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Abstract: Resonance enhanced multiphoton ionization (REMPI) is a powerful method for the
sensitive determination of polycyclic aromatic hydrocarbons (PAHs) in gaseous mixtures via
mass spectrometry (MS). In REMPI, ions are produced by the absorption of at least two photons
including defined electronic intermediate states. As a result—unlike other laser-based ionization
techniques—spectroscopic selectivity is involved into the ionization process. Nevertheless, these
wavelength-dependent ionization rates impede the quantification using REMPI. For this purpose,
relative photoionization cross sections (relPICS) give an easy-to-use approach to quantify REMPI-MS
measurements. Hereby, the ionization behavior of a single compound was compared to that of a
reference substance of a given concentration. In this study, relPICS of selected single-core aromatics
and PAHs at wavelengths of 266 nm and 248 nm were determined using two different time-of-flight
mass spectrometric systems (TOFMS). For PAHs, relPICS were obtained which showed a strong
dependence on the applied laser intensity. In contrast, for single-core aromatics, constant values of
relPICS were determined. Deviations of relPICS between both TOFMS systems were found for small
aromatics (e.g., benzene), which can be assigned to the differences in UV generation in the particular
system. However, the relPICS of this study were found to be in good agreement with previous results
and can be used for system-independent quantification.
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1. Introduction

Over the past decades, the investigation of the environmental issues and health-related effects of
polycyclic aromatic hydrocarbons (PAHs) has become an important research field. Due to their high
biological and ecological importance, analytical techniques for a fast and sensitive determination of
these compounds are in the state of continuous improvements. Resonance enhanced multiphoton
ionization (REMPI) coupled to time-of-flight mass spectrometry (TOFMS) is a powerful technique in
this respect, particularly for online measurements of PAHs in gaseous samples. Since its very first
application in the late 1970s [1–3], REMPI-TOFMS has been evolved as a versatile tool for the selective
and sensitive analysis of PAHs in combustion processes and environmental monitoring [4–11].

To date, some profound papers have been published, reviewing the fundamentals of REMPI as
well as REMPI-MS in detail [12–14]. In respect to the detailed information given in those publications,
only a short overview is presented in this work.
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REMPI occurs by the simultaneous or sequential absorption of two or more photons including
resonant molecular excited states. The energy of each photon is below the ionization threshold of the
molecules. REMPI can be classified with respect to the number and energy of the photons involved in
the ionization process.

Figure 1a illustrates the ionization schemes of one of the most common REMPI techniques, which
is known as (1 + 1) one-color REMPI. Herein, molecules are excited into their intermediate states by
absorbing one photon with a distinct wavelength. The following absorption of a second photon of the
same energy, within the lifetime of this intermediate state, leads to ionization. Based on the molecular
electronic structure, REMPI is particularly selective for PAHs. For these compounds, the intermediate
states are accessible via UV-photons, whereas other components (e.g., N2, O2, H2O, alkanes, etc.) are
not ionized.

Figure 1. (a) Ionization scheme of (1 + 1) one-color resonance enhanced multiphoton ionization
(REMPI) (λi—wavelength; ki—rate constant of the transition; σ1,2—photoabsorption/photoionization
cross section; I—laser intensity; nrad—non-radiational decay; rad—radiational decay). (b) Simplified
model for relative photoionization cross sections for REMPI-time-of-flight mass spectrometry (TOFMS);
ions (N1,i) of the molecules (M0,i) are formed by REMPI and are guided through the TOFMS with a
distinct transmission (T). Relative photoionization cross sections (relPICS) are calculated by dividing
the amount of detected ions for a given number of initial molecules of a single compound by the ratio
of detected ions and initial molecules of the reference substance.

A quantitative description of REMPI rates is given by Equation (1) and is known as the formal
intensity law. This expression originates from kinetic considerations discussed in References [15–17].
As expressed in the equation, the ionization rate (R) depends on the squared intensity (I) of the
irradiating laser beam.

