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Abstract  34 

BACKGROUND: Untargeted mass spectrometry (MS)-based metabolomics data often contain missing 35 

values that reduce statistical power and can introduce bias in epidemiological studies. However, a 36 

systematic assessment of the various sources of missing values and strategies to handle these data 37 

has received little attention. Missing data can occur systematically, e.g. from run day-dependent 38 

effects due to limits of detection (LOD); or it can be random as, for instance, a consequence of 39 

sample preparation. 40 

METHODS: We investigated patterns of missing data in an MS-based metabolomics experiment of 41 

serum samples from the German KORA F4 cohort (n = 1750). We then evaluated 31 imputation 42 

methods in a simulation framework and biologically validated the results by applying all imputation 43 

approaches to real metabolomics data. We examined the ability of each method to reconstruct 44 

biochemical pathways from data-driven correlation networks, and the ability of the method to 45 

increase statistical power while preserving the strength of established genetically metabolic 46 

quantitative trait loci.  47 

RESULTS: Run day-dependent LOD-based missing data accounts for most missing values in the 48 

metabolomics dataset. Although multiple imputation by chained equations (MICE) performed well in 49 

many scenarios, it is computationally and statistically challenging. K-nearest neighbors (KNN) 50 

imputation on observations with variable pre-selection showed robust performance across all 51 

evaluation schemes and is computationally more tractable. 52 

CONCLUSION: Missing data in untargeted MS-based metabolomics data occur for various reasons. 53 

Based on our results, we recommend that KNN-based imputation is performed on observations with 54 

variable pre-selection since it showed robust results in all evaluation schemes.  55 

Keywords: untargeted metabolomics, missing values imputation, limit of detection, batch effects, 56 

runday effects, MICE, K-nearest neighbor, mass spectrometry 57 
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Key messages 58 

 Untargeted MS-based metabolomics data show missing values due to both batch-specific 59 

LOD-based and non-LOD-based effects. 60 

 Statistical evaluation of multiple imputation methods was conducted on both simulated and 61 

real datasets. 62 

 Biological evaluation on real data assessed the ability of imputation methods to preserve 63 

statistical inference of biochemical pathways and correctly estimate effects of genetic 64 

variants on metabolite levels. 65 

 KNN-based imputation on observations with variable pre-selection and K = 10 showed robust 66 

performance for all data scenarios across all evaluation schemes. 67 

  68 
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Introduction  69 

In epidemiological studies, metabolomics is an established tool that provides insights into disease 70 

mechanisms (1), as metabolite profiles generate a molecular readout that is closely linked to the 71 

(patho-)phenotype (2,3). Recent metabolomics studies have identified many metabolites as 72 

candidate biomarkers for various health conditions, such as diabetes (4–6) and cardiovascular 73 

diseases (7,8). Mass spectrometry (MS)-based metabolomics measurements can be performed either 74 

in a targeted or untargeted manner (9). In the former, only a limited number of already known and 75 

biochemically annotated metabolites are captured. In the latter, the measurements are not limited 76 

to predefined signals and offer discovery of novel compounds. While missing values in targeted MS-77 

based data occur rarely, untargeted MS-based techniques typically produce 20-30% missing values, 78 

affecting more than 80% of the measured compounds (10–13). 79 

 There are various reasons why metabolite concentrations can be missing in an untargeted 80 

metabolomics dataset. First, it is possible that the molecules are truly absent from the sample, a 81 

situation that may occur e.g. for drug metabolites that only appear in a subset of people taking that 82 

medication. On the other hand, there are several technical reasons that could result in missing 83 

values, including: (i) instrument sensitivity thresholds, below which concentrations of a specific 84 

metabolite might not be detectable in a sample (i.e., below the limit of detection, LOD); (ii) matrix 85 

effects that impede the quantification of a metabolite in a sample through other co-eluting 86 

compounds and ion suppression; (iii) declining separation ability of the chromatographic column and 87 

increasing contamination of the MS instrument; and (iv) limitations in computational processing of 88 

spectra, such as poor selection and alignment of the spectral peaks across samples (14).  89 

 Commonly, observed patterns of missing data are categorized as either missing completely at 90 

random (MCAR), missing at random (MAR), or missing but not at random (MNAR) (15). In the MCAR 91 

category, the probability of missing values does not depend on observed or unobserved 92 

measurements. In contrast, the occurrence of MAR depends on other observed measurements (for 93 
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instance, resulting from technical effects, such as overlapping peaks). MNAR describes the 94 

occurrence of missing values that depend on unobserved measurements (for instance, due to issues 95 

with the performance of the machine). 96 

 Although it is clear that the handling of missing values affects all downstream analyses, it is 97 

less clear how to appropriately handle their occurrence statistically. A simple ad hoc approach is 98 

known as complete case analysis (CCA), which only considers samples that do not contain any missing 99 

values in the metabolites analyzed in each statistical analysis step. However, missing data may occur 100 

in some systematic way (i.e., they are dependent on external factors). For example, if all cases in a 101 

case-control study have more missing data than the controls, removing observations that are missing 102 

will lead to bias in biological interpretation (16). Furthermore, CCA can cause severe loss of 103 

information and statistical power by excluding a majority of observations if multivariate methods, 104 

such as principal component analysis or partial correlation networks, are to be performed.  105 

 A widely used and flexible class of missing data strategies is imputation, which involves the 106 

replacement of missing values by reasonable substitute values. The most commonly used imputation 107 

approaches for metabolomics data assume that missing data occur because they are below the limit 108 

of detection (left-censoring, a variant of MNAR). Therefore, all missing entries of a metabolite are 109 

replaced by a low constant value, such as the actual LOD (if known), zero, or the smallest value found 110 

in the dataset for that metabolite (13). Another LOD-based substitution strategy assumes a 111 

parametric left-truncated normal distribution and performs likelihood-based parameter estimation 112 

on the observed values to reconstruct the truncated part of the distribution. Missing values are then 113 

replaced by numbers drawn from this estimated part (16,17). Additional imputation-based 114 

substitution approaches assume MCAR and replace missing values by the mean or median per 115 

metabolite (12). Advanced approaches use multivariate statistical methods for imputation, including 116 

multiple imputation by chained equations (MICE) (18) and K-nearest neighbors (KNN) imputation 117 

(19,20). 118 
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 Several previous studies have investigated the occurrence and effects of different strategies 119 

for missing values in metabolomics data. Taylor et al. (21) reported that no single imputation method 120 

was universally superior, but constant substitution methods consistently showed poor performance. 121 

Gromski et al. (12) recommended imputation by Random Forests (RFs) for GC/MS metabolomics data 122 

after evaluating the outputs of supervised and unsupervised learning approaches. Di Guida et al. (15) 123 

investigated various combinations of different preprocessing steps to determine which were the 124 

most appropriate for univariate and multivariate analyses of UHPLC-MS metabolomics data. The 125 

authors recommended RF and KNN-based imputation for PCA and PLS-DA, respectively (15). 126 

Armitage et al. (10) studied missing values in CE/MS metabolomics data and reported KNN 127 

imputation to be more effective compared with simpler substitution-based imputation methods. 128 

Finally, in a study by Hrydziuszko and Viant (11), a KNN-based imputation approach also 129 

outperformed competing strategies in an investigation of direct infusion Fourier transform ion 130 

cyclotron resonance (DI-FTICR) MS-based metabolomics data. 131 

 Despite these advances in our understanding of the effects of imputation on metabolomics 132 

data analysis, several aspects have not been addressed by those previous studies. (i) A detailed 133 

statistical description of the patterns of missing values in MS-based metabolomics data has not yet 134 

been published. Most previous studies evaluated imputation strategies assuming only random or 135 

LOD-based missing values without assessing whether this applies to real metabolomics datasets. In 136 

particular, the influence of batch effects on the occurrence of missing values has not been 137 

investigated in any study. If a cohort comprises a large number of samples, the MS runs usually are 138 

spread across multiple days, which is known to influence metabolite measurements due to variation 139 

in instrument sensitivity. Here, the LOD itself is also expected to vary across run days, an assumption 140 

that has not been explicitly accounted for in any studies. (ii) In addition, a simulation framework that 141 

reflects realistic data situations is needed to provide an unbiased evaluation of strategies for handling 142 

missing values. Evaluation of previous studies has been biased in the sense that “complete” 143 

measured data (created by excluding all variables with missing values) with artificially introduced 144 
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missing values were simulated, which most likely does not mirror realistic missing value patterns. (iii) 145 

Finally, biological validation and biochemical interpretation of the data have not been addressed in 146 

the majority of papers. Only Hrydziuszko et al. evaluated the ability of different imputation strategies 147 

to preserve metabolic differences between biological groups, which then were related to KEGG 148 

pathways (11).  149 

 In the present study, we analyzed patterns of missing data and evaluated the performance of 150 

various imputation strategies for untargeted MS-based metabolomics data from serum samples of 151 

the German Cooperative Health Research in the Region of Augsburg (KORA) F4 cohort. Data were 152 

measured on a typical, widely used untargeted MS-based metabolomics platform (Metabolon, Inc., 153 

USA) and should be representative of many untargeted population-scale metabolomics studies. The 154 

study consisted of three steps: (i) We described and analyzed patterns of missing values and their 155 

possible underlying mechanisms in a real untargeted metabolomics dataset. In particular, we 156 

investigated the occurrence of missing values within and across batches of measurements. (ii) The 157 

insights gained from these analyses were used to introduce realistic patterns of missing data into 158 

simulated data. We applied 31 imputation methods to the datasets and evaluated them with respect 159 

to their ability to achieve correct statistical estimates and hypothesis test results in various data 160 

scenarios. (iii) Finally, the imputation methods were applied to real metabolomics data (KORA F4), 161 

followed by two biologically-driven evaluation schemes. First, we assessed how accurately real 162 

biochemical pathways were reconstructed in data-driven correlation networks inferred from the 163 

imputed data. Second, we verified whether imputation led to a gain in statistical power, while 164 

preserving effects of genetic variants on metabolite levels. The study workflow is visualized in Figure 165 

1. 166 
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Results 167 

Characterization of missing data patterns in KORA F4 untargeted metabolomics 168 

data 169 

We used an untargeted metabolomics dataset from the KORA F4 study, which was generated from 170 

fasting serum samples measured on three platforms: LC/MS in both positive (LC/MS+) and negative 171 

modes (LC/MS−), as well as a GC/MS platform. After log-transformation and outlier handling (see 172 

Methods), 1757 samples and 516 metabolites were available for analysis.  173 

 The dataset contained 19.41% missing values, with 416 (80.6%) metabolites and all 174 

observations showing at least one missing value. The majority (301) of these 416 metabolites had 175 

fewer than 10% missing values (Figure 2A). For only 9.9% (51) of the metabolites, more than 70% of 176 

the measurements were missing. The amount of missing values per observation ranged from 11.4% 177 

to 32.2%, with an average of 19.6% (Figure 2B).  178 

LOD-based missing values 179 

For metabolomics data, a common assumption is that missing values occur because of low 180 

concentrations that are below the limit of detection. To explore this assumption, we analyzed missing 181 

values of a metabolite using a second, strongly correlated metabolite, which we term the auxiliary 182 

metabolite. The auxiliary metabolite is defined as the metabolite with the highest correlation (𝑟) to 183 

the given metabolite. Due to its strong correlation, we assume that insights into the pattern of 184 

missing values of a metabolite can be gained from the corresponding non-missing observations of its 185 

auxiliary metabolite. For example, assuming that metabolite A has missing values in certain 186 

observations for which its auxiliary metabolite B has measurements. If these measurements in B are 187 

low then a missing value in A most likely occurred because the actual concentrations were below the 188 

LOD. We required a minimum correlation of 𝑟 =  0.3 for auxiliary metabolites, but other values gave 189 

qualitatively similar results (File S1). 190 
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 Overall, an auxiliary metabolite was available for 56.6% of the metabolites. Of those, 62.0% 191 

showed a clear tendency for missing values to below the LOD (see Methods and File S1). An example 192 

for a clear LOD-tendency is shown for 7-methylxanthine in Figure 2C. This compound is a metabolite 193 

of caffeine metabolism that is correlated with 3-methylxanthine. The majority of observations with 194 

missing data in 7-methylxanthine showed low values for 3-methylxanthine, indicating that the 7-195 

methylxanthine values were most probably below the LOD. An example for a metabolite pair that 196 

does not show an LOD-based missingness pattern is provided in Figure 2D for 1-197 

arachidonoylglycerophosphocholine (1-AGPC) and its auxiliary metabolite 1-198 

docosahexaenoylglycerophosphocholine (1-DGPC). Unlike the previous example, observations with 199 

missing data for 1-AGPC showed values varying over the whole range of 1-DGPC. Consequently, this 200 

suggests that LOD does not adequately explain the pattern of missing values for 1-AGPC. Scatterplots 201 

of investigated metabolites and their corresponding auxiliary metabolites, as well as boxplots of 202 

concentrations in the auxiliary metabolites for missing and non-missing observations in the 203 

investigated metabolites can be found in File S1. 204 

Although the LOD-tendency was observed for many metabolites, there was no clear LOD threshold 205 

separating missing and observed measurements across all metabolites (Figure 2C), which would have 206 

been the case if LOD was the only underlying mechanism for missing data. Instead, the values of the 207 

auxiliary metabolites with missing values in the investigated metabolites were spread broadly over a 208 

range of lower values, indicating a blurred rather than a single fixed LOD for all metabolites.  209 

