ScienceDirect

Available online at www.sciencedirect.com

IFAC i

CONFERENCE PAPER ARCHIVE

IFAC PapersOnLine 51-19 (2018) 98-101

Evaluation of Derivative-Free Optimizers
for Parameter Estimation in Systems
Biology

Yannik Schélte * Paul Stapor* Jan Hasenauer *

* Institute of Computational Biology, Helmholtz Center Munich &
Chair of Mathematical Modeling of Biological Systems, Technical
University Munich

Abstract: Derivative-free optimization can be used to estimate parameters without computing
derivatives. As there exist many methods, it is unclear which to use in practice. Here, we present
two comparative studies of 18 state-of-the-art methods: Firstly, we evaluate them on a set of 466
classic optimization test problems of dimension 2 to 300. Secondly, we study their performance
in parameter estimation on 8 ODE models of biological processes, comparing them to state-of-
the-art derivative-based optimization. We observe that different problem features necessitate the
use of different methods, for which we can give suggestions based on our findings. Our analysis
suggests that classic test problems are not representative for problems in systems biology. For
ODE models, we find that purely derivative-free methods are for most problems not reliable or

at least inferior to derivative-based methods.
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1. INTRODUCTION

In this study, we are concerned with optimizing an objec-
tive function J : R™ — R subject to box constraints: We
seek min, J(x) subject to | < x < u, where z,l,u € R",
I < u component-wise. A common approach is to iter-
atively improve a current parameter guess by local hill-
climbing in the objective function landscape. Derivative-
based algorithms use derivative information of J to find
a good descent direction (Martinez and Raydan, 2017).
Under certain smoothness and convexity assumptions,
such algorithms are guaranteed to find a locally optimal
solution in a number of steps independent of n (Nesterov,
2013). However, derivatives cannot always be computed re-
liably, e.g. J may be non-smooth, time-consuming to eval-
uate, or noisy, such that algorithms relying on derivatives
or computing finite differences may fail. Another problem
is multi-modality, where hill-climbing algorithms only find
local minima. In derivative-free optimization (DFO), i.e.
optimization using only the function values of J, diverse
strategies exist to deal with these challenges, most of them
based on heuristics. Only for some algorithms, convergence
proofs under certain assumptions can be given. For further
information see e.g. Koziel and Yang (2011).

DFO algorithms can be classified by various aspects: A
basic distinction is between local and global searches.
Local searches in principle do hill-climbing. While direct
local methods try to minimize J directly, model-based
methods build an adaptive surrogate model for J to guide
the search. Local searches are designed to deliver locally
optimal solutions. Therefore, to find globally optimal so-
lutions, in multi-modal landscapes one has to run multiple
searches from different starting points, i.e. do multi-start
local optimization (Raue et al., 2013). Global searches

attempt to efficiently cover the entire search space to find
global optima. Another distinction is between determin-
istic searches and stochastic searches, which exploit ran-
domness to overcome certain shortcomings like too early
stopping. The classifications are non-exclusive, and hybrid
methods exist which combine different ideas.

We compared the performance of state-of-the-art imple-
mentations of DFO algorithms on test problems. The setup
was based on a recent comprehensive study by Rios and
Sahinidis (2012), but with a different focus: Apart from
considering other optimizers, we used a multi-start setting
to adequately compare local and global methods, and we
examined also the influence of noise. Our study on classic
test problems being of independent interest, thereafter we
performed tests on biological ODE models to see whether
our findings can be transferred to this special problem
type.

In contact with the respective developers, we improved
several of the implementations during our study. The
full MATLAB code is available at https://doi.org/10.
5281/zenodo . 1254078.

