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Abstract

Background: The prevalence of extended-spectrum β-lactamases (ESBLs) have been reported in clinical isolates
obtained from various hospitals in Ethiopia. However, there is no data on the prevalence and antibiotic
susceptibility patterns of CTX-M type ESBL produced by Gram-negative bacilli. The aim of this study was to
determine the frequency and distribution of the blaCTX-M genes and the susceptibility patterns in ESBL producing
clinical isolates of Gram-negative bacilli in Jimma University Specialized Hospital (JUSH), southwest Ethiopia.

Methods: A total of 224 non-duplicate and pure isolates obtained from clinically apparent infections, were included
in the study. Identification of the isolates was performed by MALDI-TOF mass spectrometry. Susceptibility testing
and ESBL detection was performed using VITEK® 2, according to EUCAST v4.0 guidelines. Genotypic analysis was
performed using Check-MDR CT103 Microarrays.

Results: Of the total 112 (50.0%) isolates screen positive for ESBLs, 63.4% (71/112) tested positive for ESBL encoding
genes by Check-MDR array, which corresponds to 91.8% (67/73) of the total Enterobacteriaceae and 10.3% (4/39)
of nonfermenting Gram-negative bacilli. Among the total ESBL gene positive isolates, 95.8% (68/71) carried blaCTX-M
genes with CTX-M group 1 type15 being predominant (66/68; 97.1% of CTX-M genes). The blaCTX-M carrying
Enterobacteriaceae (n = 64) isolates showed no resistance against imipenem and meropenem and a moderate
resistance rate against tigecycline (14.1%), fosfomycin (10.9%) and amikacin (1.6%) suggesting the effectiveness of
these antibiotics against most isolates. On the other hand, all the blaCTX-M positive Enterobacteriaceae showed a
multidrug resistant (MDR) phenotype with remarkable co-resistances (non-susceptibility rates) to aminoglycosides
(92.2%), fluoroquinolones (78.1%) and trimethoprim/sulfamethoxazol (92.2%).

Conclusions: This study demonstrates a remarkably high prevalence of blaCTX-M genes among ESBL-producing
isolates. The high level of resistance to β-lactam and non-β-lactam antibiotics as well as the trend to a MDR profile
associated with the blaCTX-M genes are alarming and emphasize the need for routine diagnostic antimicrobial
susceptibility testing for appropriate choice of antimicrobial therapy.

Keywords: Gram-negative bacilli, Extended-spectrum beta-lactamase, CTX-M, Antimicrobial susceptibility, Ethiopia

* Correspondence: wieser@mvp.uni-muenchen.de
†Ahmed Zeynudin and Michael Pritsch contributed equally to this work.
1Chair of Medical Microbiology and Hospital Epidemiology, Max von
Pettenkofer Institute, Faculty of Medicine, LMU Munich, Marchioninistr. 17,
81377 Munich, Germany
2Institute of Health Sciences, Jimma University, Jimma, Ethiopia
Full list of author information is available at the end of the article

© The Author(s). 2018 Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver
(http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Zeynudin et al. BMC Infectious Diseases          (2018) 18:524 
https://doi.org/10.1186/s12879-018-3436-7

http://crossmark.crossref.org/dialog/?doi=10.1186/s12879-018-3436-7&domain=pdf
http://orcid.org/0000-0001-7383-8750
mailto:wieser@mvp.uni-muenchen.de
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/


Background
Extended-spectrum β-lactamases (ESBLs) are a predom-
inant cause of β-lactam resistance in Gram-negative
bacilli (GNB) [1, 2]. Incidences of infections caused by
ESBLs producing GNB are increasing in prevalence
worldwide, both in the healthcare as well as commu-
nity settings, posing significant therapeutic challenges
[3–5]. ESBLs are most often a plasmid mediated het-
erogeneous group of β-lactamase enzymes, that confer
resistance to a wide range of commonly used β-lactam
antibiotics including third generation cephalosporins
(e.g., ceftriaxone, cefotaxime and ceftazidime) as well
as monobactams (aztreonam) [6]. TEM and SHV type
ESBLs used to be the dominant ESBL genotypes [7].
However, in the past decade, the CTX-M type ESBLs
have become the most widely distributed and globally
dominant genotypes [8].
The CTX-M type enzymes are a group of class A ESBLs

