
Targeting the Incretin/Glucagon System With
Triagonists to Treat Diabetes

Megan E. Capozzi,1 Richard D. DiMarchi,2,3 Matthias H. Tschöp,4,5 Brian Finan,3
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ABSTRACT Glucagonlike peptide 1 (GLP-1) receptor agonists have been efficacious for the treatment of type 2 diabetes due to their ability

to reduce weight and attenuate hyperglycemia. However, the activity of glucagonlike peptide 1 receptor–directed strategies is submaximal,

and the only potent, sustainable treatment of metabolic dysfunction is bariatric surgery, necessitating the development of unique

therapeutics. GLP-1 is structurally related to glucagon and glucose-dependent insulinotropic peptide (GIP), allowing for the development of

intermixed, unimolecular peptides with activity at each of their respective receptors. In this review, we discuss the range of tissue targets and

added benefits afforded by the inclusion of each of GIP and glucagon. We discuss considerations for the development of sequence-

intermixed dual agonists and triagonists, highlighting the importance of evaluating balanced signaling at the targeted receptors. Several

multireceptor agonist peptides have been developed and evaluated, and the key preclinical and clinical findings are reviewed in detail. The

biological activity of these multireceptor agonists are founded in the success of GLP-1-directed strategies; by including GIP and glucagon

components, these multireceptor agonists are thought to enhance GLP-1’s activities by broadening the tissue targets and synergizing at

tissues that express multiple receptors, such at the brain and pancreatic islet b cells. The development and utility of balanced, unimolecular

multireceptor agonists provide both a useful tool for querying the actions of incretins and glucagon during metabolic disease and a unique

drug class to treat type 2 diabetes with unprecedented efficacy. (Endocrine Reviews 39: 719 – 738, 2018)

T ype  diabetes (TD) is a complex, multifaceted
disease that has rapidly increased in prevalence,

currently affecting  in  adults worldwide, and a
substantial economic burden with a global cost of
$. trillion US (). Although the World Health
Organization classifies diabetes as the sixth leading
cause of death worldwide, the contribution of diabetes
to heart disease (first leading cause of death) and stroke
(second leading cause of death) significantly increases
the impact of this disease on overall mortality rates.

Although far from understood, TD typically arises
following the development of insulin resistance, along
with dysfunctional pancreatic islet action (insufficient
insulin production and excessive glucagon produc-
tion). Despite the recognized complexity of TD
pathogenesis, current therapeutic strategies are tar-
geted at single disease aspects. Many therapeutic agents
aim to enhance insulin levels with administration of

exogenous insulin or insulin secretagogues, while others
target insulin sensitivity (i.e., peroxisome proliferator–
activated receptor g agonists). Following the discovery
of leptin, and later ghrelin, it became clear that hor-
monal signals to the brain play an important role in the
development of obesity and subsequent TD. Thus,
targeting the central nervous system (CNS) to manage
weight by increasing energy expenditure and restricting
caloric intake emerged as an efficacious component of a
successful weight loss strategy. Indeed, the mechanism
for glucagonlike peptide  receptor (GLP-R) agonists
has been broadened beyond actions in the pancreas, to
include CNS activity that reduces food intake and fa-
cilitate weight loss. Consequently, it has become clear
that the multifaceted nature of TD demands a ther-
apeutic strategy that is equally sophisticated, and
thereby provides synergistic avenues to target the many
pathogenic origins of the disease.
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Bariatric surgery has proven to be both effica-
cious and sustainable for the treatment of TD.
Originally developed specifically for morbidly obese
individuals, independent of metabolic dysfunc-
tion, it quickly became clear that bariatric surgery
can induce rapid improvements in hyperglycemia.
Available pharmaceutical interventions are not able
to replicate the magnitude of the benefits associated
with surgery. On the other hand, it is not eco-
nomically feasible to perform bariatric surgery as
a primary treatment option for the number of
people with TD, creating a significant need for
the development of pharmaceutical agents that
achieve similar efficacy as surgical options, working
noninvasively to target several tissues in a com-
plimentary, synergistic manner.

Incretin hormones, glucagonlike peptide- (GLP-
), and glucose-dependent insulinotropic peptide
(GIP) have recently garnered attention for their broad
effects on target tissues of diabetes. Most notably, these
factors are crucial for postprandial rises in insulin
secretion. In fact, % to % of insulin secretion
following a meal is a result of incretin action. Yet in
TD, the incretin effect is significantly blunted, sug-
gesting that lesions in this axis may be key in the

development of the disease and that restoration of
incretin signaling could be particularly effective as a
treatment strategy (, ). In addition to incretin
peptides, glucagon has reemerged as a significant con-
tributor to glucose homeostasis and energy metab-
olism. Physiologically, glucagon opposes insulin action
and increases glycemia, sparking numerous efforts
to inhibit its action and lower glucose (). However,
the impact of glucagon on energy metabolism is be-
coming more evident, with increasing efforts now
being put forth to agonize the glucagon receptor in an
effort to treat metabolic dysfunction (). What is clear
is that both incretin peptides and glucagon are sub-
stantially increased following bariatric surgery (–),
igniting interests in these peptides as the mechanism
for the improvements in metabolic dysfunction. This
has also made clear that our understanding of how
these gut-derived peptides influence systemic metab-
olism is not completely understood. This review will
discuss the controversies currently presiding over these
peptides, and attempt to reconcile their contribution to
both the pathogenesis of TD and their potential to
contribute to the next generation of therapeutic agents
for the treatment of the disease.