2. METHODS AND IMPLEMENTATION
2.1 Test problems

We used 46 types of classic optimization test problems,
based on a collection by Jamil and Yang (2013). Of these,
18 were of fixed dimension 2 to 4, and 28 defined for arbi-
trary dimension. The latter we considered in dimensions 2,
3,4, 5,10, 15, 20, 25, 30, 35, 40, 50, 75, 100, 200, 300, cov-
ering the range of small- to medium-scale systems biology
ODE models. So, we had 466 test problems in total, thereof
195 convex, 271 non-convex, 287 smooth, and 179 non-
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Table 1. Optimization software.

Optimizer Version Literature Type

BOBYQA 2009 Powell (2009) local, model-based
CMAES 3.61beta Hansen and Ostermeier (1996) global, evolutionary
DHC 1.0 De La Maza and Yuret (1994) local, direct
DIRECT 4.0 Finkel (2003) global, partitioning
FMINCON R2017A Byrd et al. (2000) local, gradient-based
FMINSEARCHBND R2017A Nelder and Mead (1965) local, direct

GA R2017B Mitchell (1998) global, evolutionary
IMFIL 1.0 Kelley (2011) local, direct

MCS 2.0 Huyer and Neumaier (1999) global, partitioning
MEIGO-ESS 03-07.2014 Egea et al. (2014) global, hybrid
PARTICLESWARM R2017B Eberhart and Kennedy (1995) global, swarm-based
PATTERNSEARCH R2017B Torczon (1997) local, direct
PSWARM 2.1 Vaz and Vicente (2009) global, swarm-based
RCS 1.0 - local, direct
SIMULANNEALBND R2017B Kirkpatrick et al. (1983) local, direct

smooth. The problems cover issues optimizers typically
have problems with, including multiple local minima, non-
smoothness, global minima with a small attraction area,
sharp ridges, crescent-shaped valleys, and flat plateaus.

In addition to the optimization test problems, we consid-
ered 8 ODE models of biological processes with 2 to 48
parameters: M1 (n = 2) is the model of a simple conversion
reaction, M2 (n = 4) a model of an enzyme-catalyzed
reaction, M3 (n = 5) a model for mRNA transfection
(Leonhardt et al., 2014), M4 (n = 7) a discretized spatial
model for Poml gradient formation (Hross et al., 2016),
M5 (n = 11) a model with Hopf bifurcation (Ballnus et al.,
2017), M6 (n = 17) a model of Epo-induced JAK-STAT
signaling (Swameye et al., 2003), M7 (n = 28) a model of
RAF-MEK-ERK signaling (Fiedler et al., 2016), and M8
(n = 48) a model of histone methylation (Zheng et al.,
2012). For all these models, the negative log-likelihood of
measurement data given simulations assuming a Gaussian
noise model was used as objective function.

2.2 Optimizers

We focused on open-source implementations freely avail-
able for research purposes, and algorithms from MATLAB
toolboxes. For details on the diverse algorithms we refer to
the references in Table 1 and to the provided code. Note
that a classification of the type is generally not clear.

As local methods, we examined the direct methods
DHC (an own implementation of dynamic hill-climbing),
MEIGO-DHC (a DHC implementation from the MEIGO
toolbox), FMINSEARCHBND (simplex-based), IMFIL
(implicit filtering), PATTERNSEARCH with GPS (gen-
eralized pattern search) and MADS (mesh adaptive direct
search) as polling methods, RCS (randomized coordinate
search, own implementation), SIMULANNEALBND (sim-
ulated annealing), as well as the model-based method
BOBYQA (quadratic approximation).

As global methods, we examined the evolutionary methods
GA (genetic) and CMAES (covariance matrix adaptation),
the particle swarm methods PARTICLESWARM and
PSWARM, and the partitioning methods DIRECT (divid-
ing rectangles) and MCS (multilevel coordinate search).
Furthermore, we included the explicitly hybrid MEIGO-
ESS method (enhanced scatter search), with local searches
via BOBYQA, MEIGO-DHC, and DHC.

For comparison, we included the gradient-based MATLAB
FMINCON interior point algorithm, which approximates
gradients via finite differences when given no derivatives.

