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Additional Materials and Methods 

 

RNA-Seq samples  

The additional 321 RNA-Seq samples from six studies used for this analysis included a 

developmental time-course across 70 tissues timepoint combinations, a pathogen-associated molecular 

pattern (PAMP) triggered immune response study, and four tissue studies (Table S1). Methods for 

these new studies are outlined below.  

• Developmental time course: Wheat plants from Bayer Crop Science Ukrainian spring wheat 

cultivar Azhurnaya (available at http://genbank.vurv.cz/ewdb/asp/ewdb_d2.asp?accn=168030) 

were grown in growth cabinets with 16:8 hours day:night length at 25:15 °C. Three biological 

replicates, consisting of five individual plants each, were sampled at the developmental times 

and tissues outlined in Table S1. All tissues were harvested between 7.5 and 8.5 h into the day 

and immediately frozen in liquid nitrogen upon collection. Seedling root samples were collected 

from wheat plants cultivated in agar. RNA was extracted from 100 mg fresh weight material 

using the Spectrum Plant Total RNA Kit (Sigma-Aldrich) and DNA contamination removed 

using the RNase-Fee DNase Set (Qiagen Cat. 79254), and quality checks with the BioAnalyser. 

Sequencing libraries were prepared with 250-350 bp insert size and sequenced on the Illumina 

HiSeq 2500 using 2 x 125 bp paired-end strand-specific chemistry v4. Raw data is deposited as 

PRJEB25639. 

• PAMP-triggered immune response: Chinese Spring wheat plants were grown for 3 weeks in a 

growth cabinet with 16:8 hours day:night length at 23:18 °C. Elicitation with PAMPs was 

modified from (70). For each of the three biological replicates, three 2 cm sections where cut 

from leaf 2 and 3, placed in a 2 mL tube with sterile water and vacuum-infiltrated three times 

for 1 min. The following day water was removed and replaced by fresh water or PAMPs 

dissolved in water at 1 g/L for chitin (Nacosy, YSK, Japan) or 500 nM flg22 

(www.peptron.com). Samples were drained and flash frozen in liquid Nitrogen after 30 or 180 

min prior to pulverisation with 2 stainless steel balls in a Genogrinder (SPEX). RNA was 

extracted using the RNAeasy plant kit (Qiagen), the concentration determined on a 

nanodrop8000 (Thermo scientific) spectrophotometer and quality assessed with a RNA 6000 

Nano chip on a Bioanalyzer2100 (Agilent). After removal of genomic DNA with DNase Turbo 

DNA-Free (Ambion), 1 µg of RNA was converted to cDNA with SuperscriptIV 

(ThermoFisher) for confirmation of induction of known PAMP-inducible genes (70). 

Sequencing was performed by Novogene (Beijing, China) using the Illumina HiSeq4000 

platform 2 x 150 bp paired-end chemistry. Raw data is deposited in NCBI as BioProject 

PRJEB23056.  

• Chinese Spring spike: Chinese Spring wheat plants were grown under controlled conditions 

with 16:8 hours day:night length at 22:20 °C. For each of the two biological replicates, spike 

and inflorescence tissues were collected at the growth stages specified in Table S1. RNA was 

extracted using the RNAqueous-Micro kit (Ambion, Cat 1927) and mRNAs amplified using 

MessageAmp aRNA kit (Ambion, Cat 1750) according to the manufacturer’s instructions. 

Illumina RNA-seq libraries were prepared using the aRNA and the TruSeq RNA kit (version 1, 

rev A). Paired-end reads were obtained using the Illumina HiSeq 2000 with four libraries 

pooled per lane. Raw data is deposited in NCBI as BioProject PRJNA436817. 

• Chinese Spring tissues: Chinese Spring wheat plants were grown in growth pouches supplied 

with 50% Hoagland’s solution in growth chambers with 12:12 hours day:night length at 

constant 20 °C for 14 days. On the 14th day, plants at the three-leaf stage (Zadok stage 13) were 

http://genbank.vurv.cz/ewdb/asp/ewdb_d2.asp?accn=168030
http://www.peptron.com/


 

 

selected for RNA extraction. Tissue samples were collected from leaf and root, frozen in liquid 

nitrogen, and stored at -80°C until processed. For spike tissue, plants were grown in the 

greenhouse in two litre pots and spike tissue was collected at 50% anthesis and frozen in liquid 

nitrogen. For RNA extraction and RNA-Seq library preparation, tissues were ground in liquid 

nitrogen and total RNA was extracted using the Qiagen RNeasy Plant Mini Kit (Qiagen) 

according to manufacturer’s protocol. During isolation, RNA samples were treated with DNAse 

I to remove contaminating DNA. RNA integrity was evaluated on an Agilent Bioanalyser RNA 

6000 nano chip, and was quantified using the Qubit® Broad Range (BR) assay kit 

(Thermofisher). Individually barcoded cDNA libraries were prepared using the Truseq v2 

unstranded kit (Illumina) according to the manufacturer’s protocol. Library integrity was 

checked on an Agilent Bioanalyser using the High Sensitivity DNA analysis kit and library 

quantification was performed using the Qubit® High Sensitivity (HS) DNA assay kit. 

Individually barcoded libraries were diluted to 10 ng/µl, and sequenced by Genome Quebec 

(Montreal, QC, Canada) using either the Illumina HiSeq4000 platform 2 x 150 bp paired-end 

chemistry or the Illumina HiSeq2000 platform 2 x 100 bp paired-end chemistry. Raw data is 

deposited in NCBI as SRP133837. 

• Developing spike: Data collected from the 2011 and 2012 glasshouse experiments were 

benchmarked using penultimate internode auricle distance (AD) phenotypes against pollen cell 

division stage, in the developing spike in response to withholding water from the pots in which 

the plants were maintained (71). The rate of soil drying was related to level of leaf turgor 

conferred by contrasting watering regimes (+/- water). The AD phenotype (from AD=0 cm to 

full head emergence) was also related to the Zadoks classification of the respective 

plant. Samples were collected in biological triplicates over the course of 10 days following the 

start of water exclusion at AD=0 from the pots in both the 2011 and 2012 trials. The doubled 

haploid lines used for the experiments were selected from progeny from a Westonia x Kauz 

cross, based on molecular markers indicating that they were either more closely related to the 

Westonia parent (D08-299) or Kauz (D02‐105) while minimizing differences in overall plant 

phenology (71). Plants at different stages of development, based on the AD phenotype, were 

used for RNA extraction by removing the leaf tissue around the developing spike and snap-

freezing the spike tissue. RNA extraction followed standard protocols. Total RNA preparations 

were converted to cDNA and polyA-plus selected cDNAs used for preparing libraries (not 

strand specific) for paired-end sequencing using Illumina technology. Raw data is deposited as 

PRJEB25640. 

• Aneuploidy controls: Chinese Spring control plants were grown in growth chambers at 22°C 

and 16:8 h day:night length. RNA was extracted at seventh leaf stage from the fourth leaves and 

roots of four/three biological replicates according to (72). Samples were then quantified and 

evaluated for their quality on an Agilent Bioanalyzer. The 15µg cDNA libraries were prepared 

by TruSeq RNA sample preparation kits (Illumina). cDNA libraries were indexed (as additional 

genotypes were also run on the same flow-cell) and sequenced on an Illumina Hiseq2000 (100 

bp single-end read run). Raw data is deposited as PRJEB25593. 

 

In total, the 850 RNA-Seq samples used in this study are derived from over 30 different wheat cultivars 

and germplasm stocks with Azhurnaya (209 samples) and Chinese Spring (123 non-stressed samples) 

representing the predominant cultivars (Table S1).  

 

 

Homoeolog specific mapping by kallisto in nulli-tetrasomic lines 



 

 

We confirmed homoeolog specific mapping (15) of kallisto (14) using a series of criterion. First, 

we analyzed expression of HC genes expressed >0.5 TPM in nulli-tetrasomic wheat lines from the 

publicly available study SRP028357 (49). We found that the mean expression of genes on the deleted 

chromosome was 5.6% of the level in samples with that chromosome indicating stringent homoeolog-

specific mapping (Fig. S1).  

  

We then selected only 1:1:1 triads whose triad expression sum (A+B+D) was > 1.0 TPM in root or 

leaf samples in the wild type control. We selected only triads on chromosome 1, and removed any triad 

for which the A, B, or D genome expression level was 0. We then calculated the percentage of reads 

mismapping for each genome in the nulli-tetrasomic lines. For example, for the A genome the 

percentage mismapping is calculated as: 
 

(TPM of A genome in nulliA / TPM of A genome in wild type control) * 100 
 

We found that the mean expression of these 1:1:1 triads was 3.9% in nulli-tetrasomic lines with 

respect to the wildtype controls. The distribution of mismapping is positively skewed therefore the 

mean is not the most representative way to show the data (Fig. S2). The median expression in nulli-

tetrasomic lines with respect to wildtype controls is much lower (0.68%) than the mean (3.9%).  

 

To investigate whether mismapping affects different genomes (A, B, and D) or tissues to differing 

degrees we used the same nulli-tetrasomic lines, but this time we analyzed the data from the leaf and 

the root samples separately. We found that in both tissues the level of mismapping was low (median 

1.15% in leaf, median 0.36% in root), but that in the leaf the D genome had more mismapping (median 

1.68%) than the A and B genome (medians 0.32% and 1.32% respectively; Kruskal-Wallis with Dunn 

multiple comparison P adj <0.001; Fig. S2A). The difference between the A and B genome in the leaf 

was also statistically significant (Kruskal-Wallis with Dunn multiple comparison P adj <0.001). 

However, in the root (Fig. S2B) the only statically significant difference between genomes in 

mismapping was between the B (median 0.29%) and D (median 0.40%; Kruskal-Wallis with Dunn 

multiple comparison P adj <0.001). Multiple testing adjustments were carried out using the Benjamini-

Yekutieli correction (67).  