that in general exhibit much higher levels of activity
against cefotaxime and ceftriaxone than ceftazidime [6, 9].
The presence of CTX-M type ESBLs is often associated
with co-resistance phenotypes in particular to fluoroqui-
nolones and aminoglycosides, in addition to tetracycline,
and trimethoprim/sulfamethoxazole co-resistance, which
is commonly observed among TEM and SHV type ESBLs
[10, 11]. The group of CTX-M type ESBLs currently con-
stitutes more than 170 allelic variants, which cluster into
five major groups based on sequence homologies. The five
CTX-M groups are: CTX-M-1, CTX-M-2, CTX-M-8,
CTX-M-9 and CTX-M-25 [12]. Each group consists of a
number of particular variants with dominant variants be-
ing restricted in distribution to specific geographic areas,
while few others are globally distributed. CTX-M-14 and
CTX-M-15 were the most commonly isolated variants
worldwide [10, 13].
In Africa, CTX-M-15 (of the CTX-M-1 group) is the

most frequently reported variant, although some other
variants were also detected in the region [14, 15].
CTX-M type ESBLs have now spread and could be de-
tected among many different bacterial strains of clinical
importance. This is particularly true for Enterobacteria-
ceae revealing an ESBL phenotype such as Escherichia
coli and Klebsiella pneumoniae, which often cause po-
tentially serious infections in the hospital as well as com-
munity setting [13].
In Ethiopia, multiple studies have reported prevalence

of ESBLs ranging from 25 to 38.5% among Enterobacte-
riaceae in clinical samples obtained from various hospi-
tals, including Jimma University Specialized Hospital
(JUSH) [16–19]. However, there is no data on the preva-
lence and antibiotic susceptibility patterns of CTX-M type
ESBLs produced by GNB. Therefore, the aim of the
present study was to determine the relative frequency and
distribution of the blaCTX-M genes, as well as the overall

susceptibility patterns in ESBL producing clinical isolates
of GNB in JUSH, southwest Ethiopia.

Methods
Study setting and clinical specimens
A total of 224 randomly selected, non-duplicate, pure
and clinically relevant Gram-negative bacilli isolates re-
covered from various clinical specimens submitted to
the bacteriology laboratory for routine culture and anti-
microbial susceptibility testing at JUSH during March
to October 2014 were included in the study. The iso-
lates were stored in − 20 °C freezers until transport and
subsequently shipped to the Department of Bacteri-
ology, Max von Pettenkofer-Institute (LMU), Munich,
Germany for further screening and molecular analysis.
The specimens were sent from different inpatient and out-
patient units of JUSH, the only teaching and referral hos-
pital in the southwestern part of Ethiopia, providing
health services for approximately 15 million people in the
catchment area. The specimens included wound swabs,
urine, biopsies, sputum and others (see Additional file 1).
All inpatient clinical specimens were obtained after more
than 48 h of hospitalization of the patient. Along with the
specimens, basic demographic and medical data were re-
corded using standard clinical and laboratory record
forms.

Bacterial isolation, identification and susceptibility testing
Isolation and identification of the bacterial isolates was
performed using standard microbiological techniques in
use at the bacteriology laboratory in JUSH [20]. At the
Max von Pettenkofer-Institute (LMU), all isolates were
identified to the species level by MALDI-TOF mass spec-
trometry (MALDI Biotyper, Bruker Daltonik, Bremen,
Germany, Biotyper software package, version 3.0) [21],
and then retested for antibiotic susceptibilities using
VITEK® 2 compact automated system (N215 and N248,
bioMérieux, France), according to the instructions of
the manufacturers. Software supplied by the manufac-
turer in compliance with the EUCAST v4.0 guidelines
was used. The system included an Advanced Expert
System (AES) that analysed growth patterns and de-
tected the phenotype of organisms. Calculated MICs of
piperacillin, piperacillin-tazobactam, cefotaxime, ceftaz-
idime, cefepime, aztreonam, imipenem, meropenem,
amikacin, gentamicin, ciprofloxacin, tobramycin, moxi-
floxacin, fosfomycin, tigecycline, colistin and trimetho-
prim/sulfamethoxazole were determined and interpreted
according to EUCAST v4.0 guidelines [22].