For the ODE models, we considered optimizers which
had performed reasonably on the classic test problems:
BOBYQA, DHC, DIRECT, MCS, CMAES, PSWARM,
MEIGO-ESS-BOBYQA /DHC, and FMINCON. For com-
parison, we also considered optimization with FMINCON
using analytic gradients (denoted as +g), which can be
computed for ODE systems efficiently via forward or ad-
joint sensitivity analysis. For this, we used the AMICI
toolbox (Frhlich et al., 2017).

2.3 FExperimental setup

A fair comparison of global and local optimizers is difficult:
Global optimizers ideally converge in every run to the
global optimum at the cost of a high computational
budget, whereas local optimizers converge locally (and
must therefore be used in a multi-start setting), but
substantially faster. Further, multi-start local optimizers
require no mutual communication and can thus be run in
parallel on any distributed system, whereas parallelization
for global optimizers is limited by the principles and
implementation of the employed algorithm.

To account for all these aspects, the setup for the study on
classic optimization test problems was as follows: In setting
A1, all optimizers were run k& = 20 times with budgets
of m = 2000 function calls for each problem. The best
function value J found by any of the £ runs was compared
to the known solution J*, and the problem regarded as
solved if J < J* 4 0.01. Optimizers accepting starting
points were initialized via latin hypercube sampling. This
we call the multi-start setting. Then, in A2, to assess
reliability and average behavior, we considered each of the
k runs on its own. This we call the single-start setting.
In setting A3, we ran the global optimizers k, = 1 time
with a budget of m, = 40000, and compared them to the
local optimizers run as in settings A1, to account for global
methods needing more function calls. In setting A4, to test
behavior on noisy problems, we considered setting A1, and
added Gaussian noise of variance 0.032 to every function
call. A 10 minutes time limit was imposed on each run,
which was however hit only 18 times altogether.

Apart, all optimizers were applied with their respective
default settings, recommended for generic applications.
This was because in practice users often lack capacity or
knowledge to tune optimizers to their problems.
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Fig. 1. Performance on classic problems. A: Fraction of solved problems by category. B: Fraction of solved problems in
setting A1 by dimension. C: Average number of function calls in setting A2.

For the biological models, we included all tested optimizers
in the parameter estimation toolbox PESTO (Stapor et al.,
2017), offering one common interface. Here, the function
call budget was chosen so large that most optimizers
stopped earlier. Each optimizer was run k& = 100 times,
using latin hypercube sampling for the local methods. A
run was considered converged if it got below the best
function value found by any of the optimizers plus a
threshold of 3. We considered an absolute threshold since
the objective functions are already on the log-scale. For the
ODE models, a higher threshold was used due to numerics
being involved.

3. RESULTS
3.1 FEvaluation on classic optimization test problems

On the optimization test problems, the partitioning al-
gorithms MCS and DIRECT performed best, solving 86%
resp. 72% of all problems already in the multi-start setting
Al with a budget of m = 2000 (Fig. 1 Al). Of the
local optimizers, DHC (62% of all problems), FMINCON
(58%) and BOBYQA (55%) fared best. However, their per-
formance differed with the problem category: Compared
to smooth problems, on non-smooth problems DHC led
more clearly. This becomes particularly clear in terms of
reliability (A2): Of all DHC starts on non-smooth prob-
lems, 62% ended in the optimum, for FMINCON 49%,
and for BOBYQA only 35%. This indicates that on non-
smooth problems, direct methods are preferable to model-
based methods. But also on other problems, BOBYQA and
DHC can be alternatives to FMINCON relying on finite
differences.