 

Although we identified a slightly higher level of mismapping to the D genome > B genome > A 

genome in the leaf samples (D vs A 1.36% higher median mismapping), this is reduced to 0.11% in the 

equivalent root samples (D genome vs B genome). The subtle D genome bias we identified was two-

fold. First, we observed that the relative contribution of the D genome to the overall transcript 

abundance of triads was higher than that of the A and B genome for 11 out of 15 tissues. This was 

consistent in both leaves and root samples in Chinese Spring (CS) and Azhurnaya (Table S5). Second, 

we identified a lower frequency of D-homoeolog suppression (Table S6) compared to A- or B-

homoeolog suppression across all tissues, including the equivalent leaf and root samples as in the nulli-

tetrasomic analysis. Given that the subtle D-genome bias was consistent in roots and leaves, even 

though roots show only 0.11% higher mismapping to the D genome, suggests that it is most likely not 

due to the slightly higher mismapping of the D genome in the leaf samples. We also used the data from 

the nulli-tetrasomic lines to examine whether balanced triads showed more mismapping compared to 

dominant or suppressed triads. We found no evidence for balanced triads having higher mismapping in 

either the leaf (Fig. S2C) or root (Fig. S2D). 

 

 

 

Theoretical read mapping accuracy between homoeologs using SNP distributions 



 

 

To put the 3.9% mean mismapping seen in the nulli-tetrasomic lines compared to wild type in 

context we next calculated the theoretically expected mismapping rate based on the distribution of 

SNPs throughout the Chinese Spring RefSeqv1.0 genome sequence. First, we assigned homoeologous 

SNPs as either homoeolog-specific or semi-specific for a given genome. Homoeolog-specific SNPs are 

those SNPs which are unique to a single homoeolog and are therefore used by kallisto to assign a read-

specifically. The same position in the two other genomes would be considered semi-specific as the 

position would discriminate against the first genome, but could not distinguish between the second and 

third genome. It is important to note that two semi-specific SNPs can also generate a homoeolog-

specific haplotype when combined. If we assume that two semi-specific SNPs would generate a 

homoeolog-specific haplotype when combined (i.e. the SNPs were semi-specific between different 

genomes) we would have the “best-case” scenario where the distance between semi-specific SNPs 

would be the distance required to distinguish homoeologs. If we are more stringent and we require that 

we have two homoeolog-specific SNPs to generate a homoeolog-specific haplotype then we can 

generate a second distance metric for the distance between homoeolog-specific SNPs (the “worst-case” 

scenario). Based on these assignments, we calculated the average distance between these two SNP 

types across all the HC triads expressed in Chinese Spring (CS) or Azhurnaya, and compared these 

distances with the effective read length of the CS (~200 bp) and Azhurnaya (~250 bp) RNA-Seq 

samples. The effective read length used by kallisto is twice the single read length for paired end (PE) 

samples (14). The 209 Azhurnaya RNA-Seq samples are 125 bp PE, meaning that the effective read 

length is ~250 bp. In the case of CS, over 91% of RNA-Seq samples (113/123) are 100 bp PE or longer 

meaning that their effective read length is ~200 bp (or more). 

 

We found that over 94.7% of homoeolog specific SNPs were closer than 200 bp in the CS HC 

expressed genes, with this value rising to 99.7% for semi-specific SNPs. This means that 5.3% of 

homoeolog-specific SNPs and less than 0.4% of semi-specific SNPs have a distance greater than 200 

bp in CS and would probably lead to ambiguous read mapping. For Azhurnaya (using a 250 bp cutoff 

as determined by the effective read length) we find that less than 3.5% of homoeolog specific and less 

than 0.15% of semi-specific SNPs have a distance greater than 250 bp. This suggests that a very small 

fraction of the transcriptome reference will lead to possible ambiguous mapping of reads.  

 

Genome of origin effect on gene expression 

To assess whether genome of origin has an influence on gene expression we carried out 

hierarchical clustering. After applying the initial 850 filter, the 1:1:1 syntenic triads in Azhurnaya 

which were expressed >0.5 TPM in at least 3 samples were selected (17,481 triads). The A, B, and D 

genome were considered separately for each tissue/age time-point (70 tissue time-points in total). 

Expression levels were normalized by a log transformation: log2(TPM+1). Hierarchical clustering was 

carried out using the R function “hclust” using the “Euclidean” distance method and the clustering 

method “average”. The R package “pvclust” (73) was used to estimate uncertainty in the clustering 

using the same parameters with 1,000 bootstraps. The tissue types largely explained the pattern of 

clustering, although at a fine scale the genome of origin influenced clustering (Fig. S4). 

 

Expression complexity 

To determine the expression complexity of the Azhurnaya transcriptome, the average TPM for 

each of the 22 intermediate tissues was calculated based on the genes expressed using the initial 850 

filter criterion. The relative contribution of each gene to the total transcripts within each of the 22 

intermediate level tissues was calculated by dividing the individual gene TPM by 1E+06. These 

relative contributions to the total transcript abundance were ranked from the highest to the lowest value 



 

 

within each of the 22 intermediate tissues. The details of the number of genes at 5% increments is 

presented in Table S2. 

 

Differential expression (Azhurnaya time course) 

We identified genes which were differentially expressed between the 22 intermediate level tissues 

available for the cultivar Azhurnaya. We selected HC genes which were expressed in at least three 

samples at >0.5 TPM for differential expression analysis, which was carried out using the R package 

DESeq2 v1.14.1 (66)(using counts instead of TPM). Pairwise comparisons were made between each of 

the 22 intermediate level tissues. Genes were considered differentially expressed if up- or down-

regulated >2 fold with an FDR (74) adjusted P value <0.001 (Fig. S3).  

 

eFP browser 

We stored the RNA-Seq TPM values for each homoeolog in an SQL database on the Bio-Analytic 

Resource for Plant Biology at http://bar.utoronto.ca. An image depicting the approximate appearance 

(growth stage, plant organ) of the samples used for RNA extraction was adapted from online resources 

(e.g. WheatBP; (75)) and drawn using Inkscape version 0.92.1. A configuration file was created to link 

up the image with the sample names, and the eFP Browser software (19) was slightly modified to be 

able to accept wheat gene identifiers. The Wheat eFP Browser is available at 

http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi and a screenshot is shown in Fig. S5. 

 

Inference of gene families and homoeologous groups  

Gene families and homoeologous gene groups were inferred using a phylogenomic approach 

established recently (10). In brief, orthologous, outparalogous, homoeologous and inparalogous gene 

relationships were detected using species-tree reconciliation based on gene trees of families inferred 

from the predicted protein-coding genes of 14 Viridiplantae species that in addition to bread wheat 

contained nine grasses as well as Arabidopsis thaliana, Selaginella moellendorfii, Physcomitrella 

patens and Chlamydomonas reinhardtii as non-grass outgroups. The nine grasses comprised: Oryza 

sativa, Sorghum bicolor, Zea mays, Brachypodium distachyon, Hordeum vulgare (cultivar Morex and 

variety nudum), Secale cereale, Aegilops tauschii (D progenitor), Triticum urartu (A progenitor). In 

this procedure homoeologs are defined as orthologs among the sub-genomes which were treated as 

distinct taxa. Deviating from the procedures described by IWGSC (10), we defined syntenic 

homoeologous gene groups as homoeologs inferred by the reconciliation approach that were part of a 

conserved colinear block among the sub-genomes identified by MCScanX (76), i-ADHoRe (77) or 

DAGchainer (78). A syntenic triad is defined as a triad where at least one of the gene pairs is syntenic. 

 

Ontology term annotation and TF classification 

The pipeline also contained a step annotating the domain architectures of the gene family 

members. The inferred domain architectures were utilized to identify gene families belonging to super-

families of transcription factors, transcriptional and post-transcriptional regulators using a HMM-

domain rule set established previously (79). The orthologous relationships were utilized to establish 

Gene Ontology (GO), Plant Ontology (PO) and Plant Trait Ontology (TO) term annotations for bread 

wheat by homology annotation transfer (10). This pipeline explicitly discarded ontologies related to 

biotic or abiotic stress. Therefore, to complement the functional annotation, the gene models where 

aligned to the Arabidopsis proteome (tair10) with blastx. Matches were called with a cut-off e-value 

<e-10 and GO terms were transferred from the GO assignment of the matching tair10 Arabidopsis 

annotation. We identified the Arabidopsis proteins with GO terms relating to biotic and abiotic stress, 

by using the following Plant GO slim (http://geneontology.org/page/go-slim-and-subset-guide) terms: 

GO:0006950: response to stress; GO:0009607: response to biotic stimulus and; GO:0009628: response 

http://bar.utoronto.ca/
http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi
http://geneontology.org/page/go-slim-and-subset-guide


 

 

to abiotic stimulus. Wheat genes homologous to Arabidopsis proteins with these GO slim terms were 

extracted from the blastx output and these functional annotations were added to the original IWGSC 

annotation (10). The GO release was the monthly freeze of 01/01/2017. 

 

Independent measures of D genome homoeolog expression bias 

In addition to the analysis in the main text, we analyzed the expression data for possible 

homoeolog bias in four independent ways.  

 

1. Inference of gene expression level and breadth categories and sub-genome expression bias: 

TPM abundances for each locus (including both HC and LC genes) were condensed using the 

median values. The condensed TPM values <= 0.5 were placed into the expression level 

category E0 (no - very weak expression), while TPM >0.5 were clustered into ascending 

expression level categories via kmeans using k=4 (E1: very weak – weak expression; E2: weak 

expression – medium expression; E3: medium – strong expression; E4: strong – very strong 

expression). Relative expression breadth was determined as ratio of samples with TPM signal > 

0.5. Relative expression breadth was categorized using the R built-in cut function into five 

breadth level categories: very few (0 - 0.2), few (0.2 – 0.4), medium (0.4 – 0.6), many (0.6 – 

0.8) and most (0.8 – 1).  