ESBL screening and phenotypic tests
All Enterobacteriaceae isolates with reduced suscepti-
bility or resistance to ceftazidime and/or cefotaxime
and/or aztreonam [23] and all non-fermenting GNB
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with multi-resistant phenotype [24] were considered as
ESBL-screen positive and subjected to phenotypic and
genotypic analysis. Phenotypic detection of ESBL pro-
duction was performed with the VITEK® 2 compact au-
tomated systems (bioMérieux, France).

Detection and molecular characterization of β-lactamase
genes
Detection and molecular characterization of the β-lactamase
genes was performed on all ESBL-screen positive isolates
using Check-MDR CT103 Microarray Kits (Check-Points
B.V., Wageningen, The Netherlands) following the manu-
facturer’s instructions. With this assay, mutation analysis
of TEM and SHV genes was performed to separate wild
type (WT) alleles from ESBL variants, further AmpC
β-lactamases (CMY-I/MOX, ACC, DHA, ACT/MIR,
CMY-II, FOX) and carbapenemases (KPC, NDM, VIM,
IMP, OXA-48-like) were investigated. Finally, CTX-M
group ESBLs 1, 2, 8 plus 25, and 9 are also detected with
the chip. To further define the type of CTX-M group − 1
and − 9 genes specifically, all positive isolates were ampli-
fied with primers suggested by Kim et al. [25]. For
CTX-M-1 group, the primers with the sequence 5-cgt
cacgctgttgttaggaa-3 and 5-acggctttctgccttaggtt-3 were used
at 55 °C annealing temperature to yield a 780 bp fragment.
CTX-M-9 group genes were amplified with the primers
5-tattgggagtttgagatggt-3 and 5-tccttcaactcagcaaaagt-3 at
50 °C annealing temperature to yield a 932 bp fragment.
The fragments were sequenced for allele type identifi-
cation. In combination with the Check-MDR hybridization
the CTX-M subtypes can thereby be identified with high
confidence, although a theoretical uncertainty remains, as
the gene is not completely covered by the sequencing.

Quality control
For ESBL testing, K. pneumoniae ATCC 700603 (ESBL
positive), E. coli CCUG62975 (ESBL positive), E. coli
ATCC 25922 (ESBL negative) and P. aeruginosa (ATCC
27853) were used as quality control (QC) in all tests.

Statistical analyses
Statistical significance for comparison of proportions was
calculated by the chi-squared test using Statistical Package
for Social Sciences (SPSS, version 23, SPSS, Chicago, IL,
U.S.A.). A value of P < 0.05 was considered as statistically
significant.

Ethical considerations
The study was approved by Jimma University Ethical
Review Board.

Results
Clinical bacterial isolates and specimens
Of the total 224 Gram-negative bacterial strains, 112
(50%) isolates were considered as screen positive for
ESBLs. These isolates consisted of 73 Enterobacteria-
ceae (31 Klebsiella pneumoniae, 2 Klebsiella oxytoca,
14 Enterobacter cloacae, 13 Escherichia coli, 5 Providen-
cia stuartii, 4 Proteus mirabilis, 3 Morganella morganii,
and 1 Escherichia hermanii) and 39 non-fermenting
Gram-negative bacilli (14 Acinetobacter baumanii, 2
Acinetobacter pittii, 1 Acinetobacter haemolyticus, 14
Pseudomonas aeruginosa, 3 Alcaligenes faecalis, 4 Steno-
trophomonas maltophilia and 1 Bordetella bronchisep-
tica). The majority of these isolates was recovered from
inpatients (83.9%, n = 94) mainly from surgical wards
(60.6%, n = 57) followed by medical wards (21.3%, n =
20) and from two types of specimens; wound (54.5%,
n = 61) and urine samples (26.8%, n = 30), which to-
gether account for 81.3% (n = 91) of the total isolates
(see also Additional file 1). The total 112 screen posi-
tive isolates were collected from 100 patients; 90 (90%)
of patients yielded one isolate for inclusion whereas ten
(10%) patients yielded multiple species (eight patients
with two species and two patients with three species).

Phenotypic detection of ESBLs
Phenotypic ESBL production was observed in 62.5%
(n = 70) of the total screen positive isolates (n = 112)
using VITEK® 2 compact automated system (bioMér-
ieux, France).

Genotypic detection of ESBL encoding genes
Of the total 112 screen positive isolates, 63.4% (n = 71)
were positive for ESBL encoding genes by Check-MDR
array. This corresponds to 91.8% (67/73) of the total En-
terobacteriaceae and 10.3% (4/39) of non-fermenting
Gram-negative bacilli, namely 3 P. aeruginosa and 1 A.
faecalis isolate. No ESBL alleles were detected among
Acinetobacter spp., S. maltophilia and B. bronchiseptica
(Table 1). Specimen wise, 60.7% (n = 37) of isolates from
wound samples, 63.3% (n = 19) from urine, 66.7% (n = 8)
from biopsy samples and all the isolates obtained from
sputum samples (n = 6) as well as eye discharge (n = 1)
were positive for ESBL encoding genes. Among total in-
patient (n = 94) and outpatient (n = 18) isolates, ESBL
genes were detected in 68.1% and 38.9% of the isolates
respectively. The comparison of the difference in pro-
portion should be taken with caution as convenient sam-
pling was used and most specimens were obtained from
inpatients. Four patients had two different ESBL-positive
isolates (E. cloacae and K. pneumoniae in two cases
cases, E. coli and M. morganii, and P. aeruginosa and A.
faecalis in one case each). One of the four patients had
an SHV 238S + 240 K mutation bearing E. cloacae and a

Zeynudin et al. BMC Infectious Diseases          (2018) 18:524 Page 3 of 10



CTX-M-15 positive K. pneumoniae in the specimen,
whereas the three other patients each had two different
species each positive for CTX-M-15.

Frequency and distribution of blaCTX-M genes
From a total of 71 isolates carrying ESBL encoding genes,
68 (95.8%) carried CTX-M genes either alone or in com-
bination with SHV and/or TEM genes. Sixty-four out of
67 (95.5%) Enterobacteriaceae and all non-fermenting
GNB (n = 4) which carried ESBL encoding genes, were
positive for CTX-M genes. The remaining three isolates
negative for CTX-M (4.2%) carried SHV-type ESBLs
(G238S + E240K) genes and were found to be E. cloacae
obtained from wound samples. All TEM and SHV
β-lactam genes detected were wild type except five G238S
+ E240K SHV type ESBLs. Three of the five were detected
in E. cloacae in combination with wild type TEM. The
other two were found in one E. coli and K. pneumoniae
isolate along with CTX-M genes (Table 1).

Combinations of blaCTX-M with other β-lactamase genes
Multiple β-lactamase genes in a single strain were ob-
served in 83.1% (n = 59) of the total isolates carrying ESBL
encoding genes. From a total of 68 CTX-M positive iso-
lates, 12 (17.6%) harbored CTX-M alone. The remaining
56 (82.4%) isolates carried CTX-M in combination with
wild type TEM and/or SHV (except two SHV E240K +
G238S) in different frequencies, which is partly explained
due to the general presence of β-lactamases in some
strains e.g. in Klebsiella spp. (Table 1).

Frequency and distribution of CTX-M groups and types
CTX-M group 1 was the most dominant CTX-M group
detected in 66 of 68 CTX-M positive isolates (97.1%),
either alone (n = 63, 92.6%) or in combination with
other groups (n = 3, 4.5%). All CTX-M-1 genes were
sequenced and all were found to be allele CTX-M-15.

The remaining two (2.9%) CTX-M positive isolates
carried CTX-M group 9 (Table 2) genes which upon
sequencing were identified as allele CTX-M-24.