All global optimizers aside MCS and DIRECT profited
considerably from a higher function call budget (Fig. 1
A3): For my = 40000 function calls, MEIGO-ESS (78-
82%) got closer to MCS (91%). In addition, its enhanced
scatter search made MEIGO-ESS superior to simple multi-
start. Further, we observed an advantage of CMAES (69%)

over GA (44%), and of PSWARM (69%) over PARTI-
CLESWARM (58%), so also implementation matters. Sur-
prisingly, 7 optimizers fared worse than RCS (48%), which
is a rather simple method.

The presence of noise altered the results substantially
(Fig. 1 A4). In particular, model-based BOBYQA (30%
of all problems) and derivative-based FMINCON (9%)
suffered considerably. Direct methods like DHC (50%)
were less affected, and methods that perform no local
search, or are inherently stochastic, like DIRECT (72%)
and CMAES (47%, like in A1), were least affected.

A higher problem dimension led, as expected, to a worse
performance (Fig. 1 B). But while MCS and DIRECT
still solved 68% resp. 64% in dimension 300, all oth-
ers ended below 20%. Performance decreased notably
rapidly for the local optimizers SIMULANNEALBND,
PATTERNSEARCH, and FMINSEARCHBND, suggest-
ing to apply these only to low-dimensional problems.

Particularly when they are expensive, the average number
of function calls (Fig. 1 C) is relevant. Here, IMFIL,
FMINCON and BOBYQA continuously needed the fewest.
Global optimizers required on average more calls. GA and
MEIGO-ESS always used the entire budget. However, it
should also be noted that there was considerable variability
in the optimizer proper times, e.g. PSWARM took on
average 4.3s, MCS 3.1s, DHC 0.4s.

3.2 Performance on ODE models of biological processes

The evaluation of the optimizer performance for the ODE
models revealed that DFO methods were able to find the
optimal values only on low-dimensional, simple problems
(Fig. 2 A top). Especially the global methods DIRECT
and MCS, which in each run perform the same search,
often missed the optimal values, but also the other DFO
methods were not reliable. This is a marked contrast to
the performance on the classic test problems.
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Fig. 2. Performance on ODE models. A: Number of con-
verged runs as a measure of reliability (top), and
converged runs per time as a measure of efficience
(bottom). B, C: Waterfall plots (i.e. sorted multi-start
results) for M5, M6.

In more detail, out of the 8 problems, DIRECT found
an acceptable value only for 1, MCS for 3, DHC for 4,
BOBYQA, CMAES for 5, PSWARM for 6, and FMIN-
CON(+g) for 7 problems. In particular, for the larger mod-
els only FMINCON+g proved reliable. Indeed, the com-
parison of FMINCON and FMINCON+g revealed that
analytic gradients improved convergence rate considerably.

The typical behavior of the optimizers can be seen exem-
plarily in the waterfall plot for M6 (Fig. 2 C), where FMIN-
CON+g is the only optimizer showing plateaus indicating
local minima. An exception was M5 (Fig. 2 B), which pos-
sesses many local optima and for which gradient evaluation
is unstable due to stiffness of the ODE system. Here, the
DFO methods PSWARM and CMAES performed best,
albeit not reliably. This indicates that when derivative-
based methods fail, DFO may be an alternative.

4. DISCUSSION

We performed a comprehensive evaluation of DFO meth-
ods for systems biological ODE models. The results sug-
gest that classic optimization test problems are not rep-
resentative for systems biology. This necessitates more
suited collections of test problems to facilitate meaningful
evaluations.

In general, DFO methods did not perform well on the ODE
models and were outperformed by derivative-based meth-
ods. We are not aware of any study on typical properties of
biological ODE models, but a possible explanation consists
in the rather sharp global optima (although the attraction
area may be big), for which gradients are of considerable
value in optimization. Further investigation of the typical
properties would be of use.

Recently, it has been suggested that hybrid schemes com-
bining an intelligent derivative-free global search and
derivative-based local searches perform very well, in

particular when gradients can be computed efficiently
(Villaverde et al., 2018). This clearly encourages a further
pursuit of this path of research.
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