 

These data were used to test for genomic expression level bias among the sub-genomes by 

looking at the numbers of expressed genes. Comparing the complements of expressed genes 

(E1-E4) reveals a subtle, but significant bias towards D>A>B: 52.2% (18,286/35,021) of D, 

49.5% (17,953/36,302) of A and 47.3% (17,374/36,738) of B genes are expressed.  

 

2. Genome-wide comparison of expression levels using principal component analysis (PCA): We 

performed PCA of transcript wise expression levels using the combined TPM data from the 850 

RNA-Seq datasets using the R package FactoMineR (80). In this analysis, each sample was 

used as an independent variable for the transcripts and the subgenomic origin (A, B or D) of 

each encoding locus was used as a supplementary variable (that is not used to infer the rotated 

coordinates, but is projected in the resulting components).  

 

In the resulting PCA (Fig. S7), about 62% of the total variation of transcript levels is explained 

by the first principal component (PC1). The second principal component only accounts for 

about 2% of the overall variance. Subsequent secondary PCA using PC1-PC10 coordinates of 

the samples and the sample categories as supplementary variables, indicates that the 

components >=PC2 represent tissue identity and treatment conditions of the underlying 

samples. As indicated by the directionality of the variable eigenvectors (Fig. S7, left), the 

expression strength, i.e. the TPM value in each sample, is the major positive discriminant of the 

first dimension (PC1, x-axis in Fig. S7, left). Thus, overall high TPM values correspond to large 

positive PC1 coordinates and low TPM correspond to negative PC1 values. Plotting the PCA 

projection of the supplementary variable sub-genome origin (Fig. S7, right) reveals a pattern 

that suggests that overall expression levels of genes located on the D genome are higher than 

those located on A and B. Genome identity is significantly correlated with PC1 (p=0). The 

overall pattern along PC1 suggests genomic expression levels with D>A>B. 

 

3. Comparison of homoeolog expression levels using one-way analysis of variance (ANOVA): For 

each group of homoeologous genes, locus-wise TPM counts were log-transformed and used to 

test for significant deviations of expression levels among the homoeologs from the three sub-



 

 

genomes using one-way ANOVA (implemented in R using the built-in aov function). 

Subsequently, we assessed pairwise contrasts using the R built-in TukeyHSD post-hoc test. We 

corrected resulting P values from the post-hoc test using the R p.adjust function employing the 

method “fdr”. From the results, we tabulated and compared the occurrences of significant 

deviations in expression levels among the sub-genomes (P value cutoff for F-test and post-hoc 

test: <0.05) using a χ2 test (R/chisq.test). 

 

54.1% (14,302/26,430) of homoeolog groups had expression levels biased towards D>A, 54.8% 

(14,699/26,805) towards D>B and 49.0% (13,237/26,996) were biased towards B>A (Fig. S8, 

left). Assuming equal distribution of biased expression patterns as a null hypothesis, observed 

frequencies deviate significantly (P <1e-16). These numbers support the subtle expression bias 

towards D homoeologs in the wheat genome. 

  

4. Assessment of family-wise gene expression bias using phylogenetic comparative ANOVA: To 

assess potential genomic expression bias on the level of gene families, we performed 

phylogenetic comparative ANOVA of wheat gene expression levels in 5,473 gene families. For 

this analysis, only families with at least three members and expression data were selected. 

Phylogenetic comparative ANOVA corrects for the phylogenetic non-independence using 

branch lengths from the gene trees for each family as weights. As current phylogenetic 

comparative approaches do not yet support replicated testing, we used the gene-wise 

coordinates from the first principal component (PC1) from the PCA of the expression levels 

described above as a proxy variable for gene expression level for each locus. We utilized the 

function phylANOVA from the R phangorn package (81) to perform a phylogenetic 

comparative one-way ANOVA with subsequent post-hoc testing and FDR-correction. 

Subsequently, we tabulated significant deviation in expression levels in gene family members 

stemming from two sub-genomes and compared the resulting frequencies using the χ2 test.  

 

The results mirror the pattern observed at the level of homoeologous gene groups; 51.2% 

(2,544/4,973) of the gene families were biased towards D>A, 51.8% (2,489/4,806) displayed 

D>B and 48.6% (2,269/4,665) were biased towards B>A (Fig. S8, right). In line with the 

conclusions from the genome-wide PCA and the homoeolog ANOVA, the results from the 

family-wise phyloANOVA also point to a mild, albeit significant expression dominance of the 

D genome. 

 

Genomic compartments 

Triads were assigned to genomic compartments based on published criteria (10). 

 

Gene Ontology and Plant Ontology term enrichment 

The R package goseq was used to calculate GO and PO enrichments, whilst correcting for the 

length bias inherent in RNA-seq data. The Benjamini & Yekutieli method (BY, (67)) was used to 

correct for multiple testing using the R function p.adjust().  

 

CDS, protein and promoter analysis for triads 

Protein and CDS sequences were extracted from the RefSeq v1.0 genome (10) using gffread 

v0.9.8, using the command line: 

 gffread -g <genome.fa> -x CDS.fasta -y Proteins.fasta IWGSCv1.0_UTR_ALL.gff 

  



 

 

To obtain the sequences of the promoters, we developed a script leveraging PyFaidx (82) and the 

library comprised in the Mikado program (83). The script takes as input an indexed GFF (produced by 

Mikado compare) and a list of genes, and subsequently extracts from the genome FASTA file a 

specified amount of sequence upstream of either the transcription or the translation start site. For this 

study, we extracted the 5,000 bps upstream of the translation start site of all HC genes included in the 

RefSeq v1.0 annotation (10). The command line is as follows: 

 extract_promoter_regions.py -nn -eu -d 5000 -z -o promoters <genome> 

IWGSCv1.0_UTR_ALL.gff <list of genes> 

  

The version of the script used for this study is present in the Mikado git repository, at the 

following static address: 

https://github.com/lucventurini/mikado/blob/f47aa63/util/extract_promoter_regions.py 

  

A pairwise blast alignment was used on each triad (A vs B, A vs D, and B vs D) for their CDS, 

translated protein and promoter sequence. The output was produced in XML and parsed with the Ruby 

package ‘bio-blastxmlparser’ (84). For the promoter regions, the alignments were done for the 1.5kbp, 

3kbp, and 4.5kbp upstream; promoters including one or more N’s were discarded from further 

analyses. The promoter identity was calculated as the number of identical bases over length of the 

longest HSP (source: https://github.com/TGAC/bioruby-polyploid-

tools/blob/master/bin/blast_triads_promoters.rb). For the CDS and protein alignment the identity was 

on the sum of HSPs of the longest HIT (source: https://github.com/TGAC/bioruby-polyploid-

tools/blob/master/bin/blast_triads.rb). Detailed results from these analyses are in Table S21.  

 

 

Transposable Element (TE) modeling using CLARITE 

Annotation of TEs was described elsewhere (10). Briefly, TE modelling was achieved through a 

similarity search approach based on the ClariTeRep curated databank of repeated elements 

(github.com/jdaron/CLARI-TE), developed specifically for the wheat genome, and with the CLARITE 

program that was developed to model TEs and reconstruct their nested structure (85). This generated a 

GFF file with TE coordinates. 

 

TFBS comparison between homoeologs 

As the functional relevance of TFBS copy number in individual promoters is difficult to predict, we 

considered the presence or absence of unique TFBS within each promoter. Across all genes, we 

identified a total of 1,031 unique TFBS with a median of 242 TFBS identified in each promoter. For 

each triad, we categorized each unique TFBS based on the presence/absence of the TFBS in each 

homoeolog: 

• “all_same”: motif present in the A, B and D homoeolog 

• “A_diff”: motif only present in the A homoeolog OR motif present in B and D homoeolog and 

not the A homoeolog 

• “B_diff”: motif only present in the B homoeolog OR only present in A and D homoeolog 

• “D_diff”: motif only present in the D homoeolog OR only present in A and B homoeolog 

We then compared the distribution of each TFBS category between triad expression categories. 

Kruskal-Wallis and pairwise Mann-Whitney tests with P values adjusted using the Benjamini-

Hochberg method were used to test for significant differences between distributions. 

 

 

https://github.com/lucventurini/mikado/blob/f47aa63/util/extract_promoter_regions.py
https://github.com/TGAC/bioruby-polyploid-tools/blob/master/bin/blast_triads.rb
https://github.com/TGAC/bioruby-polyploid-tools/blob/master/bin/blast_triads.rb


 

 

Ka/Ks analysis 

The canonical transcripts of each syntenic and non-syntenic triads were aligned by peptide 

sequence using MAFFT v7.310 (86) (options -maxiterate 1000 and –localpair) and the binder provided 

in BioRuby 1.5.1 (84). Source code is available at https://github.com/TGAC/bioruby-polyploid-

tools/blob/master/bin/mafft_triads.rb. The alignments were then converted to nucleotide sequence 

using the CDS sequences and the R function “reverse.align” (R version 3.3.3). From these nucleotide 

alignments, Ka and Ks values for each pairwise comparison between homoeologs were calculated 

using the function “kaks” from the R library “seqinr” (R version 3.3.3, seqinr version 3.4-5 (87)). The 

Ka and Ks values for rates of non-synonymous and synonymous mutations, respectively, are calculated 

based on the methodology from Li (88). From these values, we obtained the Ka/Ks values reported in 

the main text. Instances where the Ka/Ks value was infinite (due to a Ks value of 0, and a non-zero Ka) 

were changed to 10 as a comparatively large, non-infinite number, while negative and NaN values of 

Ka/Ks (due to missing information or zero Ka and Ks values, respectively) were considered as “NA” 

values and excluded from further analysis. Comparison of Ka/Ks values between subsets of triads was 

based on the allocation of triads to stable/dynamic or synteny categories as detailed in the text and in 

Table S22. The significance of the differences in Ka/Ks values between subsets was calculated using 

the Mann-Whitney-Wilcoxon test for non-normal distributions in R (function “wilcox.test”, alternative 

= “two.sided”, R v. 3.3.3).  