Current Incretin-Directed
Therapeutic Strategies

GLP-1R agonists and dipeptidyl
peptidase-4 inhibitors
Dipeptidyl peptidase- (DPP) is an exopeptidase that
cleaves a wide range of peptide targets, including GLP-
 and GIP, thereby limiting their activity (). Whereas
DPP cleaves many peptides, the DPP inhibitors
(DPPi) lower glycemia solely by enhancing the bi-
ological activity of GLP- and GIP (). The DPP
inhibitor sitagliptin was approved for clinical use in ,
and additional DPP inhibitors have since been in-
troduced into the clinic. Although generally considered
safe, these inhibitors have modest effects on hemoglobin
Ac (HbAc) and are weight neutral when administered
as monotherapy. An important limitation of this drug
class is that it requires endogenous production of

incretins. Indeed, supraphysiologic levels of active GLP-,
beyond the concentrations typically achieved with
DPPi, are necessary to achieve robust effects on gly-
cemia and stimulate a decrease in body weight.

There are currently several GLP- receptor agonists
available for the treatment of TD, which are more ef-
ficacious in controlling glycemia. These GLP- analogs are
modified to prevent inactivation by DPP and sub-
stantially elongate the half-life of active GLP- in circu-
lation. In addition to providing glucose control, several
large-scale cardiovascular outcome trials have demon-
strated that certain GLP-R agonists reduce cardiovas-
cular events (–). Thus, GLP- hasmany target tissues,
and benefits of its use are observed across several aspects
of the metabolic syndrome. Despite the broad range of
benefits from GLP-R monoagonism, there are limita-
tions to its use that prevent maximal achievable benefits.
Most notably, gastrointestinal side effects such as nausea

ESSENTIAL POINTS

· There is a need for new therapeutic strategies with broader activities than any currently available drugs

· GLP-1, GIP, and glucagon receptors have unique tissue distribution and activity, supporting their combined use to treat
diabetes

· GLP-1, GIP, and glucagon have similar peptide sequences, permitting the development of single-sequence multireceptor
agonists

· Multireceptor agonists may be more effective than monoagonists for reducing body weight and improving metabolic
dysfunction
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limit the tolerability of GLP-R agonists. As a conse-
quence, these treatments are administered at submaximal
doses in terms of their effect on weight loss and have to be
dose titrated during initial administrations to patients
(), highlighting the potential for additional benefits
beyond what is currently being achieved in the clinic.

Bariatric surgery
The single most effective therapy for TD is bariatric
surgery, predominantly manifested as Roux-en-Y and
vertical sleeve gastrectomy procedures. It is now ap-
preciated that the benefits of bariatric surgery are not
solely dependent on dietary limitations and sub-
sequent weight loss. Both Roux-en-Y and vertical
sleeve gastrectomy yield immediate, weight-independent
metabolic benefits and have since been termed “meta-
bolic surgeries” (). Although the molecular mecha-
nisms underlying these effects are incompletely understood,
several gastrointestinal hormones, including GLP-, GIP,
glucagon, oxyntomodulin, peptide YY, and ghrelin,
are altered as a result and have been implicated as
part of the mechanism. Attempts to isolate a singular
peptide or metabolite as the primary stimulus for the
improvement in metabolism following bariatric
surgery have largely been unsuccessful (–). A
takeaway from these studies is that the metabolic
changes following bariatric surgery are multifaceted
and complex, and therefore may require more than
manipulation of a singular metabolic pathway to
recapitulate the full efficacy of the surgery. Moreover, a
key attribute to the success of bariatric surgery is that it
causes negative energy balance while simultaneously
decreasing appetite, a feat that no other weight loss
strategy can achieve, and this is likely due to collabo-
ration of multiple hormonal factors to manipulate these
opposing behaviors coincidently.

Need for Novel Therapeutics

Despite the unprecedented benefits of bariatric sur-
geries, their application is not widespread enough to
manage the TD epidemic. The surgeries are expen-
sive and invasive and are accompanied by several
complications, including dumping syndrome, diar-
rhea, and hypoglycemia, among others. Furthermore,
there are physical constraints for providing this sur-
gery, including insufficient numbers of available
surgeons with technical expertise and lack of appro-
priate infrastructure to perform the surgeries ().
These important limitations of bariatric surgery
provide the impetus to develop pharmaceutical mi-
metics that provide broad systematic targeting to
maximize efficacy while minimizing invasiveness.
Several groups have approached this need by de-
veloping multitarget agonists largely centered on
hormonal gut peptides. Although many combinatorial
therapies have been pursued, and their development

discussed in other reviews (–), this review will
focus on incretin-based multiagonists. The basis for
these compounds is anchored in the success and safety
of GLP-R agonists. This particularly pertains to the
outcomes regarding neurologic and cardiovascular
side effects, while still activating several tissue targets
to improve metabolism. Incretins also improve gly-
cemia without carrying hypoglycemic risk because
their insulin-inducing activities are glucose dependent,
further providing safety compared with other drug
classes, such as sulfonylureas. Lastly, recent studies
have demonstrated synergistic effects on glycemia and
body weight when receptor agonism is balanced (,
), which provides the basis for the development and
translation of several multiagonist compounds dis-
cussed herein.

Incretin/Glucagon Biology

The purpose of this chapter is to provide a cursory
review of relevant pathways modulated by GLP-,
GIP, and glucagon receptor activation to support
their potential for use in multireceptor agonism. The
review is limited to these three peptides due to their
complimentary activities and similar structures at the
N-terminal region that have allowed for the devel-
opment of sequence-intermixed peptide therapies.
GLP-, GIP, and glucagon exert their effects through
similar mechanisms of action, all acting on class B G
protein–coupled receptors (GPCRs) of the Gs family
and typically mediating signal transduction through
the stimulation of cAMP. However, the tissue-specific
distribution of the incretin/glucagon cognate receptors
is unique, and likely plays a role in the variation
in their respective functions (Fig. ). For example,
whereas GLP-, GIP, and glucagon all have insuli-
notropic effects on the pancreatic b cell, only glucagon
can stimulate hepatic glucose production, whereas the
GLP-R and GIP receptor (GIPR) are not expressed in
hepatocytes. Furthermore, even within a tissue type
that expresses all three receptors (e.g.,b cells), there
appear to be unique characteristics for each receptor.
Together, this raises the intriguing possibility for
synergistic interactions, both at the cellular, tissue, and
systemic levels. Herein, we describe the relevant ac-
tivities of each peptide, highlighting areas of activity
that are more appropriately addressed through com-
binatorial treatment strategies.

