10-1 
S-HDL-TG 1.27 (1,15;1,40) 4.47x10-6 1.26 (1.12;1.42) 1.17x10-4 

Results represent odds ratio and 95% confidence interval from fixed effect meta-analyses of the logistic 
regression analyses for insufficient glycemic control of DCS, Maastricht, CODAM and NEO data. Model 1: 
adjusted for Age, Sex, Statin-use and other lipid lowering medication use. Model 2: adjusted for Age, Sex, 
Statin use, other lipid lowering use, BMI, diabetes duration, OHA use, insulin use. Bonferroni significant 
associations (P<3.1x10-4).  Full data for all metabolomic measures is provided in supplemental table 8. 

Table 3. Metabolomic measures significantly associated with glucose lowering medication 
use. 

Metabolite Metformin  (n= 732) SU (n=106) Metf + SU (n=410) Insulin (n=515) Others (n=132) 
Metabolites 

Ala 0.241 (0.048)a -0.013 (0.050) 0.142 (0.058) 0.039 (0.046) 0.073 (0.078) 
Val 0.182 (0.043)a -0.018 (0.042) 0.193 (0.083) 0.065 (0.043) -0.018 (0.034) 
BCAA 0.181 (0.047)a -0.006 (0.042) 0.216 (0.085) 0.049 (0.053) -0.012 (0.033) 

Other metabolomic measures 
SFA -0.149 (0.099) 0.023 (0.052) -0.051 (0.029) -0.165 (0.044)a -0.023 (0.047) 
HDL-D -0.101 (0.042) -0.110 (0.048) -0.127 (0.026)a -0.174 (0.096) -0.040 (0.028) 
PC -0.199 (0.065) -0.093 (0.048) -0.107 (0.028)a -0.425 (0.183) -0.035 (0.033) 
TotCho -0.164 (0.065) -0.058 (0.048) -0.106 (0.028)a -0.332 (0.136) -0.011 (0.031) 
ApoA1 -0.154 (0.048) -0.157 (0.047) -0.148 (0.026)a -0.400 (0.161) -0.060 (0.028) 
HDL-C -0.076 (0.042) -0.154 (0.048) -0.108 (0.026)a -0.233 (0.121) -0.050 (0.028) 
HDL2-C -0.070 (0.043) -0.149 (0.049) -0.106 (0.026)a -0.184 (0.088) -0.051 (0.028) 
Serum-C -0.160 (0.042)a -0.074 (0.041) -0.103 (0.024)a -0.347 (0.161) -0.029 (0.037) 
FreeC -0.175 (0.051) -0.050 (0.043) -0.094 (0.024)a -0.287 (0.135) -0.022 (0.029) 
EstC -0.151 (0.041)a -0.081 (0.041) -0.104 (0.024)a -0.358 (0.168) -0.028 (0.038) 
IDL-L -0.142 (0.039)a -0.043 (0.041) -0.073 (0.024) -0.242 (0.131) -0.003 (0.028) 
XL-HDL-P -0.094 (0.043) -0.102 (0.051) -0.119 (0.027)a -0.143 (0.107) -0.048 (0.029) 
XL-HDL-L -0.090 (0.043) -0.109 (0.049) -0.118 (0.026)a -0.146 (0.108) -0.046 (0.028) 
XL-HDL-PL -0.095 (0.043) -0.073 (0.051) -0.116 (0.027)a -0.130 (0.100) -0.044 (0.030) 
XL-HDL-C -0.071 (0.043) -0.132 (0.048) -0.108 (0.027)a -0.131 (0.102) -0.046 (0.028) 
XL-HDL-FC -0.078 (0.044) -0.113 (0.050) -0.116 (0.027)a -0.142 (0.106) -0.048 (0.029) 
L-HDL-P -0.084 (0.044) -0.113 (0.051) -0.122 (0.027)a -0.200 (0.120) -0.046 (0.030) 
L-HDL-L -0.084 (0.044) -0.120 (0.049) -0.124 (0.026)a -0.210 (0.128) -0.044 (0.029) 
L-HDL-PL -0.090 (0.044) -0.119 (0.049) -0.124 (0.026)a -0.228 (0.129) -0.046 (0.029) 
L-HDL-C -0.070 (0.044) -0.113 (0.050) -0.117 (0.027)a -0.168 (0.116) -0.044 (0.029) 
L-HDL-CE -0.067 (0.044) -0.113 (0.050) -0.116 (0.027)a -0.163 (0.114) -0.044 (0.029) 
L-HDL-FC -0.078 (0.045) -0.110 (0.051) -0.118 (0.027)a -0.176 (0.115) -0.045 (0.030) 
L-HDL-TG -0.169 (0.044)a -0.085 (0.054) -0.135 (0.028)a -0.346 (0.193) -0.021 (0.031) 
M-HDL-P -0.123 (0.062) -0.163 (0.049) -0.106 (0.027)a -0.346 (0.122) -0.052 (0.034) 
M-HDL-L -0.118 (0.061) -0.172 (0.050) -0.106 (0.026)a -0.342 (0.121) -0.049 (0.031) 
M-HDL-C -0.096 (0.053) -0.184 (0.049)a -0.108 (0.027)a -0.314 (0.118) -0.048 (0.028) 
M-HDL-CE -0.089 (0.051) -0.184 (0.049)a -0.103 (0.027)a -0.297 (0.108) -0.048 (0.028) 
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M-HDL-FC -0.114 (0.057) -0.171 (0.049) -0.119 (0.027)a -0.356 (0.148) -0.048 (0.029) 

Data represent Beta (SE)from random effect meta-analyses of DCS. Maastricht and NEO data of metabolomic 
measures against medication use with adjustment for age, sex, BMI, statin use, other lipid lowering medication, 
diabetes-duration, HbA1c, Fasting Glucose and eGFR. Treatment naive patients were used as a reference 
(n=611) in separate analyses for each treatment group. a Bonferroni significant associations (P≤3.1x10-4). 