Antibiotic susceptibility pattern of CTX-M positive gram-
negative bacilli isolates
The antibiotic susceptibility testing for CTX-M-positive
Enterobacteriaceae isolates demonstrated a MIC in the
respective susceptible range in < 2% of cases against
cephalosporins according to EUCAST guidelines. Suscep-
tibilities to carbapenems and a few other substances were
found to be much higher. In terms of non-susceptibility,
the highest level of antibiotic resistances was observed as
expected against β-lactams such as piperacillin and cepha-
losporins, but also against trimethoprim-sulfamethoxazole
(92.2%), gentamicin (89.1%), and quinolones (75%). No
isolates showed full resistance to imipenem or merope-
nem, and only 3.1% and 1.6% tested intermediate for these
substances, respectively (Table 3). One E. coli isolate
tested positive for CTX-M-15 but was measured suscep-
tible to third generation cephalosporins using VITEK 2 as
well as disc diffusion tests.

Co-resistance (co-non-susceptibility) to non-β-lactam
antibiotics
All the CTX-M-positive Enterobacteriaceae (n = 64, 100%)
and P. aeruginosa (n = 3, 100%) were non-susceptible to
≥1 agent in ≥3 antimicrobial categories and hence defined
as multidrug resistant (MDR) according to the inter-
national expert proposal for interim standard definitions
for acquired resistance promoted by the European Centre
for Disease Prevention and Control (ECDC) [26]. About
92.2%, 78.1% and 92.2% of the total CTX-M-positive
Enterobacteriaceae were found to be non-susceptible
(co-resistant) to aminoglycosides, fluoroquinolones and
trimethoprim-sulfamethoxazole, respectively (Fig. 1).

Table 1 Frequency, distribution and combinations of bla genes among screen and ESBL gene positive Gram-negative isolates

Screen positive species Total ESBL Among ESBL gene positive isolates

SHV E240K + G238S alone CTX-M alone CTX-M + SHV
E240K + G238S

Total CTXM

n: % n: % n: % n: % n: %

E. coli (n = 13) 13 100 0 0 12 92.3 1 7.7 13 100

K. pneumoniae (n = 31) 30 96.8 0 0 29 96.7 1 3.3 30 100

E. cloacae (n = 14) 12 85.7 3 25.0 9 75.0 0 0 9 75.0

other Enterobacteriaceaea (n = 15) 12 80.0 0 0 12 100 0 0 12 100

P. aeruginosa (n = 14) 3 21.4 0 0 3 100 0 0 3 100

other
Non-fermentersb

(n = 25)

1 4 0 0 1 100 0 0 1 100

Total (n = 112) 71 63.4 3 4.2 66 92.9 2 2.8 68 95.8
aincludes 3 M. morganii, 4 P. mirablis, 5 P. stuartii, 2 K. oxytoca and 1 E. hermanii
bincludes 17 Acinetobacter species (14 A. baumanii, 2 A. pittii and 1 A. haemolyticus), 3 A. faecalis, 4 S. maltophilia and 1 B. bronchiseptica
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Non-susceptibility pattern in CTX-M and non-CTX-M
carrying isolates
Both CTX-M (n = 64) and non-CTX-M-producing
(n = 119) Enterobacteriaceae isolates have comparable
non-susceptibility patterns to piperacillin/tazobactam,
imipenem, meropenem, fosfomycin, and colistin/poly-
myxin B (P > 0.05). However, the non-susceptibility rate
to all other antibiotics tested were all significantly
higher among CTX-M-positive isolates compared to
non-CTX-M ESBL-carrying isolates (P < 0.001) (Fig. 2).
All the CTX-M negative isolates were also non-ESBLs
except for three isolates expressing SHV type ESBLs.
Unlike seen with CTX-M ESBLs, this did not affect the
other non-susceptibilities.

Discussion
The present study is the first report describing the
molecular epidemiology of ESBL-encoding genes in
Ethiopia. We demonstrate a high level of prevalence of
CTX-M-type ESBLs among all ESBL positive isolates at
JUSH. In total, 95.8% of all ESBL genes detected were
of CTX-M type, and almost unanimously CTX-M-1 group
variant type 15 (97.1% of all CTX-M positive isolates).
These findings are in accordance with the fact that the
CTX-M type ESBLs are the most widely distributed and
globally dominant ESBL genotypes to date [13, 27, 28]. Of
the groups, CTX-M-1 was also described to be highly
prevalent in Italy [29], India [30], Switzerland [31],
Saudi-Arabia [32], Syria [33], Pakistan [34] and China [35].