GLP-1
GLP- is secreted following posttranslational pro-
cessing of proglucagon by prohormone convertase /
in enteroendocrine L-cells and possibly pancreatic
a cells (, ). The secretion of GLP- from the
intestine comprises the classic incretin response to
ingested nutrients, while the significance of a cell–
derived GLP- was first identified in the early s and
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was subsequently found to stimulate insulin secretion
in a glucose-dependent manner in  (, ). GLP-
offers added metabolic benefits beyond its effect on
insulin secretion, also slowing gastric emptying, sup-
pressing appetite, and lowering body weight. Recent
insights have begun to describe anti-inflammatory
actions of GLP-R agonists (, ), and although
GLP-R therapies have shown beneficial impact on
cardiovascular events, the mechanisms by which this
occurs are largely unknown (). Comprehensive re-
views of the metabolic actions of GLP- have been
discussed previously (–).

Recent advances in optimizing GLP-R agonist
therapies to improve efficacy and adherence include
enhancing the bioavailability for longer duration and
allowing for oral delivery. Protracted GLP-R agonists
have not only improved convenience for patients by
lessening the frequency of administration but have
also shown unprecedented glycemic and body weight
efficacy in clinical trials (, –). After  years of
clinical use, GLP-R agonists and DPPi are generally
considered safe therapies. Compared with other
therapeutic options, GLP-R agonists present low risk
of hypoglycemia, good efficacy for glycemic control
and weight loss, and improvements in cardiometabolic
health. These attributes have positionedGLP- as a favored
candidate for the foundation of multireceptor agonists.

GIP
GIP, a –amino acid peptide, is secreted by K cells in
the intestine in response to nutrients. GIP was dis-
covered in  and originally termed gastric in-
hibitory peptide due to its effects on gastric acid
secretion. Shortly after its discovery, it was found to
stimulate insulin in a glucose-dependent manner (),
and thus its role as an incretin hormone has been the
primary focus for characterization of its activities.
GIP exerts its actions through the GIPR, a seven-
transmembrane heterotrimeric GPCR of the Gs family.
GIPR is widely expressed, including but not limited to
its appearance in the pancreas, stomach, bone, small
intestine, adipose tissue, lung, and multiple regions of
the CNS (). The most well-defined activity of GIP is
its glucose-dependent insulinotropic activity in the
pancreas. GIP stimulates insulin secretion through
GIPR on the b cell, activating cAMP/protein kinase A-
and cAMP/Epac-dependent pathways in the b cell
(). Consistent with its role as an incretin, Gipr–/–mice
exhibit impaired oral glucose tolerance, although in-
traperitoneal glucose tolerance is unaffected (). In-
terestingly, DPPi retained their ability to stimulate
insulin secretion and lower glycemia in b-cell–specific
Glpr knockout mice (), but not b-cell–specific Gipr
knockout mice (), under chow-fed conditions. This
raises the intriguing possibility that enhanced GIPR
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GIP

Glucagon

GLP-1

Figure 1. Glucagon, GLP-1, and GIP have
unique activities at different tissue beds.
Blue arrows show the effects of glucagon,
green arrows show GLP-1 effects, and red
arrows show GIP effects. Although there are
overlapping activities of these peptides in the
brain and pancreas, the majority of tissues have
nonoverlapping receptor expression, yielding
unique activities of each peptide at different
tissues. Therefore, multireceptor agonists
demonstrate additive effects, in part, by
engaging a broader range of activities.

722 Capozzi et al Incretin/Glucagon Triagonists for T2D Treatment Endocrine Reviews, October 2018, 39(5):719–738

REVIEW
D

ow
nloaded from

 https://academ
ic.oup.com

/edrv/article-abstract/39/5/719/5036717 by G
SF Forschungszentrum

 user on 24 O
ctober 2018



activity may constitute the majority of the glucor-
egulatory actions of DPP inhibitors under normal
conditions. Whether this relationship is altered by
metabolic stress remains to be seen, which is important
to understand given that GIP-stimulated insulin se-
cretion is substantially blunted in people with TD,
even at pharmacological levels ().

Although GIPR and GLP-R are structurally re-
lated and exhibit comparable activity for glucose-
stimulated insulin secretion, divergent pathways have
been identified related to b-cell survival. GIP signaling
through its cognate receptor promotes b-cell survival
and protects against streptozotocin-induced b-cell
apoptosis through ERK-dependent pathways that
converge on Tcf expression, which encodes the TCF
protein (). Similarly, Tcf–/– mice are more sus-
ceptible to streptozotocin-induced b-cell apoptosis
and exhibit impaired glucose tolerance in response to
aging or high-fat diet feeding (). This pathway was
unaffected by loss of GLP-R or stimulation with Ex-,
demonstrating unique actions of these receptors. This
demonstrates the benefit of activating multiple
incretin receptors in the b cell, despite certain con-
verging activities, such as insulin secretion.

Limitations for the development of GIPR agonists
The development of GIP-directed therapies has been
limited by several findings. Most notably, insulin se-
cretion in response to GIP administration is impaired
in patients with TD, and although GLP--induced
insulin secretion is also reduced in these patients, the
amount of insulin secretion is still functionally rele-
vant (). This finding naturally steered the field to
develop GLP--directed therapies. However, it is
important to note that the responsiveness to GIP is
reversible. Alleviation of hyperglycemia can resensitize
the islet to GIP, at least in part due to restoration of
GIPR expression in the islet (, ). Hyperglycemia
induced by partial pancreatectomy reduced both islet
Glpr and Gipr, but receptor expression was restored
by reducing hyperglycemia with phlorizin (). Sim-
ilarly, phlorizin treatment of hyperglycemic zucker
diabetic fatty rats for  weeks restored GIPR ex-
pression from ~% of lean control levels to ~% ().
This finding is pertinent to humans; restoration of
GIP-induced insulin secretion was demonstrated in
TD patients following intensive insulin therapy for
 weeks (). Understanding the mechanisms that
facilitate a strong correlation between GIPR activity
and b -cell function may provide key insight into the
etiology of b-cell dysfunction in TD. Moreover, the
plasticity of GIPR signaling in b cells indicates that
therapies incorporating GIPR activity may provide
additional glucose-lowering effects, particularly if GIP
agonism is combined with additional agents such as
GLP-.