Table 4. Metabolomic measures significantly associated with insulin initiation during follow-
up. 

 Model 1 Model 2 
Metabolites 

Measure OR 95%CI P OR 95%CI P 
Gln 0.86 (0.70;1.07) 1.73x10-1 1.14 (0.68;1.90) 6.30x10-1 
Ile 1.58 (1.22;2.04) 5.71x10-4 1.25 (0.76;2.06) 3.72x10-1 
Leu 1.54 (1.23;1.93) 1.77x10-4 1.22 (0.94;1.58) 1.26x10-1 
Val 1.63 (1.31;2.03) 1.21x10-5 1.20 (0.75;1.94) 4.50x10-1 
BCAA 1.72 (1.37;2.17) 3.86x10-6 1.25 (0.74;2.12) 4.10x10-1 
Fischer Ratio 1.79 (1.42;2.26) 1.15x10-6 1.40 (1.08;1.81) 1.22x10-2 
bOHBut 1.03 (0.84;1.26) 7.59x10-1 0.81 (0.61;1.08) 1.45x10-1 
Lac 1.40 (1.16;1.70) 5.63x10-4 1.06 (0.66;1.69) 8.10x10-1 

Other metabolomic measures 
Measure OR 95%CI P OR 95%CI P 
UnsatDeg 0.73 (0.58;0.92) 7.04x10-3 0.78 (0.61;0.98) 3.45x10-2 
FAw3-FA 0.74 (0.52;1.05) 9.39x10-2 0.58 (0.21;1.63) 3.01x10-1 
PUFA-FA 0.84 (0.56;1.27) 4.17x10-1 0.88 (0.70;1.11) 2.69x10-1 
SFA-FA 1.22 (0.99;1.50) 5.78x10-2 1.10 (0.88;1.37) 4.15x10-1 
LDL-TG 1.01 (0.59;1.70) 9.82x10-1 1.03 (0.82;1.30) 7.90x10-1 
ApoA1 0.52 (0.40;0.67) 7.97x10-7 0.53* (0.39;0.70) 1.31x10-5 
XS-VLDL-TG 1.18 (0.73;1.90) 5.02x10-1 1.25 (1.02;1.53) 3.47x10-2 
IDL-TG 1.12 (0.67;1.90) 6.65x10-1 1.21 (0.97;1.50) 8.95x10-2 
L-LDL-TG 1.01 (0.60;1.70) 9.58x10-1 1.05 (0.84;1.33) 6.68x10-1 
M-LDL-TG 0.95 (0.56;1.62) 8.62x10-1 0.98 (0.78;1.23) 8.53x10-1 
S-LDL-TG 1.06 (0.62;1.81) 8.32x10-1 1.12 (0.91;1.38) 3.02x10-1 
XL-HDL-FC 0.59 (0.46;0.75) 1.86x10-5 0.64 (0.49;0.83) 6.55x10-4 
M-HDL-P 0.56 (0.44;0.72) 5.06x10-6 0.54* (0.41;0.72) 1.52x10-5 
M-HDL-L 0.57 (0.44;0.72) 4.46x10-6 0.55* (0.42;0.72) 1.62x10-5 
M-HDL-C 0.56 (0.44;0.70) 1.24x10-6 0.54* (0.41;0.70) 4.67x10-6 
M-HDL-CE 0.56 (0.44;0.71) 1.30x10-6 0.54* (0.42;0.71) 4.46x10-6 
M-HDL-FC 0.55 (0.43;0.70) 2.62x10-6 0.53 (0.40;0.70) 1.01x10-5 
S-HDL-TG 1.40 (1.00;1.95) 5.20x10-2 1.37 (1.10;1.69) 4.21x10-3 

Results represent odds ratio and 95% confidence interval from fixed effect meta-analyses of the logistic 
regression analyses for insulin initiation in DCS and CODAM prospective data. Model 1: Age, Sex, Statin-use 
and other lipid lowering medication use. Model 2: Age, Sex, Statin use, other lipid lowering use, BMI, diabetes 
duration, SU use, metformin use, other diabetes med use, HbA1c and fasting glucose. Bonferroni significant 
associations (P<3.1x10-4). * P<0.05 in the replication study (Supplemental table 12). 
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HbA1c (mmol/mol) 
81 measures (P≤3.1x10-4)  

Table S7 

Initiation of insulin therapy (Y/N) 
6/26 measures  (P≤3.1x10-4)  

Table 4 
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Glucose-lowering drug stratified (6 groups) 
HbA1c >53 mmol/mol (Y/N) 

Table S11 

Glycemic control 
DCS, Maastricht,  
CODAM, NEO 
N=2631 

Diabetes  
progression 
DCS, CODAM 
N=123 cases 
595 controls 

HbA1c >53 mmol/mol (Y/N) 
26 measures (P≤3.1x10-4)  

Tables 2, S8 

Replication study (40 cases/355 controls) 
5/6 measures  (P≤0.05)  

Table S12 

Glucose-lowering drug stratified 
Metabolic measures

 

31 measures (P≤3.1x10

-4)  

Tables 3, S9, S10
 

Glucose-lowering drugs

 

DCS, Maastricht, NEO N=2256
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