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Genetic analysis of over one million people identifies 535 novel loci for blood pressure. 

Short title: blood pressure GWAS in one million people 
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Abstract 

High blood pressure is the foremost heritable global risk factor for cardiovascular disease. 
We report the largest genetic association study of blood pressure traits to date (systolic, 
diastolic, pulse pressure) in over one million people of European ancestry. We identify 535 
novel blood pressure loci that not only offer new biological insights into blood pressure 
regulation but also reveal shared loci influencing lifestyle exposures. Our findings offer the 
potential for a precision medicine strategy for future cardiovascular disease prevention.  
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High blood pressure, defined as a systolic blood pressure >140 mm Hg and/or diastolic blood 
pressure > 90 mm Hg, is the dominant inherited risk factor for stroke and coronary artery 
disease and is responsible for an estimated 7.8 million deaths and 148 million disability life 
years lost worldwide in 2015 alone1. Family studies indicate that the blood pressure (BP) 
level is determined in an individual by complex interactions between life course exposures 
and their genetic background2-5. Previous genetic association studies have included genome-
wide meta-analyses, customised cardiovascular candidate centric analyses and evaluation of 
exome variation that have identified and validated variants at 274 loci which have a modest 
effect on population BP and explain ~3-4% of the trait variance6-13.  

Here, we report genome-wide discovery analyses of BP traits (systolic - SBP, diastolic - DBP 
and pulse pressure -PP) in people of European ancestry drawn from UK Biobank (UKB)14 
and the International Consortium of Blood Pressure-Genome Wide Association Studies 
(ICBP)12,13. We adopted a combination of a one and two-stage study design to test common 
and low-frequency single nucleotide polymorphisms (SNPs) with minor allele frequency 
(MAF) ≥ 1%  in association with BP traits (Fig. 1) including over 1 million people of 
European descent across both discovery and replication, including data from the Million 
Veterans Program (MVP) and the Estonian Biobank. 
 
Briefly, UKB is a prospective cohort study of ~500,000 individuals recruited at ages 40-69 
years who have been richly phenotyped including BP measurements14. Participants were 
genotyped using a customized array with imputation from the Haplotype Reference 
Consortium (HRC) panel, yielding ~7 million SNPs (imputation quality score (INFO) ≥ 
0.1)15. After quality control (QC) and exclusions we performed genome-wide association 
studies (GWAS) of BP traits using data from 458,577 individuals of European descent under 
an additive genetic model16 (Supplementary Table 1a). Following LD-score regression17, 
genomic control was applied to the UKB data prior to meta-analysis. 

In addition, we performed GWAS analyses for BP traits in the ICBP GWAS data comprising 
77 independent studies including up to 299,024 participants of European ancestry genotyped 
with various arrays, and imputed to either 1,000 Genomes or the HRC platforms 
(Supplementary Table 1b). After QC we applied genomic control at study-level and 
obtained summary effect sizes on ~7 million SNPs with INFO ≥ 0.3 and Cochran’s Q statistic 
18 (test of heterogeneity) filtered at P ≥ 1 × 10-4.   

We then combined the UKB and ICBP GWAS results using inverse-variance weighted fixed 
effects meta-analysis, giving a total discovery sample of 757,601 individuals19.   

In our two-stage design we attempted replication of 1,062 SNPs at P < 1 × 10-6 from 
discovery with concordant effect direction between UKB and ICBP, using the sentinel SNP 
(i.e. SNP with smallest P-value at the locus) after excluding the HLA region (chr 6:25-
34MB) and all SNPs in Linkage Disequilibrium (LD) (r2 ≥ 0.1) or ±500 Kb from any 
previously validated BP-associated SNPs at the 274 published loci. We used the US Million 
Veteran Program (MVP, up to 220,520 people of European descent) and the Estonian 
Genome Centre Biobank (EGCUT, up to 28,742 Europeans) as our replication resources20,21 
(Supplementary Table 1c).  Our replication criteria for the two-stage design were genome-
wide significance (P < 5 × 10-8) in the combined meta-analysis, with P < 0.01 in the 
replication data and concordant direction of effect between discovery and replication.   
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Given the large size of the two discovery resources (UKB and ICBP) we additionally 
undertook a one-stage design with internal replication, to minimize the risk of missing true 
positive associations from our two-stage analysis. To ensure the robustness of this approach, 
and to avoid false positive findings, we used P < 5 × 10-9 as the P-value threshold from the 
discovery meta-analysis, a criterion that is an order of magnitude more stringent than 
genome-wide significance22. We also required an internal replication P-value of < 0.01 in 
each of the UKB and ICBP GWAS analyses and with concordant direction of effect.  

We then explored the putative function of the BP associated signals using a range of in silico 
resources, including expression quantitative trait loci (eQTLs), tissue and DNase I site 
enrichment, long range chromatin interactions (Hi-C), pathway analysis and druggability.  
We investigated metabolomic signatures associated with our novel sentinel SNPs, evaluated 
the overlap with lifestyle exposures that influence BP, and examined the overlap of BP-
associated loci with other complex traits and diseases.  Finally, we performed a genetic risk 
score analysis to model the impact that all BP-associated variants have on BP level, risk of 
hypertension (HTN), other cardiovascular diseases and on BP in other non-European 
ancestries. 

 

RESULTS 

We report a total of 535 novel loci, of which 325 were identified from our two-stage design 
and a further 210 from our one-stage design with internal replication (Fig. 2, Fig. 3a and 
Supplementary Tables 2a-2f). We note that the two designs identified large numbers of 
distinctive loci as well as some overlap, with similar distribution of effect sizes, illustrating 
the power and complementarity of our dual approach (Fig. 3a and Supplementary Fig. 2).  
In addition, we confirmed a further 92 loci that had been previously reported but not 
replicated (Supplementary Table 3)10. We also confirm previous findings for all 274 
published BP loci (Supplementary Fig. 1 & 2 and Supplementary Table 4).  Our findings 
bring the total number of BP loci to 901, more than tripling the number of previously 
published BP loci.  Similarly, there is substantial gain in the percentage of BP explained, for 
instance increasing the variance explained by ~2.5-fold for SBP from 4.6 % for the 274 
published loci to 11.2% for all 901 loci. 

Discovery of novel genetic loci for blood pressure 

Of the 535 independent novel loci, 363 were associated with only one trait; 160 with two 
traits and 12 loci with all three BP traits (Fig. 3), reflecting the inter-correlations between BP 
traits despite their different physiology (Supplementary Fig. 2). The largest number of novel 
loci per primary trait (the most significantly associated trait from the one- or two-stage 
analyses) was for DBP (194 loci), followed by SBP (190) and PP (151) (Supplementary 
Table 2a-f).  
 

Functional analyses  

Our functional analyses approach is summarised in Supplementary Figure 3. First, we 
annotated all 901 loci to 1644 novel and 962 known genes (based on LD r2 ≥ 0.8) and then 
investigated these loci for tissue enrichment, DNase hypersensitivity site enrichment and 
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pathway analyses. At 66 of the 535 novel loci we identified 97 non-synonymous SNPs, 
including 8 predicted to be damaging (Supplementary Table 5). 

We used chromatin interaction Hi-C data from endothelial cells (HUVEC)23, neural 
progenitor cells (NPC), mesenchymal stem cells (MSC) and tissue from the aorta and adrenal 
gland24 to identify distal affected genes. There were 498 novel loci that contained a potential 
regulatory SNP and in 484 we identified long-range interactions in at least one of the tissues 
or cell types. We found several potential long-range target genes that do not overlap with the 
sentinel SNPs in the LD block, such as TGFB2 that forms a 1.2Mb long regulatory loop with 
the SNPs in the SLC30A10 locus, and the TGFBR1 promoter that forms a 100kb loop with 
the COL15A1 locus (Supplementary Table 5). 

Our eQTL analysis identified 92 novel loci with eQTLs in arterial tissue and 48 in adrenal 
tissue (Supplementary Table 6); these are more compared to what was identified in our 
previously published UKB GWAS11. An example is the rs31120122 SNP that defines an 
aortic eQTL that affects expression of the MED8 gene within the SZT2 locus. In combination 
with Hi-C interaction data in MSC this finding supports a role MED8 in BP regulation, 
possibly mediated through repression of smooth muscle cell differentiation. Hi-C interactions 
provide confirmatory evidence for involvement of a further 13 arterial eGenes (genes whose 
expression is affected by the eQTLs) that were distal to their eQTLs (MECR, CCDC30, 
DNAJC9-AS1, DCAF16, POU4F1, ANKDD1A, EPN2, MRPS6, CDYL2, WDR92, 
LINC00310, TAPT1, GBR10). 

We investigated which transcription factors and chromatin marks are involved in regulatory 
interactions using the functional predictions from DeepSEA. We found 198 SNPs in 121 
novel loci with predicted effects on transcription factor binding or on chromatin marks in 
tissues relevant for BP biology, such as vascular tissue, smooth muscle and the kidney 
(Supplementary Table 5). 

We used our genome wide data at a false discovery rate (FDR) < 1% to robustly assess the 
tissue enrichment of BP loci using DEPICT and identified enrichment across 50 tissues and 
cells (Supplementary Fig 4; Supplementary Table 7a).  Enrichment was greatest for the 
cardiovascular system especially blood vessels (P = 1.5 × 10-11) and the heart (P = 2.7 × 10-

5). Enrichment was high in adrenal tissue (P = 3.7 × 10-4) and, for the first time, we observed 
high enrichment in adipose tissues (P = 9.8 × 10-9) corroborated by eQTL enrichment 
analysis (P < 0.05) (Supplementary Fig. 4; Supplementary Table 7a). Evaluation of 
enriched mouse knockout phenotype terms also points to the importance of vascular 
morphology (P = 6 × 10-15) and development (P =2.1 × 10-18) in BP. Due to the contribution 
of our novel BP loci, we identify new findings from both the gene ontology and protein-
protein interaction subnetwork enrichments, which highlighted the TGFβ (P = 2.3 × 10-13) 
and related SMAD pathways (P = 7 × 10-15) (Supplementary Table 7b, Supplementary 
Fig. 5b-d).  

We used FORGE to investigate the regulatory regions for cell type specificity from DNase I 
hypersensitivity sites, which showed strongest enrichment (P < 0.001) in the vasculature and 
highly vascularised tissues, similar to previous BP studies11 (Supplementary Fig. 6).  

Ingenuity pathway analysis and upstream regulator assessment shows enrichment of 
canonical pathways implicated in cardiovascular disease including pathways targeted by 
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antihypertensive drugs (e.g. nitric oxide signalling) and also suggests some potential new 
targets, such as relaxin signalling.  Notably, upstream regulator analysis identified several 
known mediators of BP including some therapeutic targets such as angiotensinogen, calcium 
channels, progesterone, natriuretic peptide receptor, angiotensin converting enzyme, 
angiotensin receptors and endothelin receptors (Supplementary Fig. 7).   

Potential therapeutic targets 
We present a summary of the vascular expressed genes contained within the 535 novel loci 
identified, including a review of their potential druggability (Supplementary Fig. 8). The 
overlap between genes associated with blood pressure and genes associated with 
antihypertensive drug targets, demonstrates new genetic support for known drug 
mechanisms. For example, we report novel BP associations at the PKD2L1 and BCL2 loci, 
which are targeted by amiloride and atenolol respectively. Extending associations by LD we 
report novel genetic associations with the targets of eleven antihypertensive drugs 
(Supplementary Table 8).  

 

Metabolomic analysis of BP associated variants 

We used 1H NMR lipidomics data on plasma and data from the Metabolon platform for a 
subset of 2,022 and 1,941 participants of the Airwave Health Monitoring Study respectively. 

25 for our sentinel SNPs. We also used PhenoScanner to test each SNP against published 
significant (P < 5 × 10-8) genome vs metabolome-wide associations in plasma and urine. 

Ten SNPs show association with lipid particle metabolites and a further 31 SNPs (8 also on 
PhenoScanner) show association with metabolites on the Metabolon platform. These 
highlight lipid pathways, amino acids (glycine, serine, glutamine), tri-carboxylic acid cycle 
intermediates (succinylcarnitine) and drug metabolites (Supplementary Table 9 and 10).  
These findings suggest a close metabolic coupling of BP regulation with lipid, and for the 
first time, with energy metabolism.  

Concordance of BP Variants and Lifestyle exposure. 

UK Biobank has collected extensive lifestyle related data which have been epidemiologically 
associated with BP. These include macronutrient, water, tea, coffee and alcohol intake, 
anthropomorphic traits, physical activity and inactivity, smoking and urinary sodium, 
potassium and creatinine excretion14. We investigated whether sentinel SNPs at all 901 BP 
loci were associated with these traits in the Stanford Global Biobank Engine (N = 327,302 
urinary traits) and Gene ATLAS (N = 408,455) for all other traits, with corrected P < 1 × 10-

6).  We find that a BP SNP rs34783010 in GIPR is associated with daily fruit intake (P = 1.03 
× 10-7), urinary sodium and creatinine concentration (P = 1.5 × 10-13 and 1.2 × 10-9 
respectively), body mass index (P = 3.3 × 10-41), weight (P = 7.3 × 10-35) and  waist 
circumference (P = 7.7 × 10-30); rs6495122, near CPLX3 and ULK3, and rs1378942, in CSK 
are associated with water (P = 1.3 × 10-22 and 2.6 x 10-20 respectively), caffeine (P = 1.3 × 10-