Another limitation in the pursuit of GIP-directed
therapies was the observation that GIP stimulates

triacylglycerol deposition in adipocytes. Initial studies
utilizing Gipr–/– mice revealed that germ-line deletion
of GIPR prevented obesity following high-fat feeding
or in the context of leptin deficiency, concluding that
GIP was a lipogenic hormone (). Notably, this effect
is dependent on the type of dietary challenge; Gipr–/–

mice fed a high-carbohydrate diet are not resistant to
weight gain (). Caution should be used in the in-
terpretation of germ-line knockout models due to
confounding effects of compensatory mechanisms. For
instance, Glpr–/–mice also show profound protection
against diet-induced obesity (DIO) (), yet GLP-R
agonists are now used in clinic to induce weight loss in
obese individuals independent of metabolic dysfunc-
tion (). Subsequent studies using pharmacological
antagonism of GIPR with a modified GIP peptide,
(Pro)GIP, in obese animals also concluded that loss of
GIPR function can limit or reduce adiposity (, ).
However, these conclusions were recently challenged
by the findings that (Pro)GIP is a full agonist at the
human GIPR and a partial agonist at the rodent GIPR
(). Studies in humans demonstrate GIP agonism
increases adipose tissue blood flow, events that are
postulated to facilitate lipogenesis (–). Although
establishing causality between adipose tissue blood
flow and adipogenesis as a bone fide action of GIP still
remains to be done, these studies did use newer GIPR
antagonists that could prove to be beneficial for future
efforts aimed at addressing this and other GIP actions.
In fact, there are efforts to test the use of GIPR an-
tagonism as a therapeutic strategy for limiting obesity,
because loss of GIPR signaling is suggested to prevent
triacylglycerol uptake (, ). More thorough studies
comparing GIPR agonism and antagonism are nec-
essary to elucidate the impact of extrapancreatic GIPR
signaling (Fig. ). Together, the major observations
leading to the conclusion that GIP is obesogenic have
significant limitations that prevent clear insight into
this question.

Human and rodent adipocytes do express a GIPR,
which has been reported to stimulate lipoprotein li-
pase, and mechanistic studies in adipocyte cell lines
indicate a lipogenic signal for GIPR activation (, ).
Notably, the effects of GIP on isolated adipocytes were
dependent on insulin, thus making it difficult to
disassociate the lipogenic effects of GIP mediated
through direct actions on adipocytes from those
mediated indirectly through the insulinotropic effects
of GIP in b cells. Indeed, insulin appears to be a
primary driver of obesity, at least in rodents (). Even
more complexity was added when subsequent studies
demonstrated that Gipr–/– mice fed a high-fat diet
gained less body weight than wild-type mice primarily
due to differences in lean mass (). Furthermore,
rescue of Gipr specifically in the adipose tissue of the
knockout mice corrected this difference in lean mass.
Supporting the important role for GIPR signaling in
adipose, a genome-wide association study assessing
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heritability of human obesity identified a unique body
mass index–associated locus near GIPR (). Taken
together, the effect of GIP on lipid deposition in
adipose remains unclear and further studies utilizing
adipocyte-specific knockout models or highly specific
GIPR antagonists are required to better understand
the significance of GIPR activity in adipose tissue.

GIPR is expressed in the a cells of both mouse and
human islets, and its activation has been linked to
glucagon secretion (, ). In normal, healthy pa-
tients, GIP infusion elevated serum glucagon levels;
however, this was observed in hypoglycemic and
euglycemic conditions, but not during hyperglycemia
(). Notably, despite the elevated glucagon levels,
glucose infusion rates in clamps were higher with GIP
infusion, suggesting that at least in healthy patients, the
glucagon-inducing activity of GIP does not have
negative effects on glycemia. Furthermore, these
findings did not correlate with insulin levels, which
were significantly elevated by GIP infusion under all
glycemic conditions. Whether GIP-induced glucagon
secretion meaningfully impacts physiology requires
further study.

Extrapancreatic effects of GIP
GIP-directed therapies may have added benefits be-
yond its effects on glycemia through activation of
GIPR in extrapancreatic tissues. One such target is the
bone, where GIP has been suggested as the key
component of a posited “entero-osseous axis” ().
Proper bone health requires a balance between
bone resorption by osteoclasts and bone formation by
osteoblasts. Following a meal, bone resorption is

suppressed, shifting the balance to bone formation and
strengthening, suggesting that postprandial signals
may be key mediators of this transition. Bone GIPR
expression was first observed in , with expression
in osteoclasts, osteoblasts, and osteocytes (). Studies
performed in Gipr–/– mice confirmed the importance
of GIP signaling for bone homeostasis; bone length
and width were decreased, with lowered bone mineral
content and density in Gipr–/– compared with wild-
type controls (). It remains unclear if GIP has a
direct effect on osteocytes, or if the effect in the
knockout mice is due to differences in circulating
insulin. Indeed, insulin is known to be an integrator of
nutrition and bone homeostasis (). The role of GIPR
signaling has also been confirmed in patients. The
effect of a genetic variant that exhibits reduced GIP
activity, GIPR GluGln, was assessed in peri-
menopausal women, who are at increased risk for
osteoporotic fractures. Women with the loss-of-
function variant were about % more likely to ex-
perience nonvertebral fractures and had significantly
lower hip and femoral neck bone mineral density ().
Additional studies assessing the circulating biomarker
of bone resorption, carboxy-terminal collagen cross-
links, have demonstrated a strong relationship be-
tween GIP and nutrient-induced bone strengthening
(). Evidence for a direct effect of GIP in bone was
seen in C-peptide-negative type  diabetic patients,
where similar suppression of collagen crosslinks oc-
curred independent of changes in circulating insulin
(). Thus, GIP may be a critical factor linking meal
intake and bone formation. Notably, bariatric surgery
or hypocaloric diets reduce bone mineral density in
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   ischemic injury [88]