Run day-dependent missing values 210 

Batch (run day) effects also can drive systematic patterns of missing data due to daily variation in 211 

instrument sensitivity. To examine whether missing data depended on overall run day quality, we 212 

examined the amount of missing values per run day for each platform (LC/MS+, LC/MS–, or GC/MS). 213 

Subsequently, we investigated whether metabolites were affected differently by runday quality. 214 
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 The KORA F4 samples were measured on 53 run days with 34 samples on average per day. If 215 

missing values were dependent on run day quality due to variation in instrument performance (e.g., 216 

caused by LC or GC column decline), we would expect there to be some days for which samples 217 

overall contained more (“bad” run day) or fewer (“good” run day) missing values compared with the 218 

average. Indeed, we observed such “bad” and “good” run days for all three platforms (Figure 3A). 219 

While the run day-specific amount of missing values tended to be correlated between LC/MS− and 220 

LC/MS+ (correlation of the run day-specific median of missing values between the two platforms was 221 

𝑟 = 0.36), there was no correlation between LC/MS+/− and GC/MS. This suggests that changes in 222 

instrument performance, rather than global effects (such as those that could originate from sample 223 

preparation) were responsible for differences in run day quality. 224 

 Although there was an overall effect of run day quality on the pattern of missing values, we 225 

observed considerable differences in the standard deviations (SD) of run day-specific missing values 226 

for metabolites with the same amount of missing data (Figure 3B). This suggests that metabolites 227 

were affected differently by run day quality. For example, the bile acid ursodeoxycholate (46% total 228 

missing data) showed relatively low variation in run day missing data (SD = 0.12) (Figure 3Figure 3C). 229 

However, for gamma-glutamylisoleucine (Figure 3D), a metabolite with a similar total amount of 230 

missing values (42%), the observed variation in missing data across run days was substantially larger 231 

(SD = 0.22). 232 

Run day-dependent LOD mechanism 233 

The observed run day-dependent pattern of missing data, together with the blurred LOD-based 234 

pattern, suggests that different run days may exhibit different LODs, which contributed to the blurred 235 

global LOD effect. To verify this, we calculated the correlation between run day mean and run day 236 

missingness for all metabolites. A histogram of the correlation coefficients is shown in Figure 4A. The 237 

majority of metabolites displayed a strong tendency for negative correlations. An example for run 238 

day-specific LODs is shown in Figure 4B–C: for 7-methylxanthine, the correlation of run day mean and 239 
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the run day-specific amount of missing values is 𝑟 = −0.68 (Figure 4B). Run days with low means 240 

tended to have a higher amount of missing values (Figure 4C). Density plots for all metabolites before 241 

and after run day normalization can be found in File S2. 242 

 243 

Taken together, we observed that batch (run day) effects on the limit of detection can result in a 244 

blurred LOD-effect after run day normalization, which can explain patterns of missing values in most, 245 

but not all, metabolites. 246 

 247 

Evaluation of imputation approaches in a simulation framework 248 

As shown in the previous analyses, not all of the missing data in MS-based metabolomics studies can 249 

be attributed to run day-dependent LOD-based missing data. Thus, the optimal imputation approach 250 

should perform well across all possible patterns. We conducted a simulation study to compare 251 

statistical estimates between imputed and complete data. We simulated incomplete data according 252 

to the patterns of missing values observed in the real metabolomics data and imputed these data 253 

using various imputation approaches. We then evaluated these approaches for recovering correct 254 

statistical estimates after conducting correlation and regression analyses. 255 

Simulation setup and evaluation criteria 256 

We simulated six mechanisms for missing data derived from observations in the real data (see 257 

Methods, File S3, and Figure 5A–E): (i) Fixed LOD, as an extreme form of systematic missing values 258 

below a global LOD; (ii) Probabilistic LOD, where the probability of a missing value increases at lower 259 

values, which should resemble the blurred LOD-based patterns observed in the real data; (iii) Run 260 

day-specific fixed LOD, where LOD is assumed to vary across run days; (iv) Run day-specific 261 

probabilistic LOD, where a probabilistic form of LOD is assumed to occur across run days; (v) 262 

Unsystematic (random) missingness, for missing data with an unknown reason; and (vi) Mixtures of 263 

LOD-based and unsystematic missingness. Based on these 6 mechanisms, we created various 264 
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parameter scenarios resembling realistic conditions. For each scenario, we conducted 250 265 

simulations to assess whether the imputation methods could reconstruct statistical estimates of 266 

Pearson correlation, partial correlation, linear regression (results shown in File S3), and logistic 267 

regression. To this end, we calculated type 1 error as the proportion of simulations in which a 268 

significant estimate was obtained when the true correlation was equal to zero. In addition, we 269 

calculated power as the proportion of significant estimates when the true correlation was unequal to 270 

zero. We also estimated bias, which is shown in File S3. A detailed description of the simulation and 271 

evaluation framework is also provided in File S3. 272 

Missing data handling strategies 273 

We applied 31 imputation approaches (see Figure 5F; detailed descriptions in Methods and File S4) 274 

on the simulated data. Some were adapted to account for run day-specific missing values. The 275 

imputation approaches followed different concepts, which could have one of the following four 276 

properties or combinations thereof: (i) approaches that explicitly assume LOD-based missing values, 277 

(ii) approaches that consider run day-specific missing values, (iii) multivariate procedures using 278 

correlations among variables, and (iv) multiple imputation (MI) strategies. The MI approaches usually 279 

comprise imputation, analysis, and pooling steps. In the first step, the incomplete data are imputed 280 

m times to produce m complete datasets. Subsequently, statistical analysis is performed on each of 281 

the m complete datasets and then the m analyses are combined to one final result.  282 

Simulation results  283 

In the following, we evaluate the performance of the four imputation properties (i)–(iv) introduced 284 

above. Simulation results from other data scenarios, all variations of the imputation approaches 285 

used, and the combination of parameter settings are available in File S5. 286 

 Property (i): Methods that explicitly assume LOD-based missing values and perform 287 

imputation globally without taking run day information into account (min, Richardson & Ciampi (RC), 288 

imputation by truncated sampling (ITS)), showed inflated type 1 error rates and low power for both 289 
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correlation and regression analysis. This was expected for three reasons. First, for a data scenario 290 

with run day-dependent probabilistic LOD-based missing values, these methods underestimate the 291 

LOD for most of the rundays and replace missing entries by too low values (Figure 6A). Second, for a 292 

data scenario with random missing values, they expectedly fail since the underlying assumption of an 293 

LOD is not met (Figure 6B). Finally, min and RC impute a metabolite by replacing all of its missing 294 

entries by a constant value, which substantially distorts the metabolite distribution (see File S5). 295 