Table 2 Frequency and distribution of CTX-M groups among CTX-M positive Gram-negative bacilli isolates

CTX-M positive species CTX-M groups (total) CTX-M group combinations

CTX-M-1 CTX-M-2 CTX-M-8 + 25 CTX-M-9 CTX-M-1 alone CTX-M-1 + 2 CTX-M-1 + 9 CTX-M-1
+ 2 + 8 + 25

CTX-M-9 alone

n: % n: % n: % n: % n: % n: % n: % n: % n: %

E. coli (n = 13) 12 92.3 0 0 0 0 2 15.4 11 84.6 0 0 1 7.7 0 0 1 7.7

K. pneumoniae (n = 30) 30 100 1 3.3 0 0 0 0 29 96.7 1 3.3 0 0 0 0 0 0

E. cloacae (n = 9) 9 100 0 0 0 0 0 0 9 100 0 0 0 0 0 0 0 0

Other Enterobacteriaceaea

(n = 12)
11 91.7 0 0 0 0 1 8.3 11 91.7 0 0 0 0 0 0 1 8.3

P. aeruginosa (n = 3) 3 100 1 33.3 1 33.3 0 0 2 66.7 0 0 0 0 1 33.3 0 0

Other Non-Fermentersb

(n = 1)
1 100 0 0 0 0 0 0 1 100 0 0 0 0 0 0 0 0

Total (n = 68) 66 97.1 2 2.9 1 1.5 3 4.4 63 92.6 1 1.5 1 1.5 1 1.5 2 2.9
aincludes 3 M. morganii, 4 P. mirablis, 2 P. stuartii, 2 K. oxytoca and 1 E. hermanii
bincludes 1 A. faecalis

Table 3 In vitro antimicrobial resistance pattern of CTX-M-positive Gram-negative isolates

Species CTX-M positive isolate % resistance

PI PIT CTX CAZ CPM AT IMP MRP AK HLG TOB CIP MOX FO TGC CL COT

E. coli (n = 13) 100 30.8 92.3 92.3 92.3 92.3 0 0 7.7 76.9 76.9 92.3 84.6 7.7 0 7.7 84.6

K. pneumoniae (n = 30) 100 60 100 96.7 96.7 96.7 0 0 0 90 96.7 66.7 80 0 0 0 93.3

E. cloacae (n = 9) 100 0 100 100 100 100 0 0 0 88.9 88.9 22.2 77.8 0 0 0 100

M. morganii (n = 3) 100 0 100 100 100 100 0 0 0 100 100 66.7 100 100 IR IR 100

P. mirablis (n = 4) 100 0 100 100 100 100 0 0 0 100 100 25 25 50 IR IR 75

P. stuartii (n = 2) 100 0 100 100 100 100 0 0 0 IR IR 50 50 50 IR IR 100

K. oxytoca (n = 2) 100 50 100 100 100 100 0 0 0 100 100 0 50 0 0 0 100

E. hermanii (n = 1) R R R R R R S S S R R R R S S S R

Total Enterobacteriaceae
(n = 64)

100 35.9 98.4 96.9 96.9 96.9 0 0 1.6 89.1 92.2 59.4 75 10.9 14.1 15.6 92.2

P. aeruginosa (n = 3) 66.7 66.7 IR 33.3 66.7 66.7 0 0 33.3 66.7 66.7 100 100 100 IR 0 IR

A. faecalis (n = 1) R S IE IE IE R S S S S S IE S IE IE IE IE

Total GNB (n = 68) 98.5 36.8 97.1 92.6 94.1 95.6 0 0 2.9 88.2 91.2 60.3 76.5 14.7 17.6 14.7 91.2