R =
N

M0
=

σ1(ω) · σ2(ω)

2
· I2 · t2

p , (1)

here, N—number of ions; M0—number of initial molecules; σ1—photoabsorption cross section;
σ2—photoionization cross section; ω—angular frequency; tp—laser pulse duration.

However, this expression only holds well for moderate laser intensities (≈104—106 W/cm2),
where no saturation effects occur, and for resonant intermediate states that are long-lived compared
to the pulse length of the laser. If one of the ionization steps is saturated, the quadratic intensity
dependence of the ionization rate will change to exhibit a more linear behavior. Besides this intrinsic
intensity dependency, geometrical effects of the laser beam may result in a non-integer deviation from
the formal intensity law, as was shown by Brophy et al. [18,19].

Fragmentation of molecular ions when using REMPI is controllable and depends on the applied
laser intensity. With moderate laser intensities, REMPI is a very soft ionization method, producing
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mostly molecular ions. On the other hand, applying higher laser intensities (above 108 W/cm2) will
lead to increased fragmentation and the production of much smaller fragments (e.g., C+ for benzene)
compared to electron ionization [17,20,21].

The ionization rate depends on the applied laser wavelength, since the cross sections for
absorption and ionization vary with the wavelength. This behavior complicates quantification and
internal or external standards are only applicable for target screening. Another possibility is the
utilization of absolute photoionization cross sections [22]. These parameters neglect thermal effects
as well as mass spectrometric parameters and are difficult to determine. Therefore, absolute cross
sections may only give an estimation of the ionization rate under certain conditions. However, one
possible approach to overcome this drawback is the introduction of relative photoionization cross
sections (relPICS). In this approach, the ionization rate of the analytes at a given wavelength is
compared with that of a reference substance. Once determined, these relPICS can be used to recalculate
the concentrations of compounds in an unknown gas mixture just by measuring the concentration
of the reference substance. Therefore, relPICS may be used for a simple and system-independent
quantification in REMPI-TOFMS measurements at a given laser wavelength.

The principle of relPICS has already been used by Adam et al. [23] and will be shortly described
in the following. Based on the scheme given in Figure 1b, the number of ions (N1,i) produced by
(1 + 1) one-color REMPI can be derived from Equation (1). These ions are transferred through the mass
spectrometric system with a distinct transmission (T) and are separated based on their mass-to-charge
ratio (m/z). The number of detected ions (N2,i) is given by Equation (2).

N2,i = N1,i · T =
σ1(ω) · σ2(ω)

2
·M0,i · I2 · t2

p · T , (2)

This expression can be normalized to the ionization behavior of the reference substance, which
results in:

N2,A

N2,ref
=

σ1,A(ω) · σ2,A(ω) ·M0,A · I2 · t2
p · T

σ1,ref(ω) · σ2,ref(ω) ·M0,ref · I2 · t2
p · T

, (3)

where A—analyte and ref—reference.
For time-of-flight mass spectrometers, T can be approximated as a constant for all ions in a mass

range between m/z 20 and 300. Therefore, Equation (3) simplifies to:

σrel, ref(ω) =
σ1,A(ω) · σ2,A(ω)

σ1,ref(ω) · σ2,ref(ω)
=

N2,A

N2,ref
·

M0,ref

M0,A
=

rA

rref
, (4)

Here, ri =
N2,i
M0,i

is the response factor of a single substance at a distinct wavelength. If the ionization
behavior (Ri ∝ Ini ) of both substances differs, Equation (4) can be written as:

σrel, ref(I, ω) =
N2,A

N2,ref
·

M0,ref

M0,A
· I(nA−nref) =

rA

rref
· I(nA−nref) (5)

Here, Equation (5) emphasizes an intensity-dependent trend for relPICS.
Based on these considerations, we determined cross sections for selected aromatic and polycyclic

aromatic compounds relative to toluene as a reference substance (σrel,tol). With regard to laser
systems frequently used for REMPI (fourth harmonic of Nd:YAG and KrF-Excimer), we examined
the corresponding wavelengths (266 nm and 248 nm) and demonstrated the system-independent
quantification using two different mass spectrometric systems. Our presented approach is primarily
devoted to take a step towards the complicated semi-quantification of online REMPI-TOFMS
experiments for environmental and process monitoring. For online gas phase REMPI-MS
measurements [24–26] or direct REMPI-MS analysis of liquid samples with either membrane
inlet [27–29] or direct inlet techniques [30], a native or isotope labeled internal standard (e.g., toluene
or D3-toluene) can be added to semi-quantify the polycyclic aromatic compounds via relPICS.
Additionally, for REMPI-based analytical techniques, which do not allow a straight forward internal
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standardization approach, such as laser desorption REMPI-MS online analysis of PAHs on a single
aerosol particle [31], the relPICS allow the determination of the pattern of the aromatic compounds.

2. Materials and Methods

2.1. Experimental Setup

2.1.1. Mass Spectrometric Systems

In this study, two different REMPI-TOFMS systems were used. The first REMPI-TOFMS (PITOF 1)
was described by Mühlberger et al. [32] and was custom-built by Stefan Kaesdorf GmbH, Munich,
Germany. To minimize the influence of photoelectrons on the ionization process, a delayed extraction
with a delay time of 100 ns was utilized. Two 8-Bit converters with different amplifications (DP210,
Acqiris, Plan-les-Quates, Switzerland) were used to extend the dynamic range of the MS. In this setup,
a tunable UV laser beam was generated from 1064 nm of a Nd:YAG (Continuum Surelite II, Amplitude
Laser Group, San Jose, USA; pulse duration = 5 ns; repetition rate = 10 Hz) using an optic parametric
oscillator (VISIR 2, GWU-Lasertechnik, Erftstadt, Germany). For the purpose of this study, 266 nm
(0.29 mJ/pulse) and 248 nm (0.28 mJ/pulse) were used. The laser intensity was varied by a variable
neutral density attenuator (NDM2/M, Thorlabs Inc.; Newton, USA) placed in front of the ion source.
A focusing lens (focal length = 350 mm) was used to increase the power density of the irradiating
laser beam. Additionally, by varying the position of the lens relative to the ion source, the examinable
intensity range was extended. The focal point inside the ion source was determined by monitoring the
total ion current (TIC) as a function of the lens location. The determination of relPICS were performed
at three different lens positions (3.5 cm, 2.5 cm, and 0 cm relative to the focal point). The power
density of the focused laser beam was calculated with the assumption of a Gaussian beam shape.
By monitoring the pulse energy behind the ion source, the power density was recalculated with an
attenuation factor of 10% (energy loss of the UV window).

The second mass spectrometric system (PITOF 2) was a compact TOFMS custom-built by Stefan
Kaesdorf GmbH, Munich, Germany. Mass spectra were recorded by two 8-Bit converter cards (AP240,
Acqiris, Plan-les-Quates, Switzerland). UV radiation of 266 nm wavelength was produced by the
fourth harmonic generation of a Nd:YAG laser (Big Sky Ultra, Quantel, Les Ulis, France; repetition
rate = 20 Hz; pulse duration = 10 ns). In contrast to PITOF 1, an unfocused Gaussian laser beam was
expanded to an estimated diameter of 3 mm. The averaged power density was calculated from the
pulse energy behind the ion source (attenuation factor = 7%).

2.1.2. Sample Introduction

For the determination of σrel,tol, gaseous mixtures with known concentrations of the analytes are
needed. A custom inlet system for the introduction of (semi-)volatile organic compounds ((S)VOCs)
was used to transfer the analytes into the gas phase, see Figure 2. A non-heated nebulizer assembly,
demounted from an API-LCMS system (AB SCIEX, Concord, Toronto, ON, Canada), was connected to
a glass chamber. The chamber was placed in a box, which was heated up to 250 ◦C. Standard solutions
of the analytes were introduced by a syringe pump (Harvard Apparatus Syringe Infusion pump 22) at
various flow rates, ranging from 10 µL/min to 50 µL/min. The liquid samples were sprayed into the
heated glass chamber with the aid of nitrogen at a total flow rate of 1.3 L/min. The concentrations of
the analytes were calculated from their individual molar flow rate F:

c =
Fanalyt

FN2 + Fsolvent + Fanalyt
(6)

The sample introduction system was coupled to the mass spectrometers using a capillary (stainless
steel with an inner diameter (ID) of 200 µm for PITOF 1; fused silica capillary with ID = 230 µm for
PITOF 2), transferring the gaseous analytes into the ion source of the MS at a temperature of 235 ◦C.



Appl. Sci. 2018, 8, 1617 5 of 14

Figure 2. (a) Experimental setup of the sample introduction system for (semi-)volatile organic
compounds; standard solutions, containing known amounts of compounds, are introduced into
a nebulizer via syringe pump and sprayed into a heated glass chamber. The evaporated analytes are
transferred via a heated transfer line into the ion source of the mass spectrometer. (b) Photograph of
the introduction system.

2.2. Standard Mixtures

Standard solutions of selected single-core aromatics and PAHs (various distributors; purity
98–99.6%) with known concentrations were prepared in n-hexane (Fisher Scientific GmbH, Schwerte,
Germany; purity 95%), cyclohexane (Carl Roth GmbH+Co. KG, Karlsruhe, Germany; purity
99.9%), and isopropanol (Carl Roth GmbH+Co. KG, Karlsruhe, Germany; purity 99.5%). Toluene
(Sigma-Aldrich, Munich, Germany; 99.9%) was added as a reference substance to each standard
mixture. The concentrations of these standard solutions were chosen in such a way to gain
approximately the same signal heights in the mass spectra for the analytes as well as for toluene.

Additionally, 1 ppm and 10 ppm standard gas mixtures containing benzene, toluene, p-xylene,
and 1,2,4-trimethylbenzene (Linde AG, Pullach, Germany) were investigated. The toluene signal of
the standard gas mixture was also used to check the toluene concentrations of all standard solutions.

2.3. Data Handling

Data acquisition on both systems was performed by customized software. Peak areas of each
compound were calculated at a unit mass resolution.

For the determination of time-dependent mass profiles and response factors, 10 and 300 mass
spectra were averaged, respectively. Response factors for each substance were calculated by dividing
the peak area by c. The pulse energy was recorded for each measurement, and every value represents
an averaged measurement of 10 s. The power density was estimated by considerations mentioned in
Section 2.1.

3. Results

3.1. Evaluation of the Sample Introduction System

The determination of σrel,tol requires known analyte concentrations entering the MS. Therefore,
the sample introduction system has to be carefully characterized. For this purpose, different
measurements were performed on both mass spectrometric systems. The suitability of the inlet
device was proven by comparing the theoretical and experimental concentrations of toluene, which
are easily accessible via standard gas mixtures. A toluene standard solution (10 µL/mL in hexane)
was introduced into the system. Different concentrations of toluene inside of the glass chamber were
achieved by varying the flow rates of the sample as well as that of nitrogen. A summary of these results
for PITOF 1 is given in Figure 3a. The findings for the variation of the nitrogen flow as well as for
the sample flow are in good agreement with the theoretical results. The best results were achieved at
medium sample and nitrogen flow rates at values of 25 µL/min and 1.3 L/min, respectively. The signal
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stability and response characteristics of the introduction system for selected analytes are shown in
Figure 3b. The variations in signal heights are mainly a result of shot-to-shot fluctuations of the laser
beam. VOCs such as toluene and xylene show a rapid response and high signal stability. The time to
reach maximal signal heights is approximately 2 s, whereas the time for returning to the baseline was
below 10 s. Compounds with a much lower vapor pressure show rise times similar to that of toluene,
but longer decline times up to 30 s.

Figure 3. Evaluation of the sample inlet system. (a) Comparison of theoretical (calculation based on
Equation (6); dotted lines) and experimental (symbols) toluene concentrations for different sample flow
rates as a function of nitrogen flux. (b) Signal response and stability for selected single-core aromatics
and polycyclic aromatic hydrocarbons (PAHs) at different sample flow rates.

3.2. Determination of relPICS for 266 nm

The intensity-dependent ionization behavior of selected aromatic and polycyclic aromatic species
at 266 nm is shown in Figure 4. The slope of the regression line reflects the intensity dependence of
the REMPI signal for each compound. Exact quadratic behavior was not observed for all compounds,
which may have originated from the geometrical effects of the laser beam. Additionally, saturation
occurred for phenanthrene and pyrene at higher laser intensities. However, for single-core and small
polycyclic aromatics, similar trends appeared. These similarities in the ionization behavior between
analyte and reference substance led to constant values of σrel,tol over a wide intensity range. In contrast,
an intensity-dependent course of σrel,tol was determined for the case where the ionization behavior
differs between both substances.

Figure 4. Intensity-dependent REMPI response of selected aromatic and polycyclic aromatic
compounds; values on the left side correspond to a lens position of 3.5 cm relative to the focal point,
whereas data points on the right side were determined at the focus position. The slope of the regression
line is given for each compound; similar values for the analytes compared to toluene (reference) result
in constant relPICS over a wide intensity range.
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A graphical overview of the obtained σrel,tol is given in Figure 5.

Figure 5. Relative REMPI cross sections (σrel,tol; toluene was used as a reference substance) at 266
nm (a) obtained by PITOF 1; (b) obtained by PITOF 2. Clear intensity-dependent trends of σrel,tol of
PAHs were obtained, whereas for small aromatic compound constant values of σrel,tol were determined.
For 1,2,4-trimethylbenzene, only data of the gas standard were available.

The investigated single-core aromatic compounds show mostly intensity-independent σrel,tol.
Benzene (σrel,tol ≈ 0.13) had the lowest response of all the investigated compounds. The methylation
of the benzene ring leads to a higher σrel,tol in order of the number of methyl groups (p− xylene :
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σrel,tol = 2.4; 1, 2, 4− trimethylbenzene : σrel,tol ≈ 4.2). Due to the increase of the electron density
of the chromophoric center and the resonance stabilization of the ionic state, the insertion of other
substituents with a positive mesomeric effect (+M-effect) led to increasing σrel,tol compared to benzene
(phenol: σrel,tol = 3.5; guaiacol: σrel,tol = 7.1). For indole (σrel,tol = 35) and benzofurane (σrel,tol = 17),
relPICs increased as a result of oxygen being replaced by nitrogen. With the exception of naphthalene,
intensity-dependent σrel,tol were observed for larger aromatic ring systems even at lower laser
intensities. Higher numbers of condensed rings led to higher values of σrel,tol, whereas the effect
of methylation was reduced. Thus, σrel,tol of naphthalene with an approximate value of 21 showed a
slight intensity-dependent behavior at laser intensities above 107 W/cm2, whereas pyrene had a strong
intensity-dependent σrel,tol in the range of approximately 25–225. The used solvents slightly influenced
σrel,tol (see for example fluorene in Figure 5a), which might be due to the different solubilities of the
investigated compounds.

For higher condensed ring systems, the obtained relPICS were in good agreement for both mass
spectrometers, whereas for small aromatics (benzene, p-xylene, 1,2,4-trimethylbenzene) significant
differences were found. This effect was also observed when different datasets (A: only hexane
measurements; B: different solvents, performed approximately one year after A) for benzene and
xylene using PITOF 1 were compared (Figure 6). The relPICS for benzene and p-xylene in hexane
for dataset A were supported by results of measurements of the 10-ppm gas standard with the same
position of the focus lens (3.5 cm). These findings were reproduced by measurements of the same
standard gas mixture from dataset B. Moreover, the measurements of all standard solutions of dataset
B were well confirmed by the standard gas measurements of dataset A at a lens position of 2.5 cm.

Figure 6. Relative REMPI cross sections (σrel,tol; toluene was used as a reference substance) at 266 nm
for benzene and p-xylene of different datasets: (a) dataset A; (b) dataset B (for benzene, no data were
available at high intensities).



Appl. Sci. 2018, 8, 1617 9 of 14

3.3. Determination of relPICS for 248 nm

Results for 248 nm measurements are shown in Figure 7. Hereby, no laser intensities higher
than 1.2 × 107 W/cm2 were investigated. However, as expected, σrel,tol of 248 nm and 266 nm
showed significant differences in quantity, whereas similar intensity-dependent behaviors of σrel,tol
were observed. It has to be noted that σrel,tol are influenced by the wavelength-dependent ionization
behavior of the analyte as well as the reference substance. The σrel,tol of benzene at 248 nm was
increased by a factor of 7 compared to that at 266 nm. Much higher σrel,tol were achieved for PAHs,
such as fluorene, phenanthrene, and pyrene. In contrast, the σrel,tol for p-xylene, 1,2,4-trimethylbenzene,
guaiacol, and phenol were lower compared to that at 266 nm.

An estimation of the differences in ionization efficiency between 266 nm and 248 nm can
be accomplished by comparing the response factors of a single compound for both wavelengths
(e.g., toluene is ionized three times better at 266 nm than at 248 nm). Therefore, it is possible to
recalculate the relPICS at 248 nm, neglecting the influence of the wavelength-dependent ionization
behavior of toluene. By doing this, benzene is ionized about 2.5 times better at 248 nm compared to
266 nm, whereas acenaphthene is ionized with approximately the same efficiency.

Figure 7. Relative REMPI cross sections (σrel,tol; toluene was used as a reference substance) at 248 nm.
For 1,2,4-trimethylbenzene, only data of the gas standard were available.

4. Discussion

The obtained results are in good agreement with general considerations based on
UV-spectroscopic properties of these compounds given in Reference [33] and REMPI spectroscopic
investigations presented in References [34–36]. For single-core aromatics, the most prominent transition
into the excited state is S0→ S1. For benzene the origin of this S0→ S1 transition is symmetry forbidden
and located at 262.5 nm. Only vibrationally-induced electronic transitions are allowed at 259.3 nm and
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247.3 nm and can be assigned to the transition into the v6 and v1 modes. Herein, benzene showed the
narrowest absorption bands of all the investigated aromatic species. These sharp absorption bands
were broadened and shifted to longer wavelengths by the insertion of electron-donating substituents
(e.g., –CH3, –OH, –OCH3). For example, the allowed S0 → S1 transitions of toluene and p-xylene were
at 266.8 nm and 272.2 nm, respectively. Therefore, the ionization efficiencies for single-core aromatics
(except benzene) were higher at 266 nm compared to those at 248 nm. Larger PAHs showed broadened
absorption bands with a bathochromic shift (compared to benzene), whereas the density of electronic
states increased with the number of condensed aromatic rings. Additionally, the energy of singlet
states decreased. Therefore, transitions into higher states (S2, S3, etc.) are possible and much more
stabilized. Consequently, PAHs showed higher ionization yields compared to single-core aromatics.
The ionization rate was then determined by the second absorption step, leading to deviations from
the quadratic intensity dependence [35]. Additionally, naphthalene and acenaphthene were ionized
more efficiently at 266 nm (S0 → S2), while PAHs such as phenanthrene and pyrene showed increased
ionization efficiencies at 248 nm (S0 → S3). Due to the lower ionization yield of toluene and the
increased REMPI response, phenanthrene and pyrene showed very high σrel,tol at 248 nm.

For measurements at 266 nm, the obtained σrel,tol were in good agreement with previous results
obtained using PITOF 2 (Table 1), which were verified by gas chromatographic (GC) measurements by
Adam et al. [23]. In their study, the direct comparison of emission factors (obtained by REMPI-TOFMS
or GC-MS) from different vehicle engines shows variations mostly below 10%. Though these results did
not focus on intensity-dependent behavior, these σrel,tol were successfully used in other studies [25,37].

Table 1. Overview of relative REMPI cross sections (σrel,tol; toluene was used as a reference substance)
at 266 nm and 248 nm obtained using different mass spectrometric systems.