 

MADSII phylogenetic tree construction 

The three homoeologous MADSII transcription factors in root module 61 were 

TraesCS2A01G337900.1, TraesCS2B01G344000.1 and TraesCS2D01G325000.1. Since the 

homoeologues were highly similar, the protein sequence of TraesCS2D01G325000.1 used for finding 

ortholgoues using blastp on the EnsemblPlants website (http://plants.ensembl.org/index.html) against 

genomes for Oryza sativa ssp. Japonica IRGSP 1.0, Hordeum vulgare Hv_IBSC_PGSB_v2, Glycine 

max v1.0, Arabidopsis thaliana tair10, Brachypodium distachyon v1.0 and Zea mays AGPv4. The 

protein sequence for the canonical transcript was downloaded from EnsemblPlants. Only hits with a 

percentage ID >60 % were kept for Oryza sativa, Hordeum vulgare, Brachypodium distachyon and Zea 

mays. Hits with percentage ID >50 % were kept for Glycine max and Arabidopsis thaliana. Wheat 

genes to include in the tree were identified by blastp against the IWGSC RefSeqv1.0 peptide 

annotation, keeping the top 30 hits which equated to 26 genes. Peptide sequences for the canonical 

transcripts for these genes were then extracted. The sequences for all seven species were aligned using 

clustal omega online (https://www.ebi.ac.uk/Tools/msa/clustalo/) (clustal-omegav1.2.4) and the 

multiple sequence alignment was generated by clustalW2 (v2.1) using default parameters (Neighbour-

joining clustering). An excerpt of this tree focusing on the proteins most closely related to the three 

homoeologous MADSII transcription factors is shown in Figure 4C. The full tree is available at 

http://itol.embl.de/shared/borrillp in the “Ramirez-Gonzalez et al., 2018” project. The section of the 

tree presented in Figure 4C is highlighted in red, some branches have been rotated in the Figure 4C to 

present the results more clearly.  

 

Statistical analysis 

The statistical tests, sample sizes and the corresponding corrections for multiple testing are listed 

throughout the main text, supplemental figures, and supplemental tables.   

https://github.com/TGAC/bioruby-polyploid-tools/blob/master/bin/mafft_triads.rb
https://github.com/TGAC/bioruby-polyploid-tools/blob/master/bin/mafft_triads.rb
http://plants.ensembl.org/index.html
https://www.ebi.ac.uk/Tools/msa/clustalo/
http://itol.embl.de/shared/borrillp


 

 

 

 
 

Fig. S1. Expression of genes on chromosome 1 in nulli-tetrasomic wheat lines in shoots and roots. 

Genotypes for chromosome 1 are indicated in colored squares: A genome in green, B in purple, and D 

in orange. Squares listed in the bottom row (+) indicate extra copies (tetra), absence of squares 

indicates deletion (nulli) of entire chromosomes.  

  



 

 

 
 

Fig. S2. Mismapping rates estimated using chromosome 1 nulli-tetrasomic lines. Mismapping was 

calculated for each triad as the TPM of the genome which is missing in the nulli-tetrasomic line (e.g. A 

genome in the nulli 1A line) divided by the TPM of that genome in Chinese Spring control lines, 

multiplied by 100. The percentage of mismapping in nulli-tetrasomic lines missing either chromosome 

1A, 1B, or 1D are shown for leaf (A) and root (B). Mismapping for triads in different dominance 

categories is shown for leaf (C) and root (D). Mismappings are shown for triads categorized as 

balanced (mismapping for all three genomes A, B, and D), dominant (mismapping in the genome of the 

triad which is dominant, e.g. A for A dominant triad), non-dominant (mismapping in a dominant triad, 

in the genomes which are not dominant, e.g. B and D genomes for an A dominant triad), suppressed 

(mismapping in the genome of the triad which is suppressed, e.g. A for A suppressed triad), and non-

suppressed (mismapping in a suppressed triad, in the genomes which are not suppressed, e.g. B and D 

genomes for an A suppressed triad). 

 



 

 

 
 

Fig. S3. Differentially expressed genes between the 22 tissues across the Azhurnaya 

developmental time course. Numbers on top of the matrix diagonal represent genes down-regulated in 

tissues (< 0.5 fold and P adj <0.001), whereas numbers below the matrix diagonal are up-regulated (> 2 

fold and P adj < 0.001) in the corresponding tissue.  

 

  



 

 

 



 

 

Fig. S4. Hierarchical clustering of Azhurnaya developmental time course samples separated into 

A (green), B (purple), and D (orange) genome. Gene expression from the 17,481 expressed 1:1:1 

syntenic triads in Azhurnaya were used for this analysis. The high-level tissue for each sample is 

indicated by the colored bar at the left with samples originating from grain (beige), leaf (pale green), 

spike (dark green), and roots (brown). The red and green numbers show the significance of the 

hierarchical clustering determined via multiscale bootstrapping resampling (approximated unbiased P 

value, au, red) and normal bootstrapping (bootstrap probability, bp, green). If the hypothesis that 

genome of origin has a strong influence on gene expression was correct, the clustering of the samples 

would predominantly be determined by the genome of origin (green, purple, and orange). This 

hypothesis was disproven with the most basal clustering being due to tissue type, rather than genome of 

origin. On a small-scale level clustering according to genome of origin was observed; however overall 

the clustering pattern could not be explained by the genome of origin as shown by the green, purple and 

orange text being interspersed rather than in three large sections. Instead the clustering pattern was 

more related to tissue type, for example, with the first branch point being between anthers compared to 

all other tissues, regardless of their genome of origin. 

 

 

 

  



 

 

 

 

 
 

Fig. S5. Wheat eFP browser. The example gene shown is TraesCS2A01G337900, a MADS_II 

transcription factor expressed specifically in the roots. Color scale is indicated in the bottom left hand 

of the figure. The wheat eFP browser is available through http://bar.utoronto.ca/efp_wheat/cgi-

bin/efpWeb.cgi. 

 

 

 

 

 

 

 

http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi
http://bar.utoronto.ca/efp_wheat/cgi-bin/efpWeb.cgi


 

 

 
 

Fig. S6. Normalization of relative expression levels of the A, B, and D genome homoeologs across 

triads. Table shows the actual absolute expression values in TPM for three gene triads in the root and 

the combined analysis (all_means_filter) value. First, the expression of the three homoeologs was 

added (Triad TPM sum) and this was used as the denominator to obtain the normalized triad expression 

value for each gene/triad. These normalized triad values were used to plot each triad within the ternary 

plot and to assign the triad to the corresponding homoeolog expression category (Expr. in table). The 

ternary plot includes the value for the root (small triangle) and for the combined analysis 

(all_means_filter; circle) with lines being drawn from the latter to each side of the ternary plot to 

denote the relative contribution of the A, B, and D genome homoeologs.  

 

 

 

 

 

 

  



 

 

 

 

 
 

Fig. S7. Principal component analysis (PCA) of gene expression levels. Sub-genome identity was 

used as supplementary qualitative variable in variable factor (left) or individual factor (right) PCA. 

 

 

  



 

 

 
 

Fig. S8. Significant post-hoc tests for biased expression levels among homoeologs (left) and gene 

family (right) members. Total number of comparisons (N) are indicated within each bar. 

 

 

 

 

 

 

 

 

  



 

 

 
Fig. S9. D genome homoeolog expression bias in CS and Azhurnaya. Boxplots of relative 

expression abundance of A, B, and D genome homoeologs for syntenic triads across 15 (CS, top) or 22 

(Azhurnaya, bottom) tissues at four different minimum TPM cut off values (indicated below each 

boxplot). Further details in Table S5.  

 

 

 

 



 

 

 
 

Fig. S10. Homoeolog expression bias assignment across intermediate tissues. A random sampling 

of 1,000 triads are plotted for each of the 15 tissues indicated in in Fig. 2B. Triads are colored based on 

their category assignment in the global analysis (Fig. 2A). Only 1,000 triads are plotted since the 

graphs saturate when all values are shown. 



 

 

 
 

 

Fig. S11. Metagene profile for H3K36me3 (A), H3K9ac (B), H3K4me3 (C), and H3K27me3 (D). 

Histone mark data from -2 kb upstream of the ATG until +2 kb downstream of the stop codon were 

normalized for gene length and metagene profiles were plotted for each histone mark. Triads were 

categorized into balanced, suppressed, and dominant triads. Balanced triads (A, E, I, and M) are shown 

separated into the A (green), B (purple) and D (orange) genome. Dominant triads (B, F, J, and N) were 

separated into the more highly expressed dominant homoeolog (teal) and the lower expressed non-

dominant homoeologs (pale blue). Suppressed triads (C, G, K, and O) were separated into the more 

highly expressed non-suppressed homoeologs (brown) and the lower expressed suppressed homoeolog 

(tan). In panels D, H, L, and P the average of the A, B, and D genomes is shown for balanced triads 

(grey), dominant triads were separated into dominant (teal) and non-dominant (pale blue) homoeologs, 

suppressed triads were separated into suppressed (tan) and non-suppressed (brown) homoeologs. 



 

 

 

 
 

Fig. S12. Alluvial plot of classification of triads across the in-silico, synthetic hexaploid, and 

modern-day Chinese Spring hexaploid wheat. The two graphs represent the comparisons between 

SHW1 (top; AS2255 x AS60) and Chinese Spring and SHW2 (bottom; Langdon x AS60) and Chinese 

Spring. The expected in-silico data are that which is associated with each SHW.  

 

 

 

 

 



 

 

 

 
 

Fig. S13: Alluvial plot of classification of triads across the in-silico, synthetic hexaploid, and 

modern-day Azhurnaya hexaploid wheat cultivar. The two graphs represent the comparisons 

between SHW1 (top; AS2255 x AS60) and Azhurnaya and SHW2 (bottom; Langdon x AS60) and 

Azhurnaya. The expected in-silico data are that which is associated with each SHW.  

  



 

 

 
 

 

Fig. S14: Alluvial plot of classification of triads comparing the expected in-silico (top) and the 

observed SHW (bottom) datasets.  

  



 

 

 

 

 

 

 

 

  
 

Fig. S15. Differences in the observed and expected relative contributions of each homoeolog 

between progenitor species and synthetic hexaploid wheat (SHW). Distributions are based on the 

differences in the relative contribution of each homoeolog to its triad (A, C) and the log2(TPM) change 



 

 

(B, D) between the observed values in SHW1 (A, B) and SHW2 (C, D) and the expected in-silico 

datasets. Plots below distributions correspond to distance between the 25% and 75% of the distribution, 

with the median (50%) shown by the filled square. Positive values indicate that the observed relative 

contribution was higher in the SHW than would be expected from the in-silico dataset from the 

progenitor species. Likewise, negative values indicate that the observed contribution was lower than 

expected.  



 

 

 
Fig. S16. Transposable element (TE) density and presence across homoeolog expression bias 

categories. Triads were classified according to their homoeolog expression bias category. Dominant 

and suppressed triads were further separated into dominant and non-dominant and suppressed and non-

suppressed homoeologs based on their relative expression within the triad. (A) TE density was 

calculated using a sliding window approach over 100 bp intervals for each of the five dominance 

categories across the 5 kb promoter region. (B) TE presence is the ratio of genes in each category 

which have at least one TE within the 1.5 kb promoter to all genes in that category. Pairwise 

comparisons for TE presence between the balanced triads and the other four categories were significant 

(Mann-Whitney P < 0.006 for all but Balanced-Dominant with P < 0.07). Error bars show the standard 

error. 

  



 

 

 
 

Fig. S17. Metagene profile for CG (A-D), CHG (E-H) and CHH (I-L) methylation. DNA 

methylation data from -5 kb upstream of the ATG until +5 kb downstream of the stop codon were 

normalized for gene length and metagene profiles were plotted for each DNA methylation context. 

Triads were categorized into balanced, suppressed, and dominant triads. Balanced triads (A, E, and I) 

are shown separated into the A (green), B (purple), and D (orange) genome. Dominant triads (B, F, and 

J) were separated into the more highly expressed dominant homoeolog (teal) and the lower expressed 

non-dominant homoeologs (pale blue). Suppressed triads (C, G and K) were separated into the more 

highly expressed non-suppressed homoeologs (brown) and the lower expressed suppressed homoeolog 

(tan). In panels D, H, and L the average of the A, B, and D genomes is shown for balanced triads 

(grey), dominant triads were separated into dominant (teal) and non-dominant (pale blue) homoeologs, 

and suppressed triads were separated into suppressed (tan) and non-suppressed (brown) homoeologs.  



 

 

 

 
 

Fig. S18. Schematic of classification for adjacent and opposite categories. Ternary plots are shaded 

to indicate which homoeolog expression bias categories are considered adjacent (medium shade) and 

opposite (light shade) for each of the seven origin (dark shade) categories. In the case of the balanced 

triads, homoeolog-suppressed categories were considered adjacent as they only require variation in a 

single homoeolog for this classification, whereas dominant categories were considered opposite as they 

usually require variation in two homoeologs for this classification. 

  



 

 

 
Fig. S19. Variation in triad category assignment across the 15 tissues. Top panel shows the stable 

and dynamic triad example as in Fig. 3C-D. In the ternary plots, each dot represents an individual tissue 

in which the triad is expressed and the blue (stable) and red (dynamic) lines illustrate the distance 

between the 15 tissues and the global average (all_means_filter). Actual values for the ternary plots are 

indicated in the bottom tables. The distance between each tissue and the global average 

(all_means_filter) are plotted as bar graphs (center panels) and are also shown as “dist” in the tables. 

The triad mean distance value which was used to define stable and dynamic triads is indicated by the 

blue and red horizontal lines in each bar graph. Bars are colored according to their category assignment 

in each intermediate tissue.  



 

 

 
Fig. S20. Transposable element (TE) density and presence across stable, middle and dynamic 

triads. Triads are classified based on their homoeolog expression bias variation categories into the top 

10% most dynamic triads, low 10% most stable triads, and the middle 80% of triads. (A) TE density 

across the 5 kb promoter region in 100 bp sliding windows is shown for each category. (B) The 

log10(P-value) of pairwise Mann-Whitney comparisons between triads shown in panel A. Significantly 

different comparisons are those below the threshold of -2 (i.e. P < 0.01; dashed line). (C) The ratio of 

genes in each category containing at least one TE within 1.5 kb relative to all genes in the category. 

Error bars are the standard error; ** Mann-Whitney P < 0.01, *** Mann-Whitney P < 0.001. 



 

 

 
 

Fig. S21. Transcription factor binding site (TFBS) motif categories across stable, middle and 

dynamic triads. For each triad, each TFBS motif was assigned to one of four categories based on its 

presence/absence in the 1.5 kb upstream sequence of each homoeolog: “all_same” = motif present in all 

three homoeologs; “A_diff” = motif only present in the A homoeolog OR only present in B and D 

homoeologs; “B_diff” = motif only present in the B homoeolog OR only present in A and D 

homoeologs; “D_diff” = motif only present in the D homoeolog OR only present in A and B 

homoeologs. Triads were then grouped according to the stable 10%, middle 80% and dynamic 10% 

classification. Dynamic triads have significantly fewer motifs shared between all three homoeologs 

(“all_same”) and significantly more motifs that differed between homoeologs. Within each TFBS motif 

category, all comparisons were significant (Mann Whitney P < 0.001), excluding Stable 10% - Middle 

80% in the “B_diff” and “D_diff” categories. 



 

 

 

 
 

Fig. S22. Features of module 0 in tissue networks. Mean expression (A, D, G, J), standard deviation 

of mean expression (B, E, H, K), and standard deviation of intermediate tissue means (C, F, I, L) for 

grain (A-C), leaf (D-F), root (G-I), and spike (J-L) specific networks.  



 

 

 
Fig. S23. Determining homoeolog co-expression in networks. Percentage of divergent triads in tissue 

networks across different thresholds for A) grain, B) leaf, C) root, D) spike. Black line at 50% indicates 

threshold discussed in main text. E) Dendrogram of eigengene (ME) relatedness in leaf network 

illustrating an example in relation to module eigengene 2 (ME2, pale blue). Modules which are similar 

(below 50% threshold) are shown in dark blue, those which are divergent (over 50% threshold) are 

shown in green.  

 



 

 

 
 

 

Fig. S24. Stable 10%, middle 80% and dynamic 10% triad assignment to same, similar, and 

divergent modules in the grain (A), leaf (B), root (C), and spike (D) networks. The root panel (C) is 

presented in the main text Figure 4B.  

  



 

 

 

Table S1. Metadata for 850 RNA-Seq samples. Details for each sample including variety, tissue, age, 

stress conditions and original publication. Subsets of samples used for each analysis are indicated by 

the final eleven columns.  

(included in separate Excel file) 

 

 

 

 

Table S2. RNA-Seq complexity in the developmental time course. Expression complexity was 

calculated for each of the 22 intermediate tissues from Azhurnaya. Values corresponds to the number 

of genes from which a given percent of transcripts is derived.  

(included in separate Excel file) 

 

 

 

 

Table S3. List of 1:1:1 High Confidence syntenic and non-syntenic triads. Includes both expressed 

(TRUE) and non-expressed (FALSE) triads based on 123 Chinese Spring no stress samples.  

(included in separate Excel file) 

 

  



 

 

Table S4. Percentage of triads expressed over min0.5-10tpm cut-offs. The percentage of triads 

expressed over each min_tpm cut-off are indicated for single tissues and across all tissues in the 

combined analysis (100% = 16,746 triads/50,238 genes in Chinese Spring and 16,844 triads/50,532 

genes in Azhurnaya). 

     

 

  

Dataset Tissue min0.5tpm min1tpm min5tpm min10tpm 

Chinese 

Spring no 

stress 

aleurone 64.8% 59.8% 42.0% 30.5% 

aleurone layer and starchy endosperm 61.0% 54.6% 32.1% 20.3% 

endosperm 59.8% 52.1% 27.1% 15.9% 

flag leaf 76.6% 71.4% 54.3% 41.9% 

grain hard dough and ripening 69.2% 62.8% 43.8% 32.9% 

grain milk and soft dough 81.6% 75.6% 52.5% 37.5% 

internode 85.7% 80.9% 63.1% 50.6% 

leaf excl flag leaf 82.5% 76.7% 56.5% 42.7% 

rachis 82.2% 77.0% 59.6% 47.4% 

roots 88.3% 83.8% 65.4% 51.4% 

seedling aerial tissues 83.7% 77.6% 57.1% 43.5% 

spike 89.7% 85.1% 66.0% 52.4% 

stigma & ovary 75.3% 69.5% 50.4% 38.0% 

 transfer cells 63.5% 55.6% 30.8% 19.1% 

 vegetative aerial tissues 81.6% 75.9% 54.8% 40.3% 

 Average single tissues 76.4% 70.6% 50.4% 37.6% 

  Combined analysis (all tissues) 100.0% 97.9% 85.5% 74.6% 

Azhurnaya 

Development 

anther 76.4% 69.2% 46.7% 34.8% 

awns 76.9% 71.3% 54.2% 41.6% 

embryo 73.0% 67.2% 48.6% 37.7% 

endosperm 68.6% 61.4% 39.2% 26.3% 

flag leaf blade 75.7% 69.8% 52.1% 39.8% 

flag leaf sheath 76.0% 70.5% 53.6% 41.9% 

glumes 79.9% 74.5% 57.9% 46.3% 

grain hard dough and ripening 78.0% 71.1% 48.8% 36.1% 

grain milk and soft dough 80.0% 73.9% 53.1% 39.8% 

internode 79.6% 74.2% 58.2% 46.7% 

leaf blades excl flag 77.5% 71.3% 51.8% 39.3% 

leaf ligule 78.4% 73.3% 56.5% 44.4% 

 leaf sheaths excl flag 85.3% 80.8% 62.7% 49.6% 

 peduncle 79.0% 73.6% 55.8% 43.6% 

 root apical meristem 84.5% 79.2% 59.1% 45.7% 

 roots 88.6% 84.0% 64.9% 51.0% 

 seedling aerial tissues 83.8% 78.5% 59.8% 45.8% 

 shoot apical meristem 85.1% 80.4% 60.5% 47.4% 

 shoot axis 86.0% 81.0% 61.1% 48.0% 

 spike 86.9% 82.1% 63.4% 51.2% 

 spikelets 86.5% 81.6% 63.0% 50.2% 

 stigma & ovary 81.9% 77.0% 59.8% 49.2% 

 Average single tissues 80.3% 74.8% 56.0% 43.5% 

  Combined analysis (all tissues) 100.0% 98.5% 87.9% 78.1% 



 

 

Table S5. Relative contribution of the three genomes to the overall transcript abundance of triads 

across min_tpm cut-offs. n is the number of genes in each tissue or in the combined analysis. P values 

for Kruskal-Wallis (K-W) Tukey multiple comparison tests are shown below each min_tpm category. 

The significantly highest genome in each tissue is highlighted in orange. 

(included in separate Excel file) 

 

 

 

Table S6. Percentage of syntenic triads assigned to the seven homoeolog expression bias 

categories. Four different min_tpm cut-offs are shown, across 15 (Chinese Spring no stress) or 22 

(Azhurnaya Developmental time course) tissues. The average corresponds to the mean of the 15 or 22 

tissues, whereas the combined value corresponds to assignment of each triad when all tissues are 

combined. Kruskal-Wallis P values for comparisons among genomes are presented in Table S7. 

Orange highlight shows that D genome is always least suppressed. 

(included in separate Excel file) 

  



 

 

Table S7. Statistics comparing syntenic triad homoeolog expression bias categories. P values of 

Kruskal-Wallis (K-W) analysis of variance, followed by Tukey multiple comparison test when 

significant. For the suppression category, the relative frequency of triads suppressed among the A, B 

and D genome (A suppressed, B suppressed, D suppressed; Table S6) was compared within each 

min_tpm value. Likewise, for the dominant category, the relative frequency of dominant triads (A 

dominant, B dominant, D dominant) was compared at each min_tpm.  

 

   Dominance Suppression 

     Tukey   Tukey 

    K-W A vs D A vs B B vs D K-W A vs D A vs B B vs D 

Chinese 

Spring no 

stress min0.5tpm 0.880 - - - 0.001 0.002 0.843 0.012 

 min1tpm 0.903 - - - <0.001 <0.001 0.814 0.006 

 min5tpm 0.782 - - - <0.001 0.001 0.970 0.003 

  min10tpm 0.775 - - - 0.001 0.004 0.993 0.005 

Azhurnaya 

Development min0.5tpm 0.047 0.750 0.210 0.042 <0.001 <0.001 <0.001 <0.001 

 min1tpm 0.038 0.748 0.182 0.034 <0.001 <0.001 <0.001 <0.001 

 min5tpm 0.203 - - - <0.001 <0.001 <0.001 <0.001 

  min10tpm 0.162 - - - <0.001 <0.001 <0.001 <0.001 

          

  



 

 

Table S8. Percentage of non-syntenic triads assigned to the seven homoeolog expression bias 

categories. The min0.5tpm cut-off was applied across 15 (Chinese Spring no stress) or 22 (Azhurnaya 

Developmental time course) tissues. The average corresponds to the mean of the 15 or 22 tissues, 

whereas the combined value corresponds to assignment of each triad when all tissues are combined. 

Orange highlight shows that D genome is always least suppressed. For the χ2 test, the values for the 

seven categories in the non-syntenic triads (observed) were compared against the syntenic triads 

(expected; Table S6). 

(included in separate Excel file) 

 

 

 

Table S9. Characteristics of syntenic triads based on homoeolog expression bias assignment. 

Characteristics were calculated for the Chinese Spring no stress dataset (15 tissues) and the Azhurnaya 

Developmental time course (22 tissues). 

(included in separate Excel file) 

 

 

   

Table S10. Statistics comparing genome-specific expression levels in homoeolog expression bias 

categories. FDR-corrected P values for two-sample Kolmogorov–Smirnov test to determine if the 

dominant and suppressed TPM abundance distributions for each genome are lower than the TPM 

abundance distribution of the same genome in the balanced category (i.e. A.dominant compared to 

A.balanced; B.dominant compared to B.balanced, etc).      

(included in separate Excel file) 

   

  



 

 

Table S11. Triads in observed and expected homoeolog expression bias categories between 

modern-day wheat and synthetic hexaploid wheat. Triads were classified as either meeting the 

expectation (“As expected”) or not (“Different category”) between the modern-day wheat accessions 

Chinese Spring/Azhurnaya and the combined SHW datasets. Both absolute values of triads and the 

percentages are shown for Chinese Spring and Azhurnaya with respect to the two SHW datasets. Triads 

assigned to the Non-Balanced categories are also summarized based on the Dominant and Suppressed 

category (independent of genome) and the genome bias (i.e. A corresponds to both A-Dominant and A-

Suppressed triads). Bottom section shows the average of both comparisons.  

 

  Observed Chinese Spring   Non-Balanced 

  Total Balanced Non-Balanced   Dominant Suppressed   A B D 

As expected 6524 5711 813  170 644  276 320 218 

Different Category 3554 1735 1820  427 1393  656 655 509 

As expected 64.7% 76.7% 30.9%  28.4% 31.6%  29.6% 32.8% 29.9% 

Different Category 35.3% 23.3% 69.1%  71.6% 68.4%  70.4% 67.2% 70.1% 
           

 Observed Azhurnaya  Non-Balanced 

  Total Balanced Non-Balanced   Dominant Suppressed   A B D 

As expected 6783 6055 729 
 

121 608 
 

226 352 151 

Different Category 3381 2005 1376 
 

225 1151 
 

454 568 355 

As expected 66.7% 75.1% 34.6% 
 

34.9% 34.6% 
 
33.2% 38.3% 29.8% 

Different Category 33.3% 24.9% 65.4% 
 

65.1% 65.4% 
 
66.8% 61.7% 70.2% 

           

 Observed modern-day 6x 

(BBAADD) 
 Non-Balanced 

  Total Balanced Non-Balanced   Dominant Suppressed   A B D 

As expected 6653 5883 771   145 626   251 336 184 

Different Category 3468 1870 1598   326 1272   555 611 432 

As expected 65.7% 75.9% 32.5%  30.8% 33.0%  31.1% 35.5% 29.9% 

Different Category 34.3% 24.1% 67.5%   69.2% 67.0%   68.9% 64.5% 70.1% 

 

 

 

  



 

 

Table S12. Triads in observed and expected homoeolog expression bias categories following 

polyploidization. Triads were classified as either meeting the expectation (“As expected”) or not 

(“Different category”) between the observed synthetic hexaploid wheat (SHW) data and the expected 

in-silico dataset. Both absolute values of triads and the percentages are shown for SHW1 (AS2255 x 

AS60) and SHW2 (Langdon x AS60) with respect to their corresponding in-silico datasets. Triads 

assigned to the Non-Balanced categories are also summarized based on the Dominant and Suppressed 

category (independent of genome) and the genome bias (i.e. A corresponds to both A-Dominant and A-

Suppressed triads). Bottom section shows the average of both experiments.  

 

  Observed SHW1 (AS2255 x AS60)   Non-Balanced 

  Total Balanced Non-Balanced   Dominant Suppressed   A B D 

As expected 7775 6018 1757   358 1399   601 727 429 

Different Category 2233 737 1496   271 1225   316 406 774 

As expected 77.7% 89.1% 54.0%  57.0% 53.3%  65.5% 64.2% 35.7% 

Different Category 22.3% 10.9% 46.0%   43.0% 46.7%   34.5% 35.8% 64.3% 
           

 Observed SHW2 (Langdon x AS60)  Non-Balanced 

  Total Balanced Non-Balanced   Dominant Suppressed   A B D 

As expected 7606 5840 1766  386 1381  576 685 506 

Different Category 2629 987 1642   309 1334   424 491 728 

As expected 74.3% 85.5% 51.8%  55.5% 50.9%  57.6% 58.2% 41.0% 

Different Category 25.7% 14.5% 48.2%   44.5% 49.1%   42.4% 41.8% 59.0% 
           

 Observed SHW (BBAA x AS60)  Non-Balanced 

  Total Balanced Non-Balanced   Dominant Suppressed   A B D 

As expected 7690 5929 1761   372 1390   588 706 467 

Different Category 2431 862 1569   290 1279   370 448 751 

As expected 76.0% 87.3% 52.9%  56.2% 52.1%  61.4% 61.2% 38.4% 

Different Category 24.0% 12.7% 47.1%   43.8% 47.9%   38.6% 38.8% 61.6% 

 

 

 

 

 

  



 

 

Table S13. Characterization of transposable elements within triad promoters. Transposable 

elements (TE) were identified and triads classified according to the homoeolog expression bias 

category across combined “all tissues” (top) and on their variation across 15 tissues (bottom). Promoter 

lengths were defined as 1.5 kb and 5 kb upstream of the ATG start-site. χ2 tests were carried out for the 

number of genes and number of triads with at least one TE; Kruskal-Wallis tests were carried out for 

the median size and distance of TEs. Significant P values are highlighted in green.  

 

 

 

 

 

 

Table S14. Relative chromosome position of balanced, dominant and suppressed triads. The 

Chinese Spring no stress and Azhurnaya Developmental time course were analyzed separately. 

Observed and expected values are shown as percentages, whereas χ2 tests were performed on the 

absolute expected and observed values. 

(included in separate Excel file) 

 

 

 

 

 

 

 

 

 

         1.5 kb       5 kb   

Category 
Number 

of Genes 

Distance 

to 

nearest 

TE (bp) 

Genes 

with ≥1 

TE (%) 

Triads 

with ≥ 1 

TE (%) 

Median 

Size of 

TE (bp) 

  

Genes 

with ≥1 

TE (%) 

Triads 

with ≥ 1 

TE (%) 

Median 

Size of 

TE (bp) 

Balanced 35502 1243 53.5% 80.6% 233  93.1% 98.9% 304 

Non-Dominant 858 1003 59.9% 88.8% 234  92.9% 98.8% 266 

Dominant 429 958 59.4% 88.8% 211  93.5% 98.8% 282 

Suppressed  1995 1025 58.1% 86.4% 235  93.3% 99.2% 287 

Non-Suppressed 3990 1122 57.2% 86.4% 226  92.9% 99.2% 275 

P value 
 

< 2.2E-16 1.1E-09 < 2.2E-16 0.37 
 

0.90 0.16 1.5E-13 

                  
     1.5 kb      5 kb   

Category 
Number 

of Genes 

Distance 

to 

nearest 

TE (bp) 

Genes 

with ≥1 

TE (%) 

Triads 

with ≥ 1 

TE (%) 

Median 

Size of 

TE (bp) 

  

Genes 

with ≥1 

TE (%) 

Triads 

with ≥ 1 

TE (%) 

Median 

Size of 

TE (bp) 

Dynamic 10% 4275 1113 58.5% 88.3% 220  92.8% 99.6% 272 

Middle 80% 34221 1242 53.7% 81.1% 230  91.9% 98.9% 302 

Stable 10% 4278 1234 54.9% 79.2% 259  93.2% 98.8% 429 

P value   3.0E-06 1.1E-08 < 2.2E-16 1.5E-10   1.9E-03 9.3E-06 < 2.2E-16 



 

 

Table S15. Inter-cultivar comparison of homoeolog expression bias based on genomic 

compartment. Percentage of genes which remain in the same homoeolog expression bias category 

between Chinese Spring and Azhurnaya cultivars based on their genomic compartment. The combined 

analysis for all tissues was compared as well as the nine common tissues between the two datasets to 

account for any tissue bias in the combined analysis. P values for χ2 test comparing R1/R3 vs R2/C.

  

  Genomic compartment   Average   

Tissues R1 R2A C R2B R3   R1/R3 R2/C P value 

endosperm 65.6% 77.4% 75.9% 76.8% 68.3%  67.6% 76.9% 5.0E-19 

flag leaf 68.1% 78.7% 81.3% 79.0% 66.6%  67.0% 79.2% 2.0E-38 

grain hard dough and ripening 61.3% 72.8% 72.4% 71.2% 63.4%  62.9% 71.8% 1.4E-21 

grain milk and soft dough 68.0% 79.6% 80.9% 79.6% 69.2%  68.9% 79.7% 1.7E-32 

internode 64.4% 75.9% 77.6% 76.8% 67.0%  66.3% 76.6% 3.2E-30 

roots 71.7% 84.9% 85.5% 84.7% 73.0%  72.6% 84.8% 5.5E-43 

seedling aerial tissues 71.5% 82.9% 83.9% 84.1% 72.6%  72.3% 83.7% 2.9E-35 

spike 71.7% 81.8% 81.9% 83.0% 72.0%  71.9% 82.5% 1.4E-32 

stigma & ovary 58.8% 65.9% 67.7% 67.0% 58.9%   58.9% 66.7% 2.3E-19 

Combined global analysis 71.0% 84.0% 84.6% 84.8% 72.7%  72.2% 84.5% 1.1E-50 

 

 

 

Table S16. Comparison of homoeolog expression bias classification across tissues. Comparisons 

were made between individual tissues and the global analysis homoeolog expression bias category for 

Chinese Spring no stress and Azhurnaya developmental time course. See Fig. S18 for visualization of 

adjacent and opposite categories.  

        

Homoeolog Expression Bias Category 

(combined global analysis) 

Dataset 
Tissue 

types 

Movement 

across tissues 
Balanced Dominant Suppressed 

Chinese Spring 

no stress 15 Invariable 83.6% 73.4% 62.2% 

  Variable  16.4% 26.6% 37.8% 

   adjacent1 13.3% 24.9% 35.0% 

      opposite2 3.1% 1.6% 2.9% 

Azhurnaya 

Development 22 Invariable 84.8% 78.4% 69.8% 

  Variable  15.2% 21.6% 30.2% 

   adjacent1 12.3% 20.5% 28.0% 

      opposite2 2.9% 1.1% 2.2% 
1 For Balanced triads, suppressed categories were considered adjacent as they only require variation in a single 

homoeolog for this classification 
2 For Balanced triads, dominant categories were considered opposite as they usually require variation in two 

homoeologs for this classification 



 

 

Table S17. Characteristics of stable and dynamic triads. Stable (Low10, Low25) and dynamic 

(Top25, Top10) triads are shown for Chinese Spring no stress and Azhurnaya Developmental time 

course. P values corresponds to Mann Whitney test.  

(included in separate Excel file) 

 

 

Table S18. GO slim enrichment of stable and dynamic triads. GO slim enrichment is shown for 

stable (Low10, Low25) and dynamic (Top25, Top10) triads for Chinese Spring no stress and 

Azhurnaya developmental time course. GO terms in red are those which are unique to a single dataset, 

whereas all other GO terms are common between datasets. Only enrichments with P value significance 

below E-10 are shown.  

(included in separate Excel file) 

 

 

 

Table S19. Homoeolog expression bias category assignment for stable and dynamic triads. Stable 

(Low10, Low25) and dynamic (Top25, Top10) triads are shown for Chinese Spring no stress and 

Azhurnaya developmental time course compared to expected values across all triads in each dataset. P 

values are reported for χ2 tests between balanced:dominant:suppressed categories between observed 

and expected.  

(included in separate Excel file) 

 

 

 

Table S20. Relative chromosome position of stable, middle and dynamic triads. Two different sets 

of stable, middle and dynamic triads are shown: Top10, Middle80, Low10 (10-80-10) and Top25, 

Middle50, Low25 (25-50-25) based on the mean distance across tissues. Chinese Spring no stress and 

Azhurnaya Developmental time course were analyzed separately. Observed and expected values are 

shown in percentages, whereas χ2 tests were performed on the absolute expected and observed values. 

(included in separate Excel file) 

 

 

 

Table S21. Coding sequence and promoter conservation between stable, middle and dynamic 

triads. Coding sequence (nucleotide/protein identity and protein similarity) and promoter (1.5 kb) 

conservation between triads based on most stable, middle and dynamic triads as defined by the mean 

distance across tissues. The analysis was done at three cutoffs (5, 10, and 25% of the distribution) 

which defined the middle 90, 80, or 50%, respectively. Values are based on the average of the three 

pairwise comparisons between homoeologs (A to B, A to D, and B to D). Only promoters without N's 

in the 1.5 kb 5' upstream and alignments over 200 bp were considered for the analysis. P values in 

bottom section are based on Kruskall-Wallis ANOVA on ranks, followed by Dunn's test for the 

corresponding comparison. For promoter id, Mann Whitney tests were also performed for the Stable vs 

dynamic comparison at 10-80-10. 

(included in separate Excel file) 

 

  



 

 

Table S22. Ka/Ks ratio values for stable, middle and dynamic triads and syntenic/non-syntenic 

triads. Values shown are the average Ka/Ks ratios of the three pairwise comparisons between 

homoeologs (A to B, A to D, and B to D). P values of the difference in Ka/Ks ratios between the 

subsets is also shown, from the Mann Whitney test.         

 

   Chinese Spring no stress Azhurnaya Development 

Category Subset Mean (± SE) Median N Mean (± SE) Median N 

5-90-5 

Stable 5% 0.23 ± 0.016 0.16 2136 0.23 ± 0.016 0.16 2253 

Middle 80% 0.26 ± 0.0029 0.20 38499 0.26 ± 0.011 0.20 40563 

Dynamic 5% 0.32 ± 0.011 0.26 2139 0.32 ± 0.0029 0.26 2256 

10-80-10 

Stable 10% 0.21 ± 0.0094 0.15 4275 0.21 ± 0.0094 0.15 4506 

Middle 80% 0.26 ± 0.0031 0.20 34221 0.26 ± 0.0030 0.20 36057 

Dynamic 10% 0.33 ± 0.011 0.26 4278 0.33 ± 0.010 0.26 4509 

25-50-25 

Stable 25% 0.22 ± 0.0055 0.16 10692 0.22 ± 0.0052 0.16 11265 

Middle 50% 0.26 ± 0.0042 0.20 21387 0.26 ± 0.0039 0.20 22539 

Dynamic 25% 0.30 ± 0.0057 0.25 10695 0.31 ± 0.0062 0.25 11268 

Non-

Syntenic All 0.39 ± 0.014 0.32 2490 0.39 ± 0.013 0.32 2706 

   Chinese Spring no stress Azhurnaya Development 

Category Comparison 5-90-5 10-80-10 25-50-25 5-90-5 10-80-10 25-50-25 

Triad 

Movement 

Stable vs Dynamic <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 

Stable vs Middle 1.03E-12 <2.2E-16 <2.2E-16 7.11E-16 <2.2E-16 <2.2E-16 

Dynamic vs 

Middle <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 <2.2E-16 

Synteny 

Comparison to 

Syntenic Stable 10% 

Middle 

90% 

Dynamic 

10% Stable 10% 

Middle 

90% 

Dynamic 

10% 

Non-Syntenic <2.2E-16 <2.2E-16 7.95E-07 <2.2E-16 <2.2E-16 1.38E-07 

 

 

 

 

Table S23. Features of four tissue specific WGCNA networks 

 

Tissue 

Number of genes 

expressed 

Percentage of genes 

assigned to modules 

Number of 

modules 

Grain 72,370 77.9 78 

Leaf 81,025 42.3 51 

Root 73,232 88.0 72 

Spike 84,699 53.2 58 

 

  

 

 

  



 

 

Table S24. Triad co-expression based on module assignment of homoeologs across tissue 

networks. 

 

    Category (count)   Category (%) 

 Network same similar divergent  same similar divergent 

Syntenic 

Triads 

grain 2160 3417 3542  23.7% 37.5% 38.8% 

leaf 3568 1208 359  69.5% 23.5% 7.0% 

root 2948 3482 4052  28.1% 33.2% 38.7% 

spike 2803 2016 1115  47.2% 34.0% 18.8% 

Weighted average across networks   37.4% 33.0% 29.6% 

Non-

syntenic 

Triads 

grain 99 161 220   20.6% 33.5% 45.8% 

leaf 152 68 23  62.6% 28.0% 9.5% 

root 131 192 233  23.6% 34.5% 41.9% 

spike 107 75 57  44.8% 31.4% 23.8% 

Weighted average across networks   32.2% 32.7% 35.1% 

Random 

grain 3 30 967  0.3% 3.0% 96.7% 

leaf 18 46 936  1.8% 4.6% 93.6% 

root 1 22 977  0.1% 2.2% 97.7% 

spike 12 48 940  1.2% 4.8% 94.0% 

Weighted average across networks   0.9% 3.7% 95.5% 

 

 

 

 

Table S25. Plant Ontology (PO) terms enriched in root module 61. 

 

PO term description P value 

PO:0004545 shoot-borne shoot system 1.87E-10 

PO:0006307 root procambium 2.27E-08 

PO:0003021 central root cap of primary root 4.69E-08 

PO:0006081 primary root apical meristem 2.59E-06 

PO:0000026 primary root tip 6.69E-06 

PO:0020123 root cap 7.16E-06 

PO:0025181 root elongation zone 1.75E-05 

PO:0005059 root endodermis 2.04E-05 

PO:0006036 root epidermis 2.68E-05 

PO:0020124 root stele 4.09E-05 

PO:0006504 leaf trichome 8.46E-05 

 

 

 

  



 

 

Table S26. TFs in root module 61. Orthologs involved in root development are noted. 

(included in separate Excel file) 

 

 

 

Table S27. GO term enrichment of target genes of MADS_II TFs in root module 61. P values 

were calculated using the classic Fisher’s test in topGO.  

 

 

 

 

Table S28. Top three enriched GO terms of TF targets from genie3 network. GO enrichment was 

calculated using topGO classic Fisher’s test. 

(included in separate Excel file) 

 

 

Table S29. Correlation between abiotic network modules and abiotic stresses. P values are the 

Student asymptotic P value of the correlations corrected for multiple testing using the Benjamini & 

Yekutieli method. 

(included in separate Excel file) 

 

 

Table S30. Correlation between disease network modules and disease stresses. P values are the 

Student asymptotic P value of the correlations corrected for multiple testing using the Benjamini & 

Yekutieli method. 

(included in separate Excel file) 

 

 

Table S31. Genes associated with abiotic and/or disease stress and their modules. P values are the 

Student asymptotic P value of the correlations corrected for multiple testing using the Benjamini & 

Yekutieli method.  

(included in separate Excel file) 

  

    P value for target genes of 

GO.ID Term TraesCS2A01G337900 TraesCS2B01G344000 TraesCS2D01G325000 

GO:0071554 cell wall organization 

or biogenesis 

1.3E-30 1.8E-20 < 1e-30 

GO:0071555 cell wall organization 3.5E-28 9.5E-21 < 1e-30 

GO:0009808 lignin metabolic 

process 

6E-27 3.8E-22 < 1e-30 

GO:0009664 plant-type cell wall 

organization 

4.6E-25 1.9E-18 < 1e-30 

GO:0071669 plant-type cell wall 

organization or 

biogenesis 

3.4E-23 4.9E-14 < 1e-30 

GO:0009809 lignin biosynthetic 

process 

3.3E-19 9E-20 2.8E-29 



 

 

Table S32. GO slim enrichment of genes in disease module 12 and abiotic module 2.  

 

ontology category description 

P value 

disease 

module12 

P value 

abiotic 

module2 

Biological 

Process 
GO:0009607 response to biotic stimulus 2.2E-63 4.0E-06 

GO:0007165 signal transduction 1.0E-57 8.3E-08 

GO:0008219 cell death 9.7E-57 9.0E-04 

GO:0007154 cell communication 2.5E-55 2.2E-06 

GO:0009605 response to external stimulus 1.6E-51 6.3E-05 

GO:0006950 response to stress 6.8E-42 1.2E-04 

GO:0009719 response to endogenous stimulus 1.4E-38 - 

GO:0006464 

cellular protein modification 

process 1.9E-36 - 

GO:0006810 transport 2.2E-21 - 

GO:0019538 protein metabolic process 7.1E-16 - 

GO:0009991 response to extracellular stimulus 2.2E-15 - 

GO:0009856 pollination 3.0E-14 - 

GO:0009875 pollen-pistil interaction 1.1E-12 - 

GO:0008150 biological_process 8.1E-07 - 

GO:0019748 secondary metabolic process 1.6E-05 - 

GO:0009838 abscission 1.9E-05 - 

GO:0009056 catabolic process 0.0E+00 8.6E-04 

Cellular 

Component 
GO:0016020 membrane 4.8E-33 1.1E-04 

GO:0005768 endosome 2.1E-29 4.7E-05 

GO:0005618 cell wall 2.7E-16 - 

GO:0030312 external encapsulating structure 9.0E-12 - 

GO:0005783 endoplasmic reticulum 7.6E-09 - 

GO:0005794 Golgi apparatus 1.5E-08 - 

GO:0005886 plasma membrane 1.8E-03 - 

Molecular 

Function 
GO:0004872 receptor activity 3.0E-60 - 

GO:0004871 signal transducer activity 1.1E-56 - 

GO:0016301 kinase activity 4.9E-55 - 

GO:0016740 transferase activity 9.4E-30 - 

GO:0030246 carbohydrate binding 2.4E-20 - 

GO:0000166 nucleotide binding 2.6E-20 - 

GO:0005515 protein binding 8.7E-08 - 

GO:0005215 transporter activity 8.5E-07 - 

GO:0003824 catalytic activity 2.4E-05 - 

GO:0003674 molecular_function 7.9E-05 - 

GO:0005102 receptor binding 1.2E-04 - 

  



 

 

Table S33. Sixteen TFs shared in abiotic module 2 and disease module 12. The functions of rice 

and Arabidopsis orthologs are indicated where known. 

(included in separate Excel file) 

 

 

Table S34. Top 10 hub genes in disease module 12. Calculated as intramodular connectivity. 

Gene 

Intramodular connectivity 

(eigengene correlation) P value 

TF 

family 

TraesCS1A01G350400 0.961 0 HSF 

TraesCS4D01G305100 0.950 0 NA 

TraesCS5D01G226400 0.948 0 NA 

TraesCS4A01G106400 0.948 0 NA 

TraesCS6B01G342800 0.947 0 NA 

TraesCS4B01G190100 0.945 0 NA 

TraesCS5A01G237900 0.943 0 HSF 

TraesCS2A01G188600 0.943 0 NA 

TraesCS5B01G236400 0.941 0 HSF 

TraesCS3D01G262000 0.940 0 NA 

 

 

Table S35. Predicted target genes of HSF TFs. The strength of edge (edge weight) connecting the TF 

to the target gene is shown, along with the module in which the target gene was allocated in the abiotic 

and disease networks.       

(included in separate Excel file) 

 

Table S36: Expression of a dynamic triad across six tissues and in the combined analysis. The 

expression of the individual homoeologous genes which constitute the triad are shown, alongside the 

triad sum, normalized expression and homoeolog expression category. This triad was considered 

expressed across the six tissues shown since the triad_sum > 0.5 TPM for all six tissues. For individual 

genes, however, these were considered expressed >0.5 TPM on a gene basis in fewer tissues. For 

example, the A genome homoeolog TraesCS7A01G524500 was considered expressed only in roots, 

seedling aerial tissues and internodes (3 tissues) given that it's expression was lower than 0.5 TPM in 

the spike, rachis and vegetative aerial tissues. This gene would therefore be considered expressed in 

three tissues, whereas the triad was considered expressed in six tissues. 

(included in separate Excel file) 

 

Table S37: Definition of homoeolog expression bias categories. A, B, and D represent the relative 

expression levels of the A, B, and D genome homoeologs across an individual triad.  

 

Category A B D 

Balanced 0.33 0.33 0.33 

A suppressed 0 0.5 0.5 

B suppressed 0.5 0 0.5 

D suppressed 0.5 0.5 0 

A dominant 1 0 0 

B dominant 0 1 0 

D dominant 0 0 1 
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Additional Data File S1 (separate excel file) 

Assignment of genes to modules within the six different WGCNA co-expression networks. Each 

network is presented in a separate tab within the Excel file. 

 

Additional Data File S2 (separate excel file) 

Comparison of modules across networks. The modules within each network (grain, leaf, root and spike) 

were compared to modules in all other tissue networks. Modules which did not have a significant 

overlap (padj<0.05) to any module in the other network are listed as "no overlap", "-" means there was 

an overlap to at least one module in the other network. Additional tabs give details of pairwise 

comparisons between networks.  
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