46 and 2.2 × 10-43) and tea intake (P = 7.6 × 10-38 and 8.1 × 10-33), as well as urinary 
creatinine concentrations (P= 5.6 × 10-8 and P= 3.2 x 10-8 respectively). In addition, the BP 
SNP rs13107325 in SLC39A8, is a novel locus for frequency of drinking alcohol (P = 3.5 × 
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10-15) and time spent watching TV (P = 2.3 × 10-11) as well as being associated with body 
mass index (P = 1.6 × 10-33), weight (P = 8.8 × 10-16) and waist circumference (P = 4.7 × 10-

11) (Supplementary table 11a). We used unsupervised hierarchical clustering for the 36 BP 
loci that showed at least one association with the lifestyle or anthropometric traits in UKB at 
P < 1 × 10-6 (Fig. 4). The heatmap summarises the locus specific associations across the 
range of traits and highlights heterogeneous effects with anthropometric traits across the 
range of loci examined. For example, it shows a cluster of associations between BP raising 
alleles and increased adult height and weight and another cluster of genes that show 
associations between BP raising alleles and decreased adult height and weight. 

Association lookups with other traits and diseases. 

We evaluated cross-trait effects using PhenoScanner26 and DIsGeNET, which integrates data 
from expert curated repositories, GWAS catalogues, animal models and the literature27,28. 
The PhenoScanner search of published GWAS showed that 27 of our 535 novel loci (using 
sentinel SNPs or proxies; r2 

≥ 0.8) are also strongly associated with other traits and diseases 
(Fig. 5a, Supplementary Table 11b). We identified APOE as a highly cross-related BP 
locus showing associations with lipid levels, cardiovascular related outcomes and 
Alzheimer’s disease, a finding that highlights a common link between cardiovascular risk and 
cognitive decline (Fig. 5a). Four loci overlap with anthropometric traits, including body mass 
index (BMI), birth weight and height. DisGeNET terms related to lipid measurements, 
cardiovascular outcomes and obesity overlap with BP loci (Fig. 5b, c).  

 

Genetic risk of increased blood pressure, hypertension and cardiovascular disease 

We created a genetic risk score (GRS) for BP levels weighted according to the effect 
estimates from ICBP (for published loci) and the MVP+EGCUT replication (for novel loci) 
across all 901 loci.  The combination of these BP variants was associated with a 10.3mm Hg 
higher, sex-adjusted mean systolic pressure in UK Biobank for the comparison between the 
upper and lower quintiles of the GRS distribution (95% CI: 9.96 to 10.60 mm Hg, P < 1 × 10-

300) (Supplementary Table 12). In addition, we observed over two-fold higher risk of 
hypertension (OR 2.59; 95% CI: 2.53 to 2.65; P < 1 × 10-300) in UK Biobank (Fig. 6). Similar 
results were observed comparing upper and lower deciles of the GRS distribution (12.7 
mmHg difference in SBP, 95% CI: 12.2 to 13.2, P < 1 × 10-300) (Supplementary Table 12). 
To avoid ‘winner’s curse’ we performed sensitivity analysis in the independent Airwave 
cohort and we observed similar results (Supplementary Table 13).  

Using the UK Biobank record linkage to Hospital Episode Statistics and mortality follow-up 
data we showed that the GRS is associated with increased risk of incident stroke, incident 
myocardial infarction and all incident cardiovascular outcomes, comparing the upper and 
lower fifths of the GRS distribution, with odds ratios of 1.37 (95% CI: 1.28 to 1.47, P = 1.9 × 
10-20), 1.44 (95% CI: 1.26 to 1.64, P = 1.0 × 10-7) and 1.45 (95% CI: 1.24 to 1.68, P = 2.1 × 
10-6) respectively. 

Extending analysis to other ancestries 
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By applying our genetic risk score to unrelated people of non-European ancestry from UK 
Biobank (N=6,264 Africans; N=7,881 South Asians), we show that loci associated with BP 
from a European population are also associated with BP in other ancestries (Supplementary 
Table 14a and 14b). BP variants in combination were respectively associated with 6.1 
mmHg (95% CI: 3.83 to 8.46) and 7.3 mmHg (95% CI: 5.14 to 9.12) higher, sex-adjusted 
mean systolic pressure among individuals of African and South Asian ancestries. 
 
DISCUSSION  

Our study of over 1 million people offers a major step forward in understanding the genetic 
architecture of BP. The 535 novel loci we identify here have been strongly leveraged by 
UKB. These results more than triple the number of loci for BP traits and make major inroads 
into the missing heritability influencing BP level in the population29. These findings illustrate 
the power of a large-scale standardised approach to data collection, biobanking, genotyping, 
quality control and imputation.  The novel loci open the vista of entirely new biology and 
highlight gene regions in systems not previously implicated in BP regulation. This is 
particularly timely as the global prevalence of people with SBP over 110-115 mm Hg, above 
which cardiovascular risk increases in a continuous graded manner, now exceeds 3.5 billion 
people and those within the treatment range exceed 1 billion 30,31. 

Our functional analysis highlights the role of the vasculature and associated pathways in the 
genetics underpinning BP traits. For the first time, we show a role for several loci in the 
transforming growth factor beta (TGFβ) pathway including SMAD family genes and the 
TGFβ gene locus itself. This pathway affects sodium handling in the kidney, ventricular 
remodelling and recently plasma levels of TGFβ have been correlated with hypertension 
(Fig. 7)32,33. The activin A receptor type 1C (ARVC) gene mediates the effects of the TGFβ 
family of signalling molecules.  Another BP locus contains the Bone Morphogenetic Protein 
2 (BMP2) gene in the TGFβ pathway, which prevents growth suppression in pulmonary 
arterial smooth muscle cells and is associated with pulmonary hypertension34. We identified 
another BP locus including the Kruppel-like family 14 (KLF14) gene of transcription factors 
which are induced by low levels of TGFβ receptor II gene expression.  This gene has also 
been associated with type 2 diabetes, hypercholesterolaemia and atherosclerosis35. 

Our analysis, for the first time, has shown a greater enrichment of BP genes in the adrenal 
tissue. The importance of the role of the adrenal gland in blood pressure regulation has been 
recognised through the observation that autonomous aldosterone production by the adrenal 
glands is responsible for 5-10% of all hypertension. This proportion rises further to 20% 
amongst people with resistant hypertension. In this analysis we add to the previously 
identified loci with novel loci that we can now link functionally new to aldosterone 
secretion36,37. For example the novel CTNNB1 locus, which encodes β-catenin, the central 
molecule in the canonical Wnt signalling system, required for normal adrenocortical 
development38,39. Somatic adrenal mutations of this gene that prevent serine/threonine 
phosphorylation lead to hypertension through the generation of aldosterone-producing 
adenomas40 41. 

Our novel loci also include genes involved in vascular remodelling including the gene for 
vascular endothelial growth factor A (VEGFA) which induces proliferation, migration of 
vascular endothelial cells and stimulates angiogenesis. Disruption of this gene in mice 
resulted in abnormal embryonic blood vessel formation. Allelic variants of this gene have 

(which was not peer-reviewed) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint. http://dx.doi.org/10.1101/198234doi: bioRxiv preprint first posted online Oct. 11, 2017; 

http://dx.doi.org/10.1101/198234


16 

 

been associated with microvascular complications of diabetes, atherosclerosis and the 
antihypertensive response to enalapril42.  We previously reported another fibroblast growth 
factor (FGF5) gene locus in association with BP. In this study, we now identify a new BP 
locus encoding the FGF9 which has been linked to enhanced angiogenesis and vascular 
smooth muscle cell differentiation by regulating VEGFA expression.  

Several of our novel loci contain lipid related genes which supports the observed strong 
associations across multiple cardio-metabolic traits.  For example, the apolipoprotein E gene 
(APOE) encodes the major apoprotein of the chylomicron. Recently, APOE serum levels 
have been correlated with systolic BP in population-based studies and in murine knockout 
models’ disruption of this gene led to atherosclerosis and hypertension43,44. A second novel 
BP locus contains the low-density lipoprotein receptor-related protein 4 (LRP4) gene which 
may be a target for APOE and is strongly expressed in the heart in mice and humans. In 
addition, we identified a novel locus including the apolipoprotein L domain containing 1 
gene (APOLD1) that is highly expressed in the endothelium of developing tissues 
(particularly heart) during angiogenesis. 

Many of our novel BP loci encode proteins which may modulate vascular tone or signalling. 
For example, the locus containing urotensin-2 receptor (UTS2R) gene encodes a class A 
rhodopsin family G-protein coupled-receptor that upon activation by the neuropeptide 
urotensin II, produces profound vasoconstriction. One of the novel loci for SBP contains the 
relaxin gene which encodes a G-protein coupled receptor with roles in uterine relaxation, 
vasorelaxation and cardiac function and which signals by phosphatidylinositol 3-kinase 
(PI3K) 45,46. We identified the novel RAMP2 locus which encodes an adrenomedullin 
receptor47; we previously identified the adrenomedullin (ADM) as a BP locus13. 
Adrenomedullin is known to exert differential effects on BP in the brain (vasopressor) and 
the vasculature (vasodilator). In addition, we identify the novel locus containing the PI3K 
gene encoding a signalling enzyme which inhibits vascular smooth muscle cell proliferation 
and neo-intimal formation48. A locus containing Rho guanine nucleotide exchange factor 25 
(ARHGEF25) gene generates a factor which interacts with Rho GTPases involved in 
contraction of vascular smooth muscle and regulation of responses to angiotensin II49.  

We evaluated the 901 BP loci for extant or potentially druggable targets. We note that loci 
encoding MARK3, PDGFC, TRHR, ADORA1, GABRA2, VEGFA and PDE3A are within 
systems that have existing drugs not currently linked to a known antihypertensive mechanism 
and may offer repurposing opportunities e.g. detection of SLC5A1 as a new BP locus which 
is targeted by the type 2 diabetes drug Canagliflozin. This is important as between 8-12% of 
patients with hypertension exhibit resistance or intolerance to current therapies and 
repositioning of a therapy with a known safety profile may reduce development costs. 

Here we demonstrate for the first time that several lifestyle exposures that are known to 
elevate BP may be genetically determined in part, and share that same genetic architecture 
with several loci that influence BP. We adjusted our BP association analyses for BMI, so 
whilst acknowledging the potential for collider bias between a lifestyle factor and the 
conditioned trait of BP, the use of adjustment should, if anything, reduce the ability to detect 
loci in common between two traits.  Our new findings for the genetic overlap of loci 
associated with both BP and lifestyle exposures could allow an additional focus on specific 
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lifestyle measures known to affect BP, offering an additional strand to a precision medicine 
strategy. 

Our findings using a larger sample size, strengthen our previously reported genetic risk score 
analysis indicating that all BP elevating alleles combined could increase systolic BP by 10 
mm Hg and increase risk of cardiovascular events (stroke and coronary disease)11.  We 
previously suggested that by genotyping all BP elevating variants in the young that lifestyle 
intervention in early life might attenuate the BP rise at older ages11.  

Our discovery of 535 novel loci from a combination of a two-stage GWAS with independent 
replication and one-stage GWAS design with internal replication illustrates the value of this 
approach to minimise the effects of stochastic variation and heterogeneity.  To address the 
risk of false positive loci within our discovery meta-analysis we required an order of 
magnitude smaller P-value for the one-stage design in line with thresholds recommended for 
whole genome sequencing22.   

The new discoveries reported here more than treble to 901 the number of loci for BP and 
represent a substantial advance in understanding the genetic architecture of BP in people of 
European descent with extension to other ancestries. Our confirmation of the impact of these 
variants on BP level and cardiovascular events, coupled with identification of shared risk 
alleles for BP and adverse lifestyle could contribute to an early life precision medicine 
strategy. 
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Figure 1. Study design. Schematic of the one- and two-stage design. ICBP; International 
Consortium for Blood Pressure; N, sample size; QC, quality control; PCA, principal-component 
analysis; GWAS, Genome-wide Association Study; 1000G 1000 Genomes; HRC, Haplotype 
Reference Panel; BP: blood pressure; SNPs, single nucleotide polymorphisms; BMI, body mass 
index; LMM; linear mixed model; UKB, UK Biobank, MAF, minor allele frequency; HLA, Human 
Leukocyte Antigen; MVP, Million Veterans Program; EGCUT; Estonian Genome Center, University 
of Tartu; SBP, systolic blood pressure; DBP, diastolic blood pressure; PP, pulse pressure. 
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→ UKB-ICBP Internal Replication

(i) P < 5 × 10-9 from UKB+ICBP discovery meta
(ii) P < 0.01 in UKB GWAS

(iii) P < 0.01 in ICBP GWAS meta-analysis
(iv) concordant direction of effect UKB vs ICBP

210 novel loci from one-stage analysis
(internally replicated)

SBP (60), DBP (103), PP (47)

Exclude all SNPs in 274 known BP loci, using SNPs previously reported at time of analysis
Locus Definition: (r2 ≥ 0.1; 1Mb region ±500kb from sentinel SNP)

(also fully exclude HLA region: chr6:25-34 Mb)

ICBP-Plus meta-analysis 
ICBP-GWAS of imputed SNPs (1000G or HRC panels)
Fixed effects inverse variance weighted meta-analysis; 

stringent meta-level QC-filtering

UK Biobank GWAS analysis  
UKB GWAS of HRC imputed SNPs

BP ~ SNP + sex + age + age2 + BMI + array
using BOLT-LMM 

→ LD Score Regression → GC-adjustment

UKB+ICBP- GWAS Discovery meta-analysis (N=757,601)
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Figure 2. Manhattan plot showing the minimum P-value for the association across all blood 
pressure traits in the discovery stage excluding previously published variants. Manhattan plot of 
the discovery genome-wide association meta-analysis in >750,000 individuals excluding variants in 
published loci. The minimum P-value across SBP, DBP and PP is presented. The y-axis shows the –
log10 P values and the x- axis shows their chromosomal positions. Horizontal red and blue line 
represents the thresholds of P = 5 x 10-8 for genome-wide significance and P = 1 x 10-6 for selecting 
SNPs for replication, respectively. SNPs in blue are in LD (r2 > 0.8) with the 325 novel variants from 
the two-stage design whereas SNPs in red are in LD (r2 > 0.8) with 210 SNPs identified through the 
one-stage design with internal replication. Any loci in black or grey that exceed the significance 
thresholds were significant in the discovery meta-analysis, but did not meet the criteria of replication 
in the one- or two-stage designs. 
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Figure 3: Venn Diagrams of Novel Loci Results (a) “Comparison of one-stage and two-stage 
design analysis criteria”: For all 535 novel loci, we compare the results according to the association 
criteria used between the one-stage design analysis and the two-stage design analysis. The 210 novel 
loci from the one-stage analysis were selected from the remaining lookup SNPs which did not 
replicate from the 2-stage analysis (i.e. did not reach genome-wide significance with P < 0.01 in the 
MVP+EGCUT replication and concordant effect direction for any traits). But we show that, of the 
325 novel replicated loci from the 2-stage analysis, 204 loci would also have met the one-stage 
criteria (with P <5x10-9 in the discovery meta-analysis, P < 0.01 in UKB, P < 0.01 in ICBP and 
concordant direction of effect between UKB and ICBP), whereas 121 would only have been identified 
from the two-stage analysis.   (b) “Overlap of Associations across Blood Pressure Traits”: For all 
535 novel loci, we show which blood pressure traits each locus was associated with. For the 325 
novel replicated loci from two-stage analysis, we show the traits that met the two-stage analysis 
criteria with genome-wide significance in the combined meta-analysis, P < 0.01 significance in the 
replication meta-analysis and concordant direction of effect. For the 210 novel loci from one-stage 
analysis, we show the traits that met the one-stage analysis criteria with P < 5x10-9 in the discovery 
meta-analysis, P < 0.01 in UKB, P < 0.01 in ICBP and concordant direction of effect between UKB 
and ICBP. The locus names provided in alphabetical order correspond to the nearest annotated gene. 
SNPs: Single nucleotide polymorphisms; SBP: systolic blood pressure; DBP: diastolic blood pressure; 
PP: pulse pressure; UKB: UK Biobank; ICBP: International Consortium of Blood Pressure; MVP: 
Million Veterans Program; EGCUT: Estonian Genome Center, University of Tartu. 
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Figure 4. Association of blood pressure loci with lifestyle traits. Plot shows hierarchical clustering 
of BP loci based on associations with anthropometry and lifestyle factors. For the lead SNP at each 
BP locus (x-axis), we calculated the -log10(P)*sign(β) (aligned to BP-raising allele) as retrieved form 
the Gene Atlas (http://geneatlas.roslin.ed.ac.uk). BP loci and traits were clustered according to the 
Euclidean distance amongst -log10(P)*sign(β). Red squares indicate direct associations with the trait 
of interest and blue squares inverse associations. Only SNPs with at least one association with P <1 x 
10-6 with at least one of the traits examined are annotated in the heat-map. All 901 loci are considered, 
both published and novel: novel loci are printed in bold font. SNPs: Single Nucleotide 
Polymorphisms; BP: Blood Pressure. 
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Figure 5. Association of blood pressure loci with other traits. Plot (a) shows results from 
associations with other traits which were extracted from the PhenoScanner database for the 535 novel 
sentinel SNPs including proxies in Linkage Disequilibrium (r2 ≥ 0.8) with genome-wide significant 
associations. Plots (b) and (c) show overlap between variants associated to (b) traits and (c) diseases 
in the manually-curated version of the DisGeNET database, and all variants in LD r2 

≥ 0.8 with SNPs 
from the 274 published loci (red bars), and all BP variants from all 901 loci (green bars). Diseases 
with an overlap of at least 5 variants with those in linkage with all markers are ordered from left to 
right based on how many new overlapping variants were found thanks to the validated loci. The Y-
axis shows the percentage of variants associated with the diseases that is covered by the overlap. For 
the sake of clarity, the DisGeNET terms for blood pressure and hypertension are not displayed, 
whereas the following terms have been combined: CAD, CHD and MI; prostate and breast carcinoma; 
Crohn's and inflammatory bowel diseases. CAD: Coronary Arterial Disease; CHD: Coronary Heart 
Disease; MI: Myocardial Infraction 
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Figure 6. Relationship of genetic risk score (GRS) with hypertension and cardiovascular disease 
in UK Biobank. The GRS is based on all 901 loci, showing sex-adjusted odds ratios of (a) 
hypertension (HTN) and (b) incident cardiovascular disease (CVD), myocardial infarction (MI) and 
stroke, comparing each of the upper nine GRS deciles with the lowest decile; dotted lines represent 
the upper 95% confidence intervals. 
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Figure 7: All 901 BP associations in the TGFB signalling pathway. Genes with published 
associations to BP are indicated in cyan. Genes with novel association to BP reported in this study are 
indicated in red. TGFB pathway was derived from an ingenuity canonical pathway. BP; Blood 
Pressure 
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METHODS 

 

UK Biobank (UKB) data 

We performed a Genome Wide Association Study (GWAS) analysis in 458,577 UKB 
participants14 (Supplementary Methods). These consist of ~408,951 individuals from UKB 
genotyped at 807,411 variants with a custom Affymetrix UK Biobank Axiom Array chip and 
49,626 individuals genotyped at 825,927 variants with a custom Affymetrix UK BiLEVE 
Axiom Array chip from the UK BiLEVE study50, which is a subset of UKB. SNPs were 
imputed centrally by UKB using a reference panel that merged the UK10K and 1000 
Genomes Phase 3 panel as well as the Haplotype Reference Consortium (HRC) panel51.  For 
current analysis only SNPs imputed from the HRC panel were considered. 
 

UKB phenotypic data 

Following Quality Control (QC) (Supplementary Methods), we restricted our data to a 
subset of post-QC individuals of European ancestry combining information from self-
reported and genetic data (Supplementary Methods) resulting in a maximum of N=458,577 
individuals (Fig. 1, Supplementary Fig. 9).  

Three BP traits were analysed: systolic (SBP), diastolic (DBP) and pulse pressure (PP) 
(difference between SBP and DBP). We calculated the mean SBP and DBP values from two 
automated (N=418,755) or two manual (N=25,888) BP measurements.  For individuals with 
one manual and one automated BP measurement (N=13,521), we used the mean of these two 
values. For individuals with only one available BP measurement (N=413), we used this 
single value. After calculating BP values, we adjusted for medication use by adding 15 and 
10 mmHg to SBP and DBP, respectively, for individuals reported to be taking BP-lowering 
medication (94,289 individuals)52. Descriptive summary statistics are shown in 
Supplementary Table 1a. 

 

UKB Analysis models 

For the UKB GWAS we performed linear mixed model (LMM) association testing under an 
additive genetic model of the three (untransformed) continuous, medication-adjusted BP 
traits (SBP, DBP, PP) for all measured and imputed genetic variants in dosage format using 
the BOLT-LMM (v2.3) software16. We used genotyped SNPs filtered for MAF > 5%; 
HWE P > 1x10-6; missingness < 0.015, to estimate the parameters of the linear mixed model, 
for the initial modelling step only.  Within the association analysis, we adjust for the 
following covariates: sex, age, age2, BMI and a binary indicator variable for UKB vs UK 
BiLEVE to account for the different genotyping chips and different study ascertainment. The 
association analysis performed by BOLT-LMM (v2.3) corrects for population structure and 
cryptic relatedness in very large datasets16. The genome-wide association analysis of all 
HRC-imputed SNPs was restricted to variants with MAF ≥ 1% and INFO > 0.1. 
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Genomic inflation and confounding 

We applied the univariate LD score regression method (LDSR)17 to test for genomic inflation 
(expected for polygenic traits like BP, with large sample sizes, and especially also from 
analyses of such dense genetic data with so many SNPs in high-LD)53. LDSR intercepts (and 
standard errors) were 1.217 (0.018), 1.219 (0.020) and 1.185 (0.017) for DBP, SBP and PP 
respectively, and were used to adjust the UKB GWAS results for genomic inflation, prior to 
the meta-analysis. 

 

International Consortium for Blood Pressure (ICBP) GWAS 

ICBP GWAS is an international consortium to investigate BP genetics7,12,54. We combined 
previously reported post-quality control (QC) GWAS data from 54 studies (N=150,134)12, 
with newly available GWAS data from a further 23 independent studies (N=148,890) using a 
fixed effects inverse variance weighted meta-analysis.  The 23 studies providing new data 
were: ASCOT-SC, ASCOT-UK, BRIGHT, Dijon 3C, EPIC-CVD, GAPP, HCS, GS:SFHS, 
Lifelines, JUPITER, PREVEND, TWINSUK, GWAS-Fenland, InterAct-GWAS, OMICS-
EPIC, OMICS-Fenland, UKHLS, GoDARTS-Illumina and GoDarts-Affymetrix, NEO, 
MDC, SardiNIA, METSIM.  

All study participants were of European descent and were imputed to either the 1000 
Genomes Project Phase 1 integrated release v.3 [March 2012] all ancestry reference panel55 
or the Haplotype Reference Consortium (HRC) panel15. The final enlarged ICBP GWAS 
dataset included 77 cohorts (N=299,024 individuals).  

Definition of phenotype data and GWAS analyses of SBP, DBP and PP were as per previous 
ICBP protocol for 54 studies12, extended to the additional 23 studies for which new data were 
available. Full study names, cohort information and general study methods are included in 
Supplementary Table 1b and in Supplementary Tables 15a-c. Genomic control was applied 
at study-level. The LDSR intercepts (standard error) for the ICBP GWAS meta-analysis were 
1.089 (0.012), 1.086 (0.012) and 1.066 (0.011) for SBP, DBP and PP, respectively. 

 

Meta-analyses of discovery datasets 

We performed a fixed-effects inverse variance weighted meta-analysis using METAL19,56 to 
obtain summary results from the combined UKB and ICBP GWAS, for up to N=757,601 
participants and ~7.1 M SNPs with MAF ≥ 1% present in both the HRC-imputed UKB data 
and ICBP meta-analysis for all three traits. The LDSR intercepts (standard error), in the 
discovery meta-analysis of UKB and ICBP were 1.156 (0.020), 1.160 (0.021) and 1.113 
(0.018) for SBP, DBPP and PP respectively. The LDSR intercept (standard error), after the 
exclusion of all published BP variants (see below) in the discovery meta-analysis of UKB 
and ICBP was 1.090 (0.018), 1.097 (0.017) and 1.064 (0.015) for SBP, DBP and PP 
respectively; hence showing very little inflation in the discovery GWAS after the exclusion 
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of published loci (Supplementary Fig. 10). No further correction was applied to the 
discovery meta-analysis of UKB and ICBP GWAS. 

 

Previously reported variants  

We compiled from the peer-reviewed literature all 357 SNPs previously reported to be 
associated with BP at the time that our analysis was completed, that have been identified and 
validated as the sentinel SNP in primary analyses from previous BP genetic association 
studies. These 357 published SNPs correspond to 274 distinct loci, according to locus 

definition of: (i) SNPs within ±500kb distance of each other; (ii) SNPs in Linkage 
Disequilibrium (LD), using a threshold of r2 ≥ 0.1, calculated with PLINK (v2.0). We then 
augment this list to all SNPs present within our data, which are contained within these 274 
published BP loci, i.e. all SNPs which are located ±500kb from each of the 357 published 
SNPs and/or in LD with any of the 357 previously validated SNPs (r2 ≥ 0.1). The LDSR 
intercept (standard error), after the exclusion of all published BP variants in the discovery 
meta-analysis of UKB and ICBP was 1.090 (0.018), 1.097 (0.017) and 1.064 (0.0146) for 
SBP, DBP and PP respectively; hence showing very little inflation in the discovery GWAS 
after the exclusion of published loci (Supplementary Fig. 10). 

 

Identification of novel signals: two-stage and one-stage study designs 

To identify novel signals of association with BP, two complementary study designs (which 
we term here “two-stage design” and “one-stage design”) were implemented in order to 
maximise the available data and minimise reporting of false positive associations.  

 

Two-stage design: Overview: 

All of the following criteria must be satisfied for a signal to be reported as a novel signal of 
association with BP using our two-stage design:  

(i) the sentinel SNP shows significance (P < 1 × 10-6) in the discovery meta-analysis 
of UKB and ICBP, with concordant direction of effect between UKB and ICBP; 

(ii) the sentinel SNP is genome-wide significant (P < 5 × 10-8) in the combined meta-
analysis of discovery and replication (MVP and EGCUT) (replication, described 
below);  

(iii) the sentinel SNP shows support (P < 0.01) in the replication meta-analysis of 
MVP and EGCUT alone (Supplementary Methods);  

(iv) the sentinel SNP has concordant direction of effect between the discovery and the 
replication meta-analyses; 

(v) the sentinel SNP must not be located within any of the 274 previously reported 
loci described above. 
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The primary replicated trait was then defined as the replicated BP trait with the most 
significant association from the combined meta-analysis of discovery and replication (in the 
case of many SNPs replicating for more than one BP trait). 

 

Two-stage design: selection of variants from the discovery meta-analysis 

We considered for follow-up SNPs in loci non-overlapping with previously reported loci 
according to both an LD threshold of r2 ≥ 0.1 and a 1Mb interval region, as calculated with 
PLINK57. We obtained a list of such SNPs with P < 1×10-6 for any of the three BP traits, 
which also had concordant direction of effect between UKB vs ICBP. By ranking the SNPs 
by significance in order of minimum P-value across all BP traits, we performed an iterative 
algorithm to determine the number of novel signals (Supplementary Methods), and identify 
the sentinel SNP (most significant) per locus. 

 

Two-stage design: replication analysis 

We used two independent external data sets for replication (Supplementary Methods). We 
considered SNPs with MAF ≥ 1% for an independent replication in MVP (max N = 
220,520)20 and in EGCUT Biobank (N=28,742)21. This provides a total of N = 249,262 
independent samples of European descent available for replication. Additional information 
on the analyses of the two replication datasets is provided in Supplementary Methods and 
in Supplementary Table 1c.  

The two datasets were then combined using fixed effects inverse variance weighted meta-
analysis and summary results for all traits were obtained for the replication meta-analysis 
dataset.  

 

Two-stage design: combined meta-analysis of discovery and replication meta-analyses 

The meta-analyses were performed within METAL software56 using fixed effects inverse 
variance weighted meta-analysis (Supplementary Methods). The combined meta-analysis 
of both the discovery data (N = 757,601) and replication meta-analysis (max N = 249,262) 
provided a maximum sample size of N = 1,006,863.  

 

One-stage design: Overview 

All of the following criteria must be satisfied for a signal to be reported as a novel signal of 
association with BP using our one-stage criteria: 

i) the sentinel SNP has P < 5 × 10-9 in the discovery (UKB+ICBP) meta-analysis;  
ii) the sentinel SNP shows support (P < 0.01) in the UKB GWAS alone; 
iii)  the sentinel SNP shows support (P < 0.01) in the ICBP GWAS alone; 
iv) the sentinel SNP has concordant direction of effect between UKB and ICBP 

datasets; 
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v) The sentinel SNP must not be located within any of the 274 previously reported 
loci described above or the recently reported non-replicated loci from Hoffman et 
al10. 

We selected the one-stage P-value threshold to be more stringent than a genome-wide 
significance P-value, in order to ensure robust findings and to minimize false positives. The 
threshold of P < 5 × 10-9 has been proposed as a more conservative statistical significance 
threshold, e.g. for whole-genome sequencing-based studies22. 

Selection of variants from the meta-analysis of UKB and ICBP was performed as described 
above for the two-stage design. Signals of association which met both the two-stage and one-
stage study design criteria are reported using the two-stage design results only. 

 

Metabolomics lookups 

We carry out metabolomics analysis using three sets of data. First, we use 1H NMR 
lipidomics data on plasma from a subset of 2,022 participants of the Airwave Health 
Monitoring Study (Supplementary Methods).  For each novel BP-associated SNP we ran 
association tests with the lipidomics data using linear regression analyses, adjusted for age 
and sex. We computed significance thresholds using a Bonferroni correct P-value (4.7 × 10-

4). We also examined associations between each novel SNP and a subset of 1,941 participants 
of the Airwave Health Monitoring Study with data from Metabolon platform. Finally, we 
also test each novel SNP (and proxy SNPs with an r2 ≥ 0.8) against published genome-wide 
vs metabolome-wide associations in plasma and urine using publicly available data from the 
“PhenoScanner Server”26 to identify metabolites that have been associated with variants of 
interest at P < 5 × 10-8. 

 

Functional analyses: Variants 

We used an integrative bioinformatics approach to collate functional annotation at both the 
variant level (for each sentinel SNP within all BP loci) and the gene level (using SNPs in LD 
r2 ≥ 0.8 with the sentinel SNPs). At the variant level, we use Variant Effect Predictor (VEP) 
to obtain comprehensive characterization of variants, including consequence (e.g. 
downstream or non-coding transcript exon), information on nearest genomic features and, 
where applicable, amino acid substitution functional impact, based on SIFT and PolyPhen. 
The biobaRt R package is used to further annotate the nearest genes. 

We evaluate all SNPs in LD (r2 ≥ 0.8) with our novel sentinel SNPs for evidence of 
mediation of expression quantitative trait loci (eQTL) in all 44 tissues using the Genotype-
Tissue Expression (GTEx) database, to highlight specific tissue types which show eQTLs for 
a larger than expected proportion of novel loci. We further seek to identify novel loci with 
the strongest evidence of eQTL associations in arterial tissue, in particular. 

We annotated nearest genes, eGenes (genes whose expression is affected by eQTLs) and Hi-
C interactors with HUVEC, HVSMC and HAEC expression from the Fantom5 project. 
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Genes that had higher then median expression levels in the given cell types were indicated as 
expressed. 

To identify SNPs in the novel loci that have a non-coding functional effect (influence binding 
of transcription factors or RNA polymerase, or influence DNase hypersensitivity sites or 
histone modifications), we used DeepSEA, a deep learning algorithm, that learnt the binding 
and modification patterns of ~900 cell/factor combinations58. A change >0.1 in the binding 
score predicted by DeepSEA for the reference and alternative alleles respectively has been 
shown to have high true positive rate ~80-95% and low false positive rate ~5-10% therefore 
we used this cut-off to find alleles with non-coding functional effect. 

We identify potential target genes of regulatory SNPs using long-range chromatin interaction 
(Hi-C) data from HUVECs23, aorta, adrenal glands, neural progenitor and mesenchymal stem 
cell, which are tissues and cell types that are considered relevant for regulating BP24. Hi-C 
data is corrected for genomic biases and distance using the Hi-C Pro and Fit-Hi-C pipelines 
according to Schmitt et al. (40kb resolution – correction applied to interactions with 50kb-
5Mb span)24. We find the most significant promoter interactions for all potential regulatory 
SNPs (RegulomeDB score ≤ 5) in LD (r2 ≥ 0.8) with our novel sentinel SNPs and published 
SNPs, and choose the interactors with the SNPs of highest regulatory potential to annotate 
the loci. 

We then perform overall enrichment testing across all loci. Firstly, we use DEPICT59 (Data-
driven Expression Prioritized Integration for Complex Traits) to identify highly expressed 
tissues and cells within the BP loci. DEPICT uses a large number of microarrays (~78k) to 
identify cells and tissues where the genes are highly expressed and uses pre-computed 
GWAS phenotypes to adjust for co-founding sources. Secondly, we use DEPICT to test for 
enrichment in gene sets associated with biological annotations (manually curated and 
molecular pathways, phenotype data from mouse KO studies). Using the co-expression data 
DEPICT calculates a probability for each gene to belong to a given gene set and uses this to 
weight the enrichment of the genes present in the tested loci. DEPICT provides a P-value of 
enrichment and false discovery rates adjusted P-values for each tissue/cells or gene set tested. 
We report significant enrichments with a false discovery rate <0.01. The variants tested were 
the 357 published BP associated SNPs at the time of analysis and a set including all 
(published and novel) (for novel: combined P < 1 × 10-12) variants. 

Furthermore, to investigate cell type specific enrichment within DNase I sites, we used 
FORGE, which tests for enrichment of SNPs within DNase I sites in 123 cell types from the 
Epigenomics Roadmap Project and ENCODE60 (Supplementary Methods). Two analyses 
were compared (i) using published sentinel SNPs only; (ii) using sentinel SNPs at all 901 loci 
in order to evaluate the overall tissue specific enrichment of BP associated variants. 

 

Functional Analyses: Genes 

At the gene level, we use Ingenuity Pathway Analysis (IPA) software (IPA®, QIAGEN 
Redwood City) to review genes with prior links to BP, based on annotation with the 
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“Disorder of Blood Pressure”, “Endothelial Development” and “Vascular Disease” Medline 
Subject Heading (MESH) terms. We used the Mouse Genome Informatics (MGI) tool to 
identify BP and cardiovascular relevant mouse knockout phenotypes for all genes linked to 
BP in our study. We also used IPA to identify genes that interact with known targets of anti-
hypertensive drugs. Genes were also evaluated for evidence of small molecule druggability 
or known drugs based on queries of the Drug Gene Interaction database. 

 

Effects on other traits and diseases 

We query SNPs against PhenoScanner26 to investigate cross-trait effects, extracting all 
association results with genome-wide significance at P < 5 × 10-8 for all SNPs in high LD (r2 

≥ 0.8) with the 535 sentinel novel SNPs, to highlight the loci with strongest evidence of 
association with other traits. We further evaluated these effects using DisGeNET, a resource 
that integrates data from expert curated repositories, GWAS catalogues, animal models and 
the literature27,28 Specifically, at the SNP level, overlaps with DisGeNET terms were 
computed, with roughly the same number of markers in the published and novel BP loci. 
Thus, given the expected saturation of the overlaps, a more than double increase indicates 
that strong associations are more frequent in the novel BP loci. At the gene level, 
overrepresentation enrichment analysis (ORA) with WebGestalt61 on the nearest genes to all 
BP loci was carried out. Moreover, we tested sentinel SNPs at all published and novel 
(n=901) loci for association with lifestyle related data including food, water and alcohol 
intake, anthropomorphic traits and urinary sodium, potassium and creatinine excretion using 
the recently developed Stanford Global Biobank Engine and the Gene ATLAS62. Both are 
search engines for GWAS findings for multiple phenotypes in UK Biobank. We used a 
Bonferroni corrected significance threshold of P < 1x10-6 to deem significance.  

 

Genetic risk scores and percentage of variance explained  

We calculated a genetic risk score (GRS) to provide an estimate of the combined effect of the 
BP raising variants on BP and risk of hypertension, and applied this to the UK Biobank data. 
We first create two trait-specific weighted GRSs (i.e. SBP, DBP), for all pairwise-
independent, LD-filtered (r2 < 0.1) previously reported variants and 535 novel sentinel 
variants combined. For the previously reported variants, we weight BP increasing alleles by 
the trait-specific beta coefficients from the ICBP meta-analysis GWAS that is part of the 
discovery stage. For the novel variants, beta coefficients of the replication meta-analysis for 
each BP trait are used as independent, unbiased weights. We then derive a single BP GRS as 
the average of the GRS for SBP and DBP, and standardize it to have mean zero and standard 
deviation of one. We assess the association of the continuous GRS variable on BP by simple 
linear regression, and use logistic regression to examine the association of the GRS with risk 
of hypertension, with and without adjustment for sex. We then use linear and logistic 
regression to compare BP levels and risk of hypertension, respectively, for individuals in the 
top vs bottom quintiles of the GRS distribution. Similar analyses were performed for the top 
vs bottom deciles of the GRS distribution. All analyses were restricted to unrelated 
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individuals of European ancestry (n= 292,347) from UKB.  As a sensitivity analysis to avoid 
winner’s curse bias we have applied similar analyses in Airwave, an independent cohort of 
N=14,004 unrelated participants of European descent (Supplementary Methods). 

We also assessed the association of the GRS with cardiovascular disease in unrelated 
participants in UKB data, based on self-reported medical history, and linkage to 
hospitalization and mortality data. We use logistic regression with binary outcome variables 
for composite incident cardiovascular disease (Supplementary Methods), incident 
myocardial infarction and incident stroke (using the algorithmic UKB definitions) and GRS 
as explanatory variable (with and without sex adjustment).   

We also calculated the association of this GRS with BP in unrelated African (N=6,264) and 
South Asian (N=7,881) samples from the UKB using the approach described above, to see 
whether BP-associated SNPs identified from GWAS predominantly in Europeans area also 
associated with BP in populations of non-European ancestry. 

To calculate the percent of variance in BP explained by genetic variants in Airwave 
(N=14,004), we generated the residuals from a regression of each trait against age, age2, sex 
and BMI. We then fit a second linear model for the trait residuals with i) the published 
variants and ii) all the variants in the GRS plus the top 10 principal components, and estimate 
the percentage variance of the dependent (BP) variable explained by the GRS for the 
published and for all loci. 

Data availability statement  

The genetic and phenotypic UK Biobank data are available upon application to the UK 
Biobank (https://www.ukbiobank.ac.uk). All replication data generated during this study are 
included in the published article. For example, association results of look-up variants from 
our replication analyses and the subsequent combined meta-analyses are contained within all 
Supplementary Tables provided. 
 

Ethics Statement 

The UKB study has approval from the North West Multi-Centre Research Ethics Committee. 
Any participants from UKB who withdrew consent have been removed from our analysis. 
Each cohort within ICBP meta-analysis as well as our independent replication cohorts of 
MVP and EGCUT had ethical approval locally. More information for the participating 
cohorts is available at the Supplementary Methods. 
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