Substance
œrel,tol

m/z PITOF 1
(266 nm)

PITOF 2
(266 nm)

PITOF 2 Used in
Reference [17] (266 nm)

PITOF 1
(248 nm)

benzene 78 0.11 * (0,15 *) 0.05 * 0.06 0.91 * (0.86 *)
phenol 94 3.6 * - 1.66 1.70

o-xylene 106 2.0 * - 2.1 -
p-xylene 106 2.5 * (2.4 *) 3.0* 2.3 * (3.1 *) 2.2 * (1.96 *)
indole 117 32.2–40.7 - 31.1 51.8–74.2

benzofuran 118 15.0–18.1 - 13.6 49.3
1,2,4-trimethylbenzene 120 (2.6 *) (5.8 *) (5.13 *) (1.03 *)

guaiacol 124 4.9–8.5 6.5–7.9 5.45 1.2 *
naphthalene 128 13.8–21.4 22.9 25.5 59.4–93.3

1-methylnaphthalene 142 9.0–20 - 24.1 -
acenaphthene 154 6.8–21.6 - 28.5 40.4–76.8

fluorene 166 21.3–75.0 54.2–61.0 86.8 270–654
phenanthrene 178 11.5–163 99.4–144 179 976–3451

pyrene 202 14.0–223 130–207 196 555–1730

* Averaged values; values in brackets are obtained from measurements of the gas standard.

In our study, laser intensities larger than 107 W/cm2 led to an increased fragmentation of all
single-core aromatics and some PAHs (e.g., 1-methylnaphthalene and acenaphthene). The fundamental
model (ladder-switching-model) of this fragmentation behavior was published by Dietz et al. [17].
Herein, due to the high photon density inside of the ionization volume, the initially produced ions
absorbed more photons and were excited into higher ionic states. This additional input of energy
eventually leds to fragmentation. For toluene, the tropylium ion (m/z 91) is a prominent fragment,
which is produced by rearrangement of the deprotonated toluene ion [38]. The ratio between the
tropylium ion and the molecular ion of toluene can be drawn upon to assess the hardness of the
ionization process. In our measurements, the ratio of the signal intensities obtained at m/z = 91
and 92 was approximately 70% at 108 W/cm2. Other fragments (m/z 65, 51, and 39) of toluene
were also observed at these high laser intensities and showed similarities to conventional electron
ionization (EI) spectra [39]. Based on EI spectra, xylene and 1,2,4-trimethylbenzene produced fragments
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similar to those of toluene, especially in the lower m/z range. Since toluene was part of each
standard solution, no satisfying discrimination between fragments originating from toluene, xylene,
and 1,2,4-trimethylbenzene can be accomplished. Therefore, we only used the molecular ions to
calculate the response factors of each compound. Additionally, this strategy is also more suitable for
investigations of complex gas mixtures, since fragment ions of toluene (the reference substance) and
analytes cannot be distinguished.

Fluorene, phenanthrene, and pyrene showed no fragmentation at elevated laser intensities, which
was attributed to the stabilization of molecular ions by a high degree of freedom of higher conjugated
π-systems [40,41]. Hence, saturation phenomena for phenanthrene and pyrene can be explained by the
saturation of both absorption steps. Even though this is an interesting finding, it should be noted that
such high laser intensities are not used in conventional REMPI-TOFMS experiments for the analysis
of combustion processes or environmental monitoring. At moderate laser intensities (<107 W/cm2),
REMPI is a very soft ionization technique, producing mostly molecular ions (for toluene: (m/z 91)/
(m/z 92) < 15% at 5 × 106 W/cm2).

Saturation phenomena can also explain the deviations from quadratic intensity dependence given
by the formal intensity law. The intensity in some parts of the ionization volume may be high enough to
induce saturation effects in one or both of the involved transitions. Therefore, the measured ionization
yields are mixture of certain saturated and unsaturated proportions, resulting from geometrical effects
of the laser beam [18,42]. In order to minimize the effect of the geometrical power density distribution
of the laser beam, a top hat rather than a Gaussian laser profile may be used.

Absolute cross sections of toluene (σ1 = 6 × 10−18 cm2, σ2 = 2 × 10−17 cm2) at 266.8 nm
were published by Boesl et al. [22]. Therefore, based on the REMPI spectra of toluene given by
Weickhardt et al. [44] (recorded using a warm effusive molecular beam inlet similar to the setup in
this study) and Carpentier et al. [34], the absolute REMPI cross section of toluene at 266 nm (approx.
45% of the cross section at 266.8 nm) and 248 nm (approx. 50% of the cross section at 266 nm) could
be calculated. With these two-photon REMPI cross sections of toluene (σtol,266nm = 5.4 × 10−35 cm4;
σtol,248nm = 2.7 × 10−35 cm4) and the σrel,tol determined in this work, an estimation of absolute
two-photon ionization cross section of all investigated compounds could be carried out (Table 2).
Absolute REMPI cross sections of single-core aromatics at 248 nm were lower than those obtained
at 266 nm, which is in good agreement with the REMPI spectra presented in References [34,35,44].
For naphthalene, acenaphthene, and fluorene, a similar behavior would be expected. However,
absolute REMPI cross sections were higher at 248 nm, which cannot be explained at this point and
further studies are necessary. On the other hand, absolute REMPI cross sections for phenanthrene
and pyrene were higher at 248 nm, as expected from the REMPI spectra. Phenanthrene showed the
strongest REMPI response at ~250 nm, which was attributed to the S0 → S4 transition [45], resulting
in the highest absolute REMPI cross section of all investigated compounds. In Table 2, ionization
energies (IE) are also shown. (1 + 1) REMPI is only possible if the energy of two photons is higher
than the IE. For all investigated analytes, the two-photon absorption at 266 nm and 248 nm (4.66 eV
and 5 eV, respectively) exceeded the IE. Thus, absolute REMPI cross sections at 266 nm increased with
decreasing IEs, although this trend is not applicable to explain ionization yields in REMPI. For effective
REMPI processes, the lifetime of the excited state should be sufficiently long compared to the laser
pulse duration, which was true for all of the compounds in this study.

The results of this study suggested that the principle of relPICS can be used for a
system-independent quantification of PAHs in gaseous matrices. For single-core aromatics,
the observed deviations of σrel,tol between both systems were attributed to differences in UV laser
generation. Preliminary results obtained with an additional REMPI-TOFMS at 266 nm (UV generation
by the fourth harmonic generation of 1064 nm of Nd:YAG) for p-xylene and 1,2,4-trimethylbenzene
confirmed the cross section values of these compounds, as determined by PITOF 2.
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Table 2. Overview of absolute REMPI cross sections at 266 nm and 248 nm.

Substance Ionization Energy (eV)
Absolute REMPI Cross
Sections at 266 nm (cm4)

(I = 3 × 106 W/cm2)

Absolute REMPI Cross
Sections at 248 nm (cm4)

(I = 6 × 106 W/cm2)

toluene 8.83 a 5.4 × 10−35 2.7 × 10−35

benzene 9.24 a 4.9 × 10−36 2.4 × 10−35

phenol 8.49 a 1.9 × 10−34 4.6 × 10−35

o-xylene 8.56 a 1.1 × 10−34 n.d.
p-xylene 8.44 a 1.5 ×10−34 5.7 × 10−35

indole 7.76 a 1.8 × 10−33 1.6 × 10−33

benzofuran 8.36 a 9.1 × 10−34 1.3 × 10−33

1,2,4-trimethylbenzene 8.27 a 2.3 × 10−34 2.8 × 10−35

guaiacol 7,99 b 3.9 × 10−34 3.2 × 10−35

naphthalene 8.14 a 1.1 × 10−33 2.2 × 10−33

1-methylnaphthalene 7.96 a 9.8 × 10−34 n.d.
acenaphthene 7.75 a 7.7 × 10−34 1.8 × 10−33

fluorene 7.91 a 2.8 × 10−33 1.4 × 10−32

phenanthrene 7,89 a 4.4 × 10−33 7.9 × 10−32

pyrene 7.43 a 6.1 × 10−33 2.8 × 10−32

n.d.: not determined a: [39] b: [43].
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