Agonism
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   and fibrosis [86]

Figure 2. Proposed
activities of GIPR
antagonism vs agonism.
The projected activities of
a GIPR antagonist at each
tissue with GIPR expression
is shown in red, and
agonism is shown in blue.
References supporting
these activities are
provided in brackets.
Italicized text indicates
a presumed effect of
agonism or antagonism
but does not have data to
support a known activity.
ATBF, adipose tissue blood
flow; TAG, triacylglycerol.
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both rodents and patients (–). This raises the
intriguing possibility that having a GIP-directed
component in a mixed-agonist treatment strategy
could reduce the adverse effects on bone that arise due
to rapid weight loss or reduced calorie intake. How-
ever, it is important to note that GIP is also elevated
following bariatric surgery (), whereas bone mineral
density is reduced; further work is necessary to elu-
cidate the the direct and indirect effects of GIP on
bone health in the context of obesity and TD.

GIPR is expressed in both rodent and human
cardiomyocytes and is linked to cardiac lipid metab-
olism. Gipr–/– mice were protected from ischemic
cardiac injury, and this effect was independent of GIP-
stimulated insulin secretion (). The protection
exerted by GIPR deletion was mediated by decreased
hormone-sensitive lipase phosphorylation and in-
creased myocardial TAG content. However, GIP
agonism had no effect on cardiac ischemia, despite
stimulating hormone-sensitive lipase phosphorylation
and fatty acid oxidation, demonstrating the cardiac
safety of GIPR agonism for use in multireceptor ago-
nism. In fact, GIP administration limited angiotensin
II–stimulated cardiac hypertrophy and fibrosis ().
However, it is unclear whether this occurs through
direct effects on cardiac GIPR or indirectly through
activation of insulin in vivo. Future studies are still
necessary to characterize the effect of GIPR signaling in
acute ischemic injuries.

Glucagon
Glucagon is a –amino acid peptide derived from
posttranslational processing of the proglucagon pro-
tein by prohormone convertase . It signals through
the seven-transmembrane glucagon receptor (GCGR),
which is widely expressed throughout the body, including
liver, brain, heart, kidney, adipose tissue, and pancreaticb
cells (). The hyperglycemic effect of glucagon mediated
through its direct stimulation of glycogenolysis in the
liver was determined  years ago (), and later glucagon
was demonstrated to elevate glucose through the stim-
ulation of gluconeogenesis in the liver. On the other
hand, glucagon, like incretins, was found to possess
glucose-dependent insulinotropic activities. Despite this
behavior, the focus of glucagon has been on its el-
evated levels observed in diabetes, which tightly
correlate with dysglycemia (, ). As a result, much
of the early efforts on glucagon-based therapies have
been focused on blockade of glucagon receptor.
Seminal studies demonstrated that either pharma-
cological or genetic blockade of glucagon action in
streptozotocin-induced diabetes completely nor-
malizes glucose (–). This concept appears to
translate to humans, where glucagon receptor antag-
onists in clinical trials are efficacious in lowering HbAc
(, ). However, these agents have stalled in their
development due to a number of undesirable effects
including elevated aspartate aminotransferase/alanine

aminotransferase levels, accumulation of liver tri-
glycerides, and hyperglucagonemia.

In addition to hepatocytes, glucagon receptors have
been reported to be expressed in the brain, although
the biological significance of GCGR activation in
neuronal tissues remains unclear. Central activation of
the GCGR stimulates a broad range of beneficial
actions for obesity management, including satiety and
energy expenditure. Glucagon levels increase in re-
sponse to a protein-rich meal (), and inhibiting
glucagon’s action can increase food intake (). Early
studies also indicated an effect of glucagon on body
weight, independent of food intake (). This effect
has since been attributed to the thermogenic effect of
glucagon, as administration of glucagon to rats in-
creased brown adipose tissue oxygen consumption
and temperature (). Similar effects have been ob-
served in humans, but only during relative hypo-
insulinemia (). Induction of fibroblast growth
factor  (FGF) is implicated in glucagon’s weight-
lowering effects in rodents and humans (). Glu-
cagon stimulates FGF secretion from hepatocytes,
and FGF exerts similar biological effects of glucagon,
including increased energy expenditure ().

Though paradoxical, postprandial hyperglucagonemia
is commonly observed following bariatric surgery
(–). Based on studies from total pancreatecto-
mized humans, which cannot produce islet-derived
hormones, it has been confirmed that the intestine
can be a source of circulating glucagon (). Notably,
glucagon was secreted in response to oral glucose ad-
ministration in these patients, similar to GLP-. Thus, it
could be speculated that this intestinal source of glu-
cagon is elevated following bariatric surgery. Moreover,
the hyperglucagonemia as a result of extrapancreatic
glucagon production may contribute to the benefi-
cial effects on energy expenditure observed. Following
surgery, glucagon hypersecretion would occur in the
presence of postprandial insulin secretion due to a
restored incretin response, thereby balancing the neg-
ative effects of glucagon on hepatic glucose production.
Conversely, in TD patients without surgery, hyper-
glucagonemia occurs in the absence of adequate insulin
secretion, thereby promoting hepatic glucose output
(). The significance of gut-derived glucagon has yet
to be elucidated, but is actively being pursued.