Key: PI piperacillin, PIT piperacillin/tazobactam, CTX cefotaxime, CAZ ceftazidime, CPM cefepime, AT aztreonam, IMP imipenem, MRP meropenem, AK amikacin, HLG
gentamicin, TOB tobramycin, CIP ciprofloxacin, MOX moxifloxacin, FO fosfomycine, TGC tigecycline, CL colistin, COT trimethoprim/sulfamethoxazole
n number of isolates, S sensitive, R resistant, IR intrinsic resistance, IE insufficient evidence
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Factors and mechanisms which contribute to the
emergence and increasing prevalence of CTX-M ESBLs
of all groups are complex and may involve both, plasmid
dissemination as well as clonal spread of bacterial strains
[36, 37]. In addition, the selective pressure exerted by the
frequent use of wide spectrum cephalosporins may pro-
mote their epidemiological success [10, 28, 38]. Especially
in Ethiopia, the widespread misuse and overuse of cepha-
losporins may contribute to the selection and spread of
CTX-M gene carrying clones [39–41]. The frequency of
the CTX-M genotype among the ESBL gene-positive En-
terobacteriaceae isolates was also remarkably high (95.5%)

compared to similar findings among clinical Enterobacte-
riaceae isolates with prevalence rates of 91% in Brazil [42],
80.3% in Germany [43] and 79% in Switzerland [31].
Other than E. coli (92.3% CTX-M-15) and K. pneumo-

niae (100% CTX-M-15), CTX-M were also detected
among other members of ESBL producing Enterobacteria-
ceae (K. oxytoca, M. morganii, P. mirablis, P. stuartii, E.
hermannii and E. cloacae) as well as non-fermenting GNB
(P. aeruginosa and A. fecalis) in 87.5% (n = 21) and 100%
(n = 4), respectively. Out of all screen positive isolates
(112) 41 were found to be non-ESBL producers. Thereby,
most (35/41) were lactose non-fermenting GNB with
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known extensive intrinsic resistance mechanisms. Other
isolates may be resistant due to genes not tested within this
study, or due to derepression of wild type β-lactamases or
even permeability defects. Among screen positive Entero-
bacteriaceae isolates, 92% (67/73) were also positive for an
ESBL gene tested within this study.
Although, this study was small, it indicates the dissem-

ination of the CTX-M genes to other GNB besides Entero-
bacteriaceae in Jimma. Similar findings have been
reported in Switzerland [31], Argentina [44], Netherlands
[45] and Japan [13]. The frequency of ESBL gene positive
Pseudomonas aeruginosa was low (21.4%, n = 3) when
compared to other GNB. This is probably due to the fact
that most resistance mechanisms in Pseudomonas aerugi-
nosa are mediated by the overproduction of AmpC
β-lactamases as well as acquired metallo-β-lactamases, de-
creased permeability and efflux pumps [46]. In addition,
plasmid incompatibility and host range of ESBL encoding
plasmids might also play a role in our setting [13]. The
emergence and spread of CTX-M-producing isolates in
the community, particularly among E. coli in urinary tract
infections (UTI), were reported from China [47], Brazil
[48] and the UK [49]. A trend in this direction can also be
seen in our study, as all the outpatient urine isolates of E.
coli (n = 2), K. pneumoniae (n = 2), M. morganii (n = 1), P.
mirablis (n = 1) and E. cloacae (n = 1) with an ESBL gene
were shown to carry CTX-M genes. However, the total
sample size of outpatient isolates in the present study is
small compared to the inpatient sample number.
The overall resistance pattern of the total CTX-M

positive Enterobacteriaceae is very high for most antibi-
otics tested in the present study. The carbapenems (0%
resistance) followed by amikacin (3% resistance) were
found to have the highest susceptibility rates. However,
all CTX-M-positive isolates identified in this study
showed a MDR phenotype as well as remarkably high
rates of co-resistance to fluoroquinolones, aminoglyco-
sides, and trimethoprim/sulfamethoxazole. Only one E.
coli isolate positive for an ESBL gene (CTX-M-15) was
not resistant against third generation cephalosporins,
while still maintaining an MDR phenotype. In this particu-
lar case, the CTX-M operon seems to be non-functional
perhaps due to mutations. These findings are consistent
with studies from Ghana [50], Lebanon [51] and India
[52] which propose imipenem and amikacin as possible
drugs for the management of infection caused by
CTX-M-producing isolates. The results are also in accord-
ance with findings of high prevalence of MDR phenotype
(88.4%) among ESBL-producing E. coli and K. pneumo-
niae isolates in a previous phenotypic characterization
of strains in JUSH [17]. Comparably high rates of
co-resistance to non-β-lactam antibiotics were also re-
ported from Brazil [42], South Korea [53] and Indian
hospitals [54].