Property (ii): The LOD-based methods that take run days into account (RC-R, ITS-R) were 296 

expected to perform well in a simulated data scenario with run day effects (Figure 6A). Unexpectedly, 297 

we observed an inflated type 1 error rate and decreased power for all three statistical analyses 298 

(Pearson correlation, partial correlation, and logistic regression). RC-R and ITS-R assume that the 299 

observed values of a metabolite follow a truncated normal distribution, which is parametrized by 300 

maximum likelihood estimation (MLE), in order to replace missing values with randomly drawn values 301 

from the truncated part. The instability of MLE due to small sample sizes available within run days 302 

could explain the poor performance of these approaches. The same poor performance was observed 303 

for scenarios with a mixture of run day-dependent LOD-based and random missing values (Figure 6C). 304 

For the dataset with only random missing values, LOD- or run day-based approaches showed the 305 

expected strong reduction in power since here the underlying assumption of a truncated normal 306 

distribution is false (Figure 6B). 307 

 Property (iii): Multivariate approaches (imputation based on chained equations (ICE) and 308 

KNN-based imputation) take into consideration the correlation between variables or observations. 309 

ICE approaches had high power, but an increased type 1 error rate when missing value proportions 310 

increased (Figure 6). KNN-based imputation on observations with variable pre-selection and K = 10 311 

(KNN-obs-sel(10)) was one of the best performing methods with high power and an overall marginal 312 

type 1 error rate, even for a high amount of missing values. The power for KNN-obs was also high, 313 

but it showed high type 1 error rate and therefore a poor ability to correctly identify truly absent 314 
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associations. In contrast, KNN-vars had a low type 1 error rate, but decreased power, which became 315 

more pronounced at higher amounts of missing values. 316 

 Property (iv): Single imputation procedures often underestimate the variability of statistical 317 

estimates, resulting in inflated type 1 error rates. This should be avoided by approaches performing 318 

multiple imputations (MI). MI versions based on LOD- (MITS) and run day-effects (MITS-R) indeed had 319 

decreased type 1 error rates, although power was low (Figure 6). MICE with Bayesian linear 320 

regression (MICE-norm) or predictive mean matching (MICE-pmm) as imputation model showed 321 

negligible type 1 error rates and high power for all scenarios with up to 50% missing values. At higher 322 

amounts of missing data, the power decreased considerably, but the type 1 error remained marginal 323 

(File S5). A slight modification of the MICE algorithm applied widely in the metabolomics field (here 324 

termed MICE-avg) was performed on each imputed data, and comprised the pooling of the imputed 325 

data with subsequent statistical analyses rather than pooling the statistical estimates after analysis. 326 

This approach showed high power, but increased type 1 error rates, in particular for >30% missing 327 

values. 328 

 Taken together, when considering all patterns of missing data and all evaluation criteria, 329 

KNN-obs-sel(10) and MICE-norm were the most robust approaches. For higher amounts of missing 330 

data (≥50%), MICE showed a strong decrease in power with marginal type 1 error, whereas KNN-obs-331 

sel(10) had only slightly increased type 1 error rates with high power. 332 

 333 

Evaluation of imputation approaches on real MS-based metabolomics data 334 

We conducted a biological evaluation of all approaches using the metabolomics data from the KORA 335 

F4 population study. An objective criterion for evaluation is challenging to construct, since the true 336 

values underlying the missing ones are unknown. We devised two indirect tests that assessed 337 

imputed values for biological validity. First, we assessed the ability of imputation methods to 338 

statistically reconstruct biochemical pathways in metabolomics data. Second, we evaluated the gain 339 
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in statistical power while preserving the true effect size of genetic variants (SNPs) on metabolite 340 

levels. 341 

Evaluation based on pathway modularity 342 

GGMs are based on partial correlations and reflect conditional dependencies in multivariate Gaussian 343 

distributions (5,22). When applied to metabolomics data, they reconstruct a precise picture of the 344 

metabolic network, showing a modular topology with respect to known pathways. In other words, 345 

metabolites will tend to be correlated with other metabolites from the same biochemical pathway 346 

(5,22,23). We used this pathway-based modularity in a metabolic network as a quality criterion to 347 

indicate whether the imputation methods generally were capable of maintaining biochemically valid 348 

edges.  349 

 Each imputation strategy was applied to the KORA F4 metabolomics data, and a GGM was 350 

estimated for each obtained dataset. Subsequently, we used a priori pathway annotations from 351 

Metabolon Inc., where each metabolite was assigned to one pathway (e.g., branched-chain amino 352 

acids, lysolipids, xanthines) to calculate pathway-based modularity (𝑄), according to (22,24). This 353 

measure reflects the ratio of metabolite correlations within versus across pathways. A high Q value 354 

indicates a dense within-pathway correlation compared with cross-pathways. Variability was 355 

estimated by bootstrap resampling (see Methods).  356 

 Across all datasets, we obtained modularity values ranging from 0.384 to 0.434 (Figure 7A). 357 

Imputation methods that explicitly considered the LOD-based mechanism and their run day-specific 358 

versions (Figure 5, property (ii)) did not outperform alternative approaches. Multivariate, single 359 

imputation methods (property (iii)) yielded low 𝑄 values, except for KNN-obs-sel, which achieved the 360 

overall third best result (𝑄 = 0.422 for K = 10) (Figure 5). The performance of KNN-based imputation 361 

methods strongly depended on the definition of neighbors (variables or observations) and on the 362 

number of these neighbors (K). The MI procedures (property (iv)) MITS, MITS-R, and MICE-avg 363 

performed poorly, whereas the networks generated on MICE imputed data showed the overall 364 
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highest modularity (𝑄 = 0.434 and 𝑄 = 0.424 for MICE-norm and MICE-pmm, respectively) (Figure 5). 365 

Overall, the three best performing approaches were MICE-norm, MICE-pmm, and KNN-obs-sel(10). 366 

Evaluation based on metabolite-SNP associations 367 

Using KORA F4 data (n = 1750), we determined the ability of imputation methods to gain statistical 368 

power compared with complete case analysis (CCA, deleting samples with any missing values) while 369 

preserving the effect of genetic variants on metabolite levels in human blood. For the evaluation, we 370 

selected a set of metabolite-SNP associations from a previous genome wide association study 371 

(GWAS) in the KORA F4 and TwinsUK cohorts, for which a functional connection between the gene 372 

and the metabolite was biologically evident (Table S8) (25). For example, GOT2 (rs4784054), which 373 

was associated with concentrations of phenyllactate, encoded an enzyme that catalyzes the 374 

conversion of phenylalanine to phenylpyruvate, which is then converted to phenyllactate (25,26).  375 

 We investigated the gain in statistical power when using imputed datasets compared with 376 

the power obtained with CCA for 18 of such metabolite-SNP pairs, where the metabolite had 377 

between 10% and 70% missing values. Statistical power gain was calculated as the negative log10 of 378 

the ratio of the p-values estimated for the imputed data to the p-values estimated for CCA in 379 

corresponding linear regression models (detailed results in File S8 and Table S8). A high ratio 380 

indicates greater power for imputed data. As a second evaluation criterion, we calculated the log2 381 

absolute ratio of the effect sizes obtained from the regression models for imputed data and those 382 

derived from CCA in KORA F4 (see Methods). A log2 ratio close to zero indicates that the imputation 383 

method was able to preserve effect sizes, whereas imputations yielding a highly negative or positive 384 

log2 ratios indicate underestimation or overestimation of the effect sizes, respectively. 385 

 Imputation with LOD-based methods (property (i)) yielded a gain in power for up to seven 386 

genetic associations of the 14 metabolites (Figure 7Figure 7). For two of these associations 387 

(tetradecanedioate and SLCO1B1; and hexadecanedioate and SLCO1B1), effect sizes were 388 

underestimated, and for the association between 1-methylurate and NAT2, the effect size was 389 
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overestimated across all methods, except for MITS-R. Run day-specific imputation methods (property 390 

(ii)) performed well, with ITS-R yielding the highest number of associations (12) with greater 391 

statistical power, of which seven showed effect sizes similar to effect sizes derived from CCA. The 392 

best methods among multivariate approaches (property (iii) and (iv)) were MICE-avg-norm, KNN-obs-393 

sel(10), and KNN-obs-sel(20), all three of which generated a gain in statistical power for 12 394 

associations. These methods also showed good performance in preserving genetic effects and did not 395 

show severe overestimation or underestimation of effect sizes. MICE-norm/-pmm/-adjR showed only 396 

moderate performance with a power gain for seven associations.  397 

 In an additional analysis, we used results from the EPIC-Norfolk cohort with n = 10 634 398 

subjects (27), to assess the ability of imputation methods to preserve effects of genetic variants on 399 

metabolites. We hypothesized that the effect sizes would be estimated more accurately in this much 400 

larger dataset, and effect sizes obtained with KORA F4 imputed data should approximate effect sizes 401 

derived from EPIC-Norfolk. Overall, we observed that the majority of SNP-metabolite pairs showed 402 

either an overestimation or an underestimation of effect sizes across all imputation methods. This 403 

tendency might reflect differences between the cohorts KORA F4 and EPIC-Norfolk rather than 404 

differences between imputation strategies (see detailed results in File S7 and Table S8). 405 

 Overall, for nearly all metabolite-SNP pairs, this analysis showed that statistical power was 406 

increased by imputing missing values and the effect sizes could be preserved. ITS-R, MICE-avg-pmm, 407 

KNN-obs-sel with K = 10 and K = 20 were the imputation methods that generated the highest number 408 

of associations (12) and resulted in a gain in statistical power compared with CCA. 409 

  410 
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Discussion 411 

In this study, we investigated patterns of missing data in a typical example of untargeted MS-based 412 

metabolomics data and their possible underlying mechanisms. Insights gained from these analyses 413 

were used to generate simulated data that reflected the real data situation for a comprehensive 414 

evaluation of 31 imputation methods. Finally, we applied the imputation strategies to real MS-based 415 

metabolomics data from the German KORA F4 study and evaluated them using biological validity 416 

measures. 417 

 For metabolomics data, an intuitive assumption is that missing data occur when metabolite 418 

concentrations fall below the machine’s LOD. Indeed, we found evidence for systematic patterns of 419 

missing data due to LOD- and batch-effects for a large proportion of the analyzed metabolites. 420 

Missing data were found to be influenced by run day quality, although metabolites varied in their 421 

susceptibility to this effect. Finally, we found a negative correlation between run day mean and 422 

missing data per run day, further confirming LOD-based mechanism within run days. The existence of 423 

multiple run day-dependent LODs possibly accounted for the blurred rather than fixed global LOD 424 

observed in the data. It has been suspected that multiple detection limits arise from factors such as 425 

batch (run day) effects (27). However, to the best of our knowledge, this is the first time that these 426 

effects have been systematically explored so far. 427 

 We evaluated 31 imputation methods in an evaluation framework consisting of three 428 

schemes: (i) unbiased estimation of statistical estimates and hypothesis test results based on 429 

simulated data, (ii) statistical reconstruction of biochemical pathways in metabolic networks, and (iii) 430 

the ability to preserve effects of genetic variants on metabolite levels while allowing for a gain in 431 

statistical power.  432 

MICE-norm was the best performing imputation method for evaluation scheme (i) and (ii), but it 433 

showed only moderate performances in the metabolite-SNP analysis. One major drawback of this 434 

method is that multiple imputations have to be performed, making these approaches statistically and 435 
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computationally challenging. For m imputations, the desired statistical analyses must be performed 436 

on each of the m imputed datasets, and then the resulting m estimates must be combined to one 437 

statistical result. A widely applied alternative is to perform m multiple imputations and then combine 438 

the m complete datasets to one final dataset containing the average of the imputed values (MICE-439 

avg). That is, MICE-avg does not require statistical estimates to be pooled, and therefore, it is much 440 

easier to apply. However, this simplicity is accompanied by an underestimation of metabolites' 441 

variances, resulting in poorer performance of statistical estimation (correlation and regression 442 

coefficients) and reconstruction of biochemical pathways. 443 

 A feasible, but better performing method was KNN-obs-sel(10), which uses KNN-based 444 

imputation on observations with variable pre-selection and K = 10. This method ranked highly in all 445 

evaluation schemes. Other KNN-based imputation schemes, including KNN-based imputation on 446 

variables (KNN-vars) and on observations without variable pre-selection (KNN-obs), consistently 447 

showed poor performance across all evaluation schemes. Our results are in line with observations 448 

from previous studies, where KNN-based imputation performed well (10,11,15,28). However, we also 449 

observed that variations of KNN imputation lead to substantially different results, as in previous 450 

studies (20,28).  451 

 Although we observed LOD- and run day-based effects in real metabolomics data, methods 452 

that explicitly consider this information did not outperform competing approaches in the first two 453 

evaluation schemes. This is likely due to the fact that they perform imputation in a univariate manner 454 

without taking the correlation between the variables into account. Moreover, all of these LOD-based 455 

methods include maximum likelihood estimation in their imputation process, which was found to 456 

perform well only for larger sample sizes in previous studies (27,29). In our study, the number of 457 

observations within run days is limited, resulting in considerable instability of the MLE. LOD-based 458 

run day-dependent methods performed well with respect to gain in statistical power in the analysis 459 

of metabolites–SNP associations.  460 
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 In summary, we have presented a detailed description of patterns of missing data in 461 

untargeted MS-based metabolomics data. In particular, we considered, for the first time, the effects 462 

of run days on systematic patterns of missing data. Our work showed that missing data occur in most 463 

cases due to LOD effects, which are moreover run day-dependent. Nevertheless, MICE and KNN-464 

based imputation, methods that do not explicitly consider LOD-based effects, performed best when 465 

tested in both statistical and biological evaluation schemes. This is most likely because these 466 

methods take into account multivariate dependencies within the data. The two approaches are For 467 

future studies, we recommend KNN-based imputation on observations with K = 10, since it 468 

consistently performed well across all data scenarios and all evaluation schemes, and is 469 

computationally non-demanding for daily data analysis.  470 

  471 
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Material and Methods 472 

Study cohort, metabolomics and genotype measurements 473 

Data from 1768 fasting serum samples of the German Cooperative Health Research in the Region of 474 

Augsburg (KORA F4) population cohort (30) was used, comprising 910 females and 858 males. Age 475 

distribution was 60.53 ± 8.79 years for females and 61.20 ± 8.78 years for males. Body mass index 476 

(BMI) distribution was 27.88 ± 5.24 kg/m² for females and 28.46 ± 4.29 kg/m² for males. 477 

 Serum metabolomics measurements were performed on three platforms, LC/MS− (negative 478 

mode), LC/MS+ (positive mode), and GC/MS by Metabolon, Inc. (Durham, NC, USA). The 1768 serum 479 

samples were measured on 53 different run days, with 34 samples on average per run day. A total of 480 

516 metabolites were quantified, of which 303 had an identified chemical structure. A more detailed 481 

description of sample acquisition, experimental procedures, and metabolite identification can be 482 

found in File S10.  483 

Each known metabolite was annotated with one of 68 pathways by Metabolon, Inc. A full list 484 

of all measured metabolites, including pathway annotations, can be found in Table S9. For correlation 485 

analysis, data were normalized for run day-effects by dividing each metabolite by run day median. 486 

Since metabolite measurements were assumed to follow a log-normal distribution, the data were 487 

log-transformed for all statistical analyses. The run day-corrected and log-transformed data were 488 

used to determine outlier samples. Eleven individuals with a Mahalanobis distance (calculated across 489 

the complete dataset) greater than four SD from the mean were considered outliers and excluded 490 

from the dataset. For the biological evaluation schemes, age, sex, and BMI were used as standard 491 

covariates. Seven samples were excluded due to incomplete information in these phenotypes, 492 

resulting in 1750 individuals in total.  493 
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 The KORA F4 cohort was genotyped using the Affymetrix Axiom platform. After quality 494 

control, genotype data (measured or imputed according to data from the 1000 genomes project, 495 

phase 1 version 3) were available for 1685 of the 1750 individuals.  496 

Missing data in KORA F4 497 

To explore the mechanism for the missing data of a given metabolite 𝑚, a second (auxiliary) 498 

metabolite 𝑚𝑎𝑢𝑥 was used. 𝑚𝑎𝑢𝑥 was defined as the metabolite with the strongest Pearson 499 

correlation to 𝑚 (at least 0.3). An LOD-tendency was assumed if the average value of 𝑚𝑎𝑢𝑥 in 500 

samples with missing values in 𝑚 was significantly lower than the average of 𝑚𝑎𝑢𝑥 in samples with 501 

measured values in 𝑚. Significance was assessed using Wilcoxon–Mann–Whitney tests with 𝛼 = 0.05 502 

after Bonferroni correction for multiple testing. 503 

 For all correlation analyses, only metabolites with more than 10% and less than 70% overall 504 

missing values were considered. 505 

 In order to explore whether missing values varied among run days, the normalized 506 

proportions of missing values among the 53 run days were compared within each platform. For a 507 

metabolite 𝑚 and a run day 𝑑, the normalized amount of run day-specific missing values was 508 

calculated as the number of missing values for 𝑚 in 𝑑 divided by the total number of samples 509 

measured in 𝑑, divided by the median value of missing data of 𝑚 over all run days. 510 

Simulation study 511 

Insights gained from the analyses of missing values in real MS-based metabolomics data were used to 512 

create artificial data that best mirror reflected patterns of missing data. A brief overview of the 513 

simulation framework is provided below, and a detailed description can be found in File S3. For each 514 

set of parameters corresponding to a certain data situation, 250 random datasets were generated. 515 

For each dataset, two variables were simulated by drawing from a multivariate normal distribution, 516 

with sample sizes ranging from 100 to 1000, and with means equal to zero and covariance chosen 517 

such that variances were equal to one (representing scaled variables). The Pearson correlation 518 
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between the two variables was ranged from 0 to 0.4. In addition, for the multivariate analyses and to 519 

evaluate imputation methods that apply to a multivariate strategy, auxiliary variables correlated with 520 

the two main variables were introduced. Their number and correlation strength were chosen to 521 

match the real data (for details, see File S3). 522 

 Simulated observations were randomly assigned to “run days” with the number of run days 523 

chosen such that each run day comprised 34 observations, according to the average number found 524 

for the real KORA F4 measurements. 525 

 A proportion of missing values (10%, 30%, 50%, and 70%) was introduced into the main 526 

variable pair according to different mechanisms derived from our observations in the KORA F4 527 

Metabolon data (Figure 5, File S3).  528 

We used the following parameter settings for the results in the main manuscript: moderate 529 

variability of missing data across run days (see File S3), uncorrelated run day-specific missing patterns 530 

of the metabolite pair, and varying association of the inverse relation between metabolite 531 

concentration and missing values, at 𝑛 = 250 and in the presence of informative auxiliary 532 

metabolites. For Pearson and partial correlation analysis, both main variables had the same degree of 533 

missing data. For logistic regression analysis, the predictor variable had a mixture of 50% run day-534 

dependent probabilistic LOD-based missing data and 50% non-systematic missing data. Results for 535 

more parameter settings can be found in File S5. 536 

Imputation approaches 537 

A variety of imputation methods (Figure 5Figure 5) were selected because they were reported in the 538 

context of metabolomics data or were developed and adopted to address characteristics in the 539 

current dataset.  540 

Mean imputation (mean): All missing values of each incomplete variable are replaced by the average 541 

of the observed values of that metabolite. Minimum imputation (min): All missing values of each 542 
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incomplete variable are replaced by the smallest observed value of that metabolite (5,13,16). 543 

Richardson & Ciampi (RC): Assuming that missing values occur due to LOD and the observed 544 

metabolite values follow a left-truncated normal distribution, maximum likelihood is used to 545 

estimate this distribution. A missing value 𝑥 is then replaced by the expected value of 𝑥 conditional 546 

on 𝑥 being below the LOD, 𝐸(𝑥|𝑥 ≤ 𝐿𝑂𝐷) (17). Imputation by truncated sampling (ITS): This is an 547 

extension of the RC method, where the missing values are replaced by randomly drawn values from 548 

the censored part of the estimated truncated normal distribution. Multiple imputation by truncated 549 

sampling (MITS): ITS is applied as described above, but multiple imputation is performed according 550 

to Rubin’s rules (31) using the R package mice, version 2.25. These rules include: (i) the datasets are 551 

imputed 𝑚 times, (ii) each of the 𝑚 completed datasets is analyzed separately, and (iii) the 𝑚 552 

resulting estimates are combined using established procedures (31–33). The number of imputations 553 

was set to 𝑚 = 20 for all methods. Runday-specific LOD-based methods (RC-R/ITS-R/MITS-R): The 554 

previously described methods RC, ITS, and MITS are applied within run days where at least 17 555 

observations are available. In RC-R, the remaining missing values are set to the mean of all available 556 

expected values. For ITS-R and MITS-R, the remaining missing values are replaced using ICE-norm (see 557 

below). Imputation by chained equations (ICE-norm/-pmm/-adjR) was performed using the R 558 

package mice, version 2.25. It uses a repeated chain of equations through the incomplete variables, 559 

where in each imputation model, the respective incomplete variable is modeled as a function of the 560 

remaining variables (34–36). In ICE-norm, a Bayesian linear regression is used as the imputation 561 

model, whereas in ICE-pmm (predictive mean matching as imputation model), missing values are 562 

replaced by a random draw of measured values from other observations with the closest predicted 563 

values. In ICE-adjR, a model is specified with random intercept per run day, which aims to better 564 

utilize run day information. This model assumes that variable values (i.e., metabolite concentrations) 565 

have a run day-specific component, which varies randomly following a normal distribution. Multiple 566 

imputation by chained equations (MICE-norm/-pmm/-adjR) was performed using the R package 567 

mice, version 2.25: MICE-norm, MICE-pmm, and MICE-adjR consisted of 𝑚 = 20 parallel imputation 568 
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runs of ICE-norm, ICE-pmm, and ICE-adjR, respectively. Subsequently, the estimates are combined 569 

using Rubin’s rules as described above for MITS. MICE average version (MICE-avg-norm/-pmm): ICE-570 

norm or ICE-pmm is applied multiple (𝑚 = 20) times in parallel, followed by combining the 𝑚 571 

imputed datasets to one final dataset as the average of the imputed values. K-nearest neighbor 572 

imputation (KNN-var(K)/KNN-obs(K)/KNN-obs-sel(K)): In KNN-var and KNN-obs, missing values of 573 

each variable are replaced by the weighted average of pre-specified K nearest variables and 574 

observations, respectively. Distances to neighbors were defined as Euclidean distance and weights 575 

were chosen as 𝑒−𝑑, where 𝑑 defines the distances between two variables or observations. In KNN-576 

obs-sel, KNN-obs is performed by selecting the strongest correlated variables with |𝜌|  ≥ 0.2, but it 577 

was constrained to a minimum of 5 and a maximum of 10 variables. The number of neighbors for K 578 

was set to 3, 5, 10, and 20. 579 

More detailed descriptions of RC, RC-R, ITS, MITS, ICE, and KNN-based methods can be found in File 580 

S4. The two best performing methods, KNN-obs-sel(K) and MICE are available as R code in File S11. 581 

Statistical evaluation of missing data handling strategies in the simulation study 582 

Pearson correlation, partial correlation, linear regression, and logistic regression analysis were 583 

performed, and the ability of imputation methods to reconstruct true associations and unbiased 584 

hypothesis test results was evaluated. For logistic regression, a dichotomized variable was simulated 585 

by discretizing one of the simulated continuous variables: all values above the median were set to 1 586 

and all values below the median were set to 0. This dichotomized variable was used as response and 587 

the remaining continuous variable as predictor. For MI strategies, the resulting (correlation or 588 

regression coefficient) estimates and their variances were combined using Rubin’s rules. The 589 

obtained point estimates were then compared with the true underlying values by assessing the 590 

validity of hypothesis tests. To this end, type 1 error was calculated as the proportion of significant 591 

estimates (at α= 0.05) after imputation when there was no true effect. Power was calculated as the 592 
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proportion of significant estimates (at α= 0.05) after imputation in the presence of a true effect. 593 

Detailed results can be found in File S5.  594 

Evaluation based on pathway modularity 595 

This analysis was based on pathway annotations from Metabolon Inc. (see Supporting Information 596 

S9). Each imputation strategy was applied to the KORA F4 metabolomics data, resulting in different 597 

imputed datasets. All unknown metabolites were excluded since these compounds were not assigned 598 

to a pathway. For each imputed dataset, a Gaussian graphical model (GGM) was estimated to infer a 599 

network using the R package GeneNet, version 1.2.12. In previous studies, we have demonstrated 600 

that these models correctly reconstruct biochemical pathways from the data (22,25,37). In the case 601 

of MIs, a GGM was estimated for each imputed dataset, followed by combining partial correlations 602 

using Rubin’s rules after a Fisher Z-transformation. The network was constructed using partial 603 

correlations that are significantly different from zero after Bonferroni correction for 𝑛 ∗ (𝑛 − 1)/2, 604 

where 𝑛 is the number of metabolites.  605 

The pathway-based network modularity measure 𝑄 (22,24) was calculated for each network as 606 

𝑄 =  ∑ [
𝐴(𝑉𝑖,𝑉𝑖)

𝐴(𝑉,𝑉)
− (

𝐴(𝑉𝑖,𝑉)

𝐴(𝑉,𝑉)
)

2

]
|𝑆|
𝑖=1 , 607 

where |𝑆| is the total number of pathways, 𝑉 is the set of all metabolites, and 𝑉𝑖 describes the subset 608 

of metabolites annotated with pathway 𝑖. 𝐴(𝑉𝑖, 𝑉𝑗) is the number of edges between any two node 609 

sets 𝑉𝑖 and 𝑉𝑗. The variance of 𝑄 was estimated non-parametrically using bootstrapping of the 610 

original dataset (R package boot, version 1.3-15) with 1000 runs. 611 

Evaluation based on metabolite-SNP associations 612 

Linear regression was performed using KORA F4 CCA and the results were compared with each other. 613 

For this analysis, we selected metabolite-SNP pairs for which (i) a genome-wide significant 614 

association could be identified in the meta-analysis of KORA F4 and TwinsUK cohorts in a previous 615 

GWAS (25) (summary statistics retrieved from http://www.gwas.eu); (ii) the proportion of each 616 
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metabolite’s missing values in KORA F4 was between 10% and 70%; (iii) the metabolite was 617 

measured in the EPIC-Norfolk cohort, which we used to further benchmark the preservation of effect 618 

sizes; and (iv) a functional connection between the genetic locus of the SNP and the metabolite (e.g., 619 

metabolite is a known substrate of the transporter) was evident according to manual curation of the 620 

GWAS results (Table S8). For each imputed dataset, 18 metabolite-SNP pairs were tested for genetic 621 

association using age- and sex-corrected linear regression models under the assumption of an 622 

additive genetic model (metabolite ~ 𝛽0 + 𝛽1 × SNP + 𝛽2 × age + 𝛽3 × sex). To avoid spurious 623 

associations, metabolic data points greater than four SDs from the mean were removed prior to 624 

computing linear models. For MI approaches, the regression coefficients were pooled using Rubin’s 625 

rules as provided by the R package mice, version 2.25. For each metabolite-SNP pair, the variance of 626 

the regression coefficients and p-values were estimated using bootstrapping.  627 

 To explore which imputation approaches increased statistical power, p-values obtained for 628 

the effect sizes based on imputed data were compared with p-values obtained from CCA by 629 

calculating their ratio as 𝑟𝑝 =  
− log10(

𝑝𝑖𝑚𝑝

𝑝𝐶𝐶𝐴
)

− log10(𝑝𝐶𝐶𝐴)
, where 𝑝𝑖𝑚𝑝 was the p-value obtained for imputed data 630 

and 𝑝𝐶𝐶𝐴 was the p-value derived from CCA. A ratio less than or equal to zero indicated either no 631 

power gain or a power loss, whereas a ratio greater than zero indicated a drop in p-value, which 632 

suggested that statistical power increased when imputation was performed.  633 

 In addition to statistical power gain, the imputation approaches should be able to preserve 634 

effect sizes compared to CCA. Standardized effect sizes obtained from the imputed data (𝛽𝑖𝑚𝑝) were 635 

compared with standardized effect sizes estimated for CCA (𝛽𝐶𝐶𝐴) based on the KORA F4 data (n = 636 

1750) and the EPIC-Norfolk data (n = 10 634), assuming estimates from the EPIC-Norfolk data to be 637 

close to true effects. We calculated the ratio 𝑟𝛽 = log2(|
𝛽𝑖𝑚𝑝

𝛽𝐶𝐶𝐴
|), with a low ratio indicating a similar 638 

effect size between the imputed data and CCA. A highly negative or positive 𝑟𝛽 indicates an 639 
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underestimation or overestimation of the effect sizes in imputed data, respectively. A well 640 

performing imputation method is assumed to obtain high 𝑟𝑝 and low absolute 𝑟𝛽. 641 

  642 
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Figures and Tables 643 

 644 

Figure 1. Flow chart of the study design. Pre-processed KORA F4 metabolomics data were 645 

used to analyze patterns of missing values in the dataset. Possible underlying mechanisms 646 

were inferred and implemented in a simulation framework to generate data resembling the 647 

observed patterns. Based on these simulated data, imputation methods with different 648 

characteristics were applied and evaluated. Finally, the same imputation approaches were 649 

evaluated using KORA F4 metabolomics and genomics data. 650 

Figure 2. Overall amounts of missing data and LOD effects. (A,B) The overall fraction of 651 

missing values across metabolites and observations, respectively. (C,D) Scatter plots and 652 

boxplots of selected metabolite pairs to illustrate missing data due to LOD and non-LOD 653 

effects, respectively. Blue - observed concentrations. Red - observed values of the auxiliary 654 

metabolite in observations with missing values of the investigated metabolite. Note that red 655 

data points are not part of the x-axis but were plotted in the same scatterplot for clarity. corr 656 

= correlation, p = p-value of correlation, 𝒑𝑾𝒔𝒕 = p-value of Wilcoxon–Mann–Whitney test. 657 

Figure 3. Run day-dependent effects on missing data. (A) Normalized amount of missing 658 

values per run day in each platform (LC/MS+, LC/MS−, GC/MS). For a given metabolite and 659 

run day, the normalized amount of missing data per run day was calculated as the number of 660 

missing values for the respective metabolite on the respective run day divided by the total 661 

number of observations for that run day, divided by the median amount of missing data of 662 

that metabolite over all run days. Thus, a normalized run day-missingness of 1 is the average 663 

run day-missingness for a given metabolite. Pearson correlation coefficients were calculated 664 

across all pairs of platforms. (B) Standard deviation of missing values across run days, 665 

depending on the total amount of missing data for each platform. Each dot in the plot shows 666 

the total proportion of missing values and the run day variation for one metabolite. (C)–(D) 667 

The distribution of the total amount of missing values is shown for a metabolite with 668 

moderate (ursodeoxycholate) and high (gamma-glutamylisoleucine) standard deviation. 669 

Figure 4. Run day-dependent LOD. (A) Histogram of Pearson correlation coefficients of the 670 

percent of missing values and run day means. (B) Scatterplot of run day mean versus percent 671 

missing values, with 7-methylxanthine as an example of a negative correlation. (C) Run day 672 

distributions of 7-methylxanthine before run day normalization. 673 

Figure 5. Mechanisms of missing data and imputation approaches used in the simulation 674 

study. (A)–(E) Mechanisms of missing values used in the simulation study, based on evidence 675 

from real metabolomics data. (F) Venn diagram of imputation methods showing different 676 

characteristics. Note that the figure contains complete case analysis (CCA), which is not an 677 

imputation method, and is noted in brackets. CCA and mean were placed outside the Venn 678 

diagram, as they do not comprise any of the four characteristics. LOD: limit of detection. 679 
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Figure 6. Simulation results for Pearson, partial correlation, and logistic regression analysis. 680 

Performance of imputation approaches in data scenarios where (A) both variables followed a 681 

run day-specific probabilistic LOD mechanism, (B) both variables showed non-systematic 682 

patterns of missing data, and (C) one variable with run day-specific probabilistic LOD-based 683 

missing data and the other variable showed non-systematic patterns of missing data. Type 1 684 

error and power reflect the false positive and true positive rate of hypothesis testing, 685 

respectively. Note that power = 1 - type 2 error rate. Note further that due to readability 686 

issues, only KNN-based imputation methods with K = 3, 10, and 20 were included, whereas 687 

KNN imputation with K = 1 and 5 can be found in File S5. 688 

Figure 7. Evaluation of imputation approaches on real data. (A) Pathway-based modularity 689 

for each imputation strategy. Modularity 𝑄 was calculated based on pathways. Vertical lines 690 

represent bootstrap-based confidence intervals (1000 times resampling). (B) The ability to 691 

gain statistical power and to preserve real metabolite-SNP associations after imputation. 692 

Circle color represents the ability of imputation methods to preserve effect sizes, with red 693 

and blue indicating possible overestimation and underestimation, respectively, and yellow 694 

corresponding to cases with good preservation of the association. Circle size depicts the gain 695 

in statistical power after imputation. The bigger the circle the higher the statistical power 696 

gain after imputation compared to CCA. Squares correspond to cases where no statistical 697 

power was gained. Note that due to readability issues, only KNN-based imputation methods 698 

with K = 3, 10, and 20 were included, whereas KNN imputation with K = 1 and 5 can be found 699 

in File S6 and Table S8. 700 
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