Current Dual Agonists and Triagonists

Although GLP-, GIP, and glucagon have some
overlapping functionality, their combined use leads to
synergistic effects on diabetes and related metabolic
disease. Although there is biological justification for
the development of multireceptor agonist therapies,
several design characteristics are important to achieve
maximal efficacy. This section will focus on the following
considerations for creation of multireceptor agonists: ()
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structural design of effective agonists; () optimization of
agonist activities at each receptor; and () efficacy of
recently developed dual agonists and triagonists that use
GLP-, GIP, and glucagon receptor signaling.

Considerations for the discovery and development
of multiagonist therapies

Unimolecular design: sequence-intermixed hybrids
vs multivalent fusions
The most prevalent argument in favor of single-
molecule multiagonists vs combination of mono-
agonists has centered on the pragmatic challenge of
developing and registering a single compound as
opposed to multiple compounds. Downstream con-
siderations also include eventual pricing and cost of
goods for production. The clinical development of
combinations requires that each individual compo-
nent must be studied in isolation first for clinical
safety, and perhaps for efficacy, before it is studied in
combination. Optimally, these combinations would
also be formulated together in a single physical
mixture such that it will be administered as a single
injection. Formulations are finely tuned to support the
storage stability and absorption following injection of a
particular drug. Oftentimes this recipe is unique to a
certain drug product, and not compatible with other
compounds, which may limit a single formulation.
Therefore, if the eventual products are aimed to be
mixed together, then early chemistry efforts are nec-
essary to ensure compatible coformulation. Further-
more, drug–drug interactions in a coformulation can
influence biophysical stability, and thus the potential
to alter efficacy after drug administration. One major
advantage of physical mixtures or loose combinations
is that it should be easier to titrate the components to
achieve maximal effectiveness and safety, particularly if
one of the ingredients has a narrow therapeutic
window, as in the case of glucagon. Secondary to that
consideration is the simpler chemical optimization of a
monoagonist vs a mixed agonist. Pharmacokinetic
differences between the combination products, most
notably different half-lives and biodistribution, may
drive differential efficacy and constitute another way to
realize altered ratio of in vivo activities, including
humans. Single-molecule mixed agonists can also
present different biodistribution than combinations,
such that a specific component of the single molecule
could be the dominant factor in tissue distribution.

The molecular format of single-molecule mixed
agonists can theoretically take two designs: a fusion
molecule where monoagonist analogs are appended
together in a multivalent format, or a sequence-
hybridized molecule of comparable size to the native
peptides (Fig. ). The latter is the preferred approach to
date for GLP-, GIP, and glucagon mixed agonists.
These three receptor targets are all class B GPCRs, and
the native ligands have a high degree of sequence

similarity and secondary structure. Furthermore, each
of these receptors has cross-reactivity to the other
hormones, with GLP-R appearing to be the most
promiscuous of the receptors. Likewise, glucagon is the
ligand that shows the most cross-reactive activity at the
two incretin receptors. This pattern of activity, com-
bined with the analogous ligand structure, provides the
unique foundation and opportunity to build sequence-
intermixed molecules. Notably, this is unlikely the case
for the reported GLP- fusions to amylin or gastrin
(, ). Sequence-intermixed unimolecular peptides
have several advantages. First, when agonism is ap-
propriately balanced, single peptides can only occupy
one receptor at a time, unlike what could happen for
multivalent fusions. Theoretically, this reduces the
binding at any one receptor when delivered at
equimolar concentrations, which may be of practical
importance when trying to limit adverse side effects
attributed to a particular receptor activity. As with all
hybrids or fusions, there is a real concern of de-
veloping neutralizing antibodies to the drug itself, or
worse, to the endogenous hormones. It is too early in
the clinical progression of these molecules to esti-
mate if one molecular format is preferred to limit
these immunogenicity concerns.

Balanced vs preferential agonism
An important consideration in the design of multi-
agonist therapies is the relative potency of the com-
pound at each of the cognate receptors. Compounds
can be engineered either to be balanced in mixed
agonism with equal potency at each of the targeted
receptors, or the agonism ratio skewed in favor of one
receptor over others (Fig. ). This is an important
consideration when trying to leverage maximal efficacy
and potency vs unwanted dose-dependent side effects.
This is particularly evident in mixed agonists in which
one of the constituent activities is aimed at GCGR.
GCGR agonism is a vital component to drive body
weight loss, but a steep dose response and the hy-
perglycemic liability must be compensated for by
having appropriate incretin receptor activity. Identi-
fying the optimum ratio to improve one metabolic
endpoint, for instance body weight, may not be the
same ratio that is optimum for other readouts, such as
glucose or lipids. Furthermore, the optimum ratio
identified in preclinical models of diabetes and obesity
may not be the optimum ratio in human subjects.
Moreover, the heterogeneity of these disease states in
human patients complicates identifying the optimum
ratio in clinical pharmacology experiments.

Another caveat is actually how to define the ratio of
activity. To support high-throughput screening in
structure–activity relationship (SAR) studies, often-
times functional assays and binding assays are used to
assess potency through the use of artificial cell systems
in which a single receptor is overexpressed. To de-
termine the relative potency of each constituent
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within a single-molecule multiagonist, receptor ex-
pression should be controlled between the various
assay systems so that cross-comparisons can be ac-
curately assessed to relate the measured potencies
against each other. However, this ignores the likeli-
hood of differing levels of expression between these
receptors at a whole-body level, as well as a tissue-
specific pattern. Furthermore, the endogenous pep-
tides have slightly different binding affinities for their
native receptor, as well as measurable levels of cross-
reactivity at the other related receptors. So defining the
activity ratio at the constituent receptors must factor in
these slight differences in inherent binding characteristics.