Surprisingly, colistin/polymyxin, which is not available
in Ethiopia, showed resistance rates of above 10%. How-
ever, this rate has to be interpreted with caution, as the
data based on VITEK® 2 testing system is unreliable for
detecting colistin resistance [55], and results obtained by
these methods may be overrated and require confirm-
ation by ISO-standard broth microdilution method as
nowadays recommended by EUCAST [56, 57]. As the
respective recommendation was issued after completion
of the study, it was not taken into consideration.
In the present study, only clinically relevant isolates of

in- and outpatients were used, a screening upon admis-
sion, or screening of healthy controls was not performed.
However, the high rates of ESBL positive organisms in
outpatients without contact to the health care system
within the last 3 months, argues for considerable ESBL
carrier rates among the general population. Within the
study population, mainly samples from internal medicine,
pediatrics and ICU were ESBL positive and MDR, whereas
in the surgical patient group many patients were found to
harbor non-fermenters with MDR phenotype which are
negative for the ESBL and carbapenemase genes tested
within this study (see Additional file 2).
This conclusion is supported by a study conducted at

black lion hospital in Addis Ababa (Ethiopia) reporting a
high gastrointestinal colonization rate with ESBL produ-
cing Enterobacteriaceae among hospitalized patients [58].
It is well known, that many of the patients who develop
health care-associated ESBL infections have preceding
colonization of the gastrointestinal tract [59, 60]. A com-
bination based on lack of hygiene and high colonization
rates with ESBL positive organisms are likely to drive the
ESBL rates in JUSH.
Within the sample group, other prominent resistance de-

terminants were also investigated as part of the CT103
panel. Thereby, no KPC, NDM-1, VIM, IMP or Oxa48-like
coding organism was detected. Previously, we could dem-
onstrate the presence of NDM-1 in Acinetobacter bauman-
nii in the area [61]. NDM-1 gene transfer to other isolates
seems not to have occurred in relevant numbers. However,
the presence of CTX-M-15 genes in different species in
such high prevalence argues for horizontal gene transfer
currently or in the past. The transfer might have occurred
by plasmid exchange, which is especially common among
Enterobacteriaceae, or by less frequent recombination
events, e.g. involving IS elements. How recent or frequent
such events have been cannot be elucidated given the
methodology used, as the genes are found in numerous dif-
ferent species and isolates, it certainly cannot be explained
simply by local clonal expansion of one strain.

Conclusions
This study demonstrates a remarkably high level of
CTX-M genes in GNB isolated in JUSH. The most
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predominant group was CTX-M-1 allele 15 and a few
percent CTX-M-9 allele 24 among all the ESBLs gene
positive clinical isolates. In South Africa, CTX-M-2 and
-3 group are most prevalent, and CTX-M-14 and -15 in
Egypt [62]. Meropenem, imipenem, colistin and amika-
cin were found to have the highest in vitro efficacy
against the CTX-M-producing isolates. The high level
of resistance to β-lactam and non-β-lactam antibiotics
as well as the trend of a MDR profile associated with
the CTX-M genes are alarming and emphasize the need
for diagnostic antimicrobial susceptibility testing for
appropriate choice of antimicrobial therapy and limit-
ing the spread of antimicrobial resistance in Ethiopia
and in the region.

Additional files

Additional file 1: Distribution and frequency of GNB isolates in different
clinical specimens. (PPTX 68 kb)

Additional file 2: Rates of ESBL and MDR in view of different hospital
departments. (PPTX 44 kb)
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