A common approach to protract time action is to
promote binding to circulating albumin or other
plasma proteins, most commonly through fatty acid
acylation of the peptide. Therefore, when using in vitro
assays to estimate an activity ratio, one must also
consider the influence of albumin in bioassays, which
is oftentimes included in low percentage to prevent
compounds from sticking to assay plates. However,
testing in the presence of albumin at concentrations
that are consistent with circulating concentrations is
another strategy to assess potency ratio in a condition
that more closely resembles the in vivo situation. This
in vitro approach essentially assesses the activity of the
bound vs unbound fraction when testing in the
presence or absence of albumin, and can be used as an
in vitro tool to predict in vivo protraction. This should
be used with caution though, as the type of fatty
acylation and its placement on the backbone of the
peptide can differentially influence the measured ac-
tivity. All that being said, these strategies only take into
account that a single receptor is expressed in a single
cell. In other words, this does not take into account
that receptor crosstalk can influence potency, which
has been reported for this family of receptors ().

Receptor preference is particularly important in
tissues expressing multiple receptors. For example,
GLP-R/GIPR dual agonists were designed to opti-
mize insulin secretion from the b cell while using less
pressure on GLP-R to mitigate the dose-limiting
gastrointestinal side effects of GLP-R agonists. To
assess balanced agonism in cells coexpressing incretin
receptors that converge on the same signaling path-
ways, such as b cells, various knockdown approaches
such as viral-mediated, selective pharmacological in-
hibition or CRISPR/Cas–mediated technology can be
used (). These technologies are important for high-
throughput screening of candidate agonists, particu-
larly because receptor agonism does not fully blunt
receptor-mediated intracellular signaling. Use of these
technologies will aid in developing appropriate ago-
nism, particularly in cell types with overlapping re-
ceptor expression.

During the evaluation of single-molecule mixed
agonists or fusions, it is important to demonstrate the
multiple pharmacology within the molecule and to

estimate the contribution of each component to the
total efficacy. Although the use of genetically modified
mice seems to be the preferred approach, genetic
compensations can oftentimes substantially influ-
ence the physiology of these mice such that the
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Figure 3. Design considerations of triagonists. (a) Each receptor (GLP-1R, blue; GCGR, red; GIPR,
green) responds to its respective ligand. (b) A balanced fusion structure uses each individual
peptide to provide recognition at all receptors. (c) A balanced hybrid peptide is a sequence-
hybridized molecule of comparable size to the native peptides with equipotent activities at all
receptors. (d) An unbalanced hybrid peptide is a sequence-intermixed molecule that preferentially
activates certain receptors with higher affinity than others.
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pharmacological assessment of mixed agonists in these
mice can be complicated (). Therefore, it is equally
advantageous to make selective chemical knockouts
where the activity of a single component of the
multiagonist is reduced by a slight modification to the
chemical structure. Rationally, this is easier to achieve
in a single-molecule fusion, as the SAR of the single
molecules can pinpoint the exact amino acids that can
be mutated to inactivate a single component. This
is more complicated to achieve with sequence-
intermixed single molecules, but it can be done ().

Approaches to integrate activities at
multiple receptors
The unimolecular GLP-/glucagon, GLP-/GIP, and
GLP-/GIP/glucagon peptides have been designed
using various precursor hormones as the scaffold in
which residues from the other hormones were in-
troduced into these peptide backbones to introduce
mixed agonism. Those precursor scaffolds include
glucagon, exendin-, and oxyntomodulin. In general,
the molecular design of these multiagonists starts
with a thorough understanding of the SAR of the
individual hormones, particularly those sites that are
crucial for individual activity and those sites that are
dispensable for binding and activity. Leveraging les-
sons from these understandings, the swap of crucial
domains between the hormones can lead to the
identification of single-site substitutions that are
crucial for peptide–receptor interactions at each tar-
geted receptor. Additional mutations can be in-
troduced into the sequence to optimize the activity
balance, chemical integrity, biophysical stability, and in
vivo time action.

In an approach to generate GLP-/GCGR dual
agonists, glucagon was used as the scaffold to which
residues specific to GLP- or exendin-, notably select
amino acids derived from the proximal C-terminal
domain, were introduced to gain potency at GLP-R
(). In a different iteration of this type of coagonist,
oxyntomodulin, an endogenous coagonist of weak
potency and imbalanced activity, was used as the
scaffold. N-terminal and distal C-terminal modifica-
tions were introduced to improve potency and activity
balance with the auxiliary function to improve in vivo
time action (). Coming from the other angle,
exendin- has been used as the scaffold to which a
glucagon-derived central domain was introduced to
gain GCGR potency. N-terminal modifications de-
rived from glucagon and C-terminal modifications
derived from oxyntomodulin are required to achieve
higher potency and balanced activity (). Stabili-
zation of the a helical nature of the peptide, partic-
ularly within the mid-domain of the sequence, is a
somewhat universal strategy to enhance potency
across this broad class of ligands and receptors. This
was achieved through covalent lactamization of the
backbone (, ), introduction of alternately charged

residues in a particular register to create a salt bridge
(), or introduction of an aminoisobutyric acid
(Aib) residue, which has inherent helical-promoting
properties (). Interestingly, it has also been ob-
served that fatty acid acylation, which typically is used to
promote binding to plasma proteins or membrane
anchoring to protract time action, can also contribute to
the pharmacophore for promoting promiscuity at GLP-
and glucagon receptors, likely by promoting specific
secondary structure of the ligand ().

Relative to GLP-/glucagon coagonists, much less
has been reported regarding the structural aspects of
GLP-/GIP coagonists. To build GLP-/GIP recep-
tor coagonists, a chimeric sequence of GLP- and
exendin- was used as the scaffold to which GIP-
specific residues were incorporated to introduce suf-
ficient potency at GIPR (). The N-terminal tyrosine
derived from GIP, along with isoleucine at position 
and lysine at position , were pivotal for gaining
GIPR activity, whereas Aib residues at positions  and
 also were instrumental in gaining substantial
GIPR potency without compromising GLP-R po-
tency. Fatty acid acylation and polyethylene glycol
(PEG)ylation of these peptides resulted in analogs
sufficient for once-daily administration. To generate
GLP-/GIP/glucagon triagonists, respective coagonists
were used as the scaffold to which alterations were
made to introduce activity at the third receptor. Starting
with the aforementioned GLP-/GIP coagonist, simple
mutation at the third position to glutamine
rendered a balanced triagonist by in vitro measure
(). However, uncharacterized in vivo limitations
with this backbone precluded its further pursuit.
Alternatively, starting from the GLP-/glucagon
coagonist, inclusion of Aib at the second position,
introduction of the C-terminal extension derived
from exendin-, site-specific acylation at position 
of the backbone, and the selective inclusion of GIP-
derived residues yielded a highly potent, and rela-
tively balanced, triagonist (). Multivalent fusions of
GLP-, GIP, and glucagon analogs have also been
reported. In this molecular format, antibody domains
were used to anchor all three constituents into a
multifunctional antibody (). The antibody frag-
ment serves the ancillary function to protract time
action as well.

Performance of various dual agonists

GLP-1R/GCGR dual agonists
Combination of GLP-R agonists with GCGR agonists
was founded in the idea that both agonists use
complimentary mechanisms to induce weight loss,
whereas GLP-R activation would combat any neg-
ative effect of GCGR activation on glycemia. Ideally
this treatment strategy would engage receptor ago-
nism and subsequent weight-reducing activities in a
broader range of tissues, as GCGR and GLP-R are
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nonoverlapping in many cell types. This is supported by
findings from human coinfusion studies, where glu-
cagon and GLP-maintained their individual effects on
energy expenditure and glycemia, respectively, when
infused in combination (). Although GLP- and
glucagon both exert similar actions at the b cell for
insulin secretion, their nonoverlapping functions at
other tissues are the primary benefit for their combi-
nation in treatments. Glucagon adds adipose tissue li-
polysis and appetite suppression and elevates energy
expenditure to the known GLP-R agonist actions on
glycemia and weight reduction. The concept for de-
veloping this dual-agonist pair is aligned with studies
of the proglucagon-derived peptide oxyntomodulin.
Oxyntomodulin exerts its antidiabetic effects through
binding at both the GLP-R and GCGR; it reduces
glycemia through the GLP-R while stimulating weight
loss through increased energy expenditure by activation
of GCGR (). However, oxyntomodulin is not as
potent an activator of GLP- and GCGR as either of
their cognate ligands, having - to -fold less activity
at the receptors than their respective ligands ().
Additionally, oxyntomodulin, like GLP-, is a substrate
of DPP, and as such is labile in vivo, exhibiting a half-
life of ~ minutes (). Another study used a dual
agonist similar to oxyntomodulin, but with cholesterol
added to a Cys side chain near the C-terminal that
allowed for enhanced duration of action (). In the
same study, this group compared an agonist with a
single residue change that no longer exhibited any
activity at the GCGR to analyze the benefits of
compounding GCGR activation onto GLP-R acti-
vation. Dual agonism significantly reduced body
weight compared with vehicle or GLP-R activation
alone. The dual agonist yielded similar effects on
food intake compared with GLP-R agonism alone,
suggesting that GCGR agonism has complementary
actions to GLP-R agonism for weight reduction.
Activities at both receptors were confirmed using
Glpr–/– and Gcgr–/– mice. An important finding was
that compared with GLP-R agonism alone, there
was no significant difference on glucose tolerance for
the combination with GCGR agonism. Thus, glu-
cagon receptor agonism is successfully balanced by
the activation of the GLP-R. These studies provided
the impetus to develop more potent dual activators of
GLP-R and GCGR for more effective weight loss
and glycemic improvements.

The combination of GLP- and glucagon has been
thoroughly proven as an effective weight loss strategy.
For example, acute administration of subanorectic
doses of individual peptides (GLP- at . pmol/kg/
min and glucagon at . pmol/kg/min) to nondiabetic,
overweight patients yielded reduced food intake and
increased satiety compared with either peptide alone
(). Notably, this occurred in the absence of nausea,
demonstrating the potential for increasing weight loss
with diminished adverse side effects from increasing

the dose of GLP-R agonists. In this study, neutral
results were observed for glycemia, whereas glucagon
infusion alone elevated glycemia. This suggests that
higher doses of glucagon may be more effective than
low doses, as glucagon could exert its effect at the
b-cell GLP-R at higher circulating levels, compared
with low levels where glucagon’s effect on hepatic
glucose output may prevail. Based on the superior
outcomes of combination therapy for weight loss,
several groups developed coagonist therapies. Devel-
opment of these stable coagonists have allowed for
better understanding of glucagon biology, as glucagon
is rapidly degraded, and therefore, primarily acute
activities of glucagon have been reported. One group
generated a balanced -kDa polyethylene glycol
(PEG)ylated coagonist peptide for once-weekly ad-
ministration (). This compound, Aib C lactam
k, when administered subcutaneously at a high dose,
reduced body weight in a mouse DIO model by .%
in  week as a result of reduced food intake and
decreased fat mass. In the longer term, low-dose
studies demonstrated comparable weight loss to the
short-term administration of high doses, but weight
loss was associated with increased energy expenditure
and thermogenesis, with no differences observed in
caloric intake or locomotor activity. The balanced
coagonist also demonstrated benefits for lipid meta-
bolism, leading to reduced cholesterol levels and
subsequent reduction of hepatic steatosis. Notably, this
balanced agonist compound outperformed preferen-
tial agonists and maintained its weight-lowering ac-
tivity in mice lacking the GLP-R, demonstrating the
utility of glucagon-directed strategies. In a study
assessing balanced vs unbalanced agonism, GCGR
agonism was efficacious at lowering weight loss, but
was most effective when paired with appropriate GLP-
R agonism to mitigate effects on glycemia ().
Thus, balance of receptor agonism, as determined
using in vitro systems to evaluate respective activities,
should be considered to maximize weight loss while
considering hyperglycemic risks that are associated
with glucagon action on hepatic glucose output.

Several compounds have been clinically pursued
in this class of drug candidates. The earliest was
LY or TT-, created by Transition Thera-
peutics in collaboration with Eli Lilly. This compound
was an oxyntomodulin analog that was formulated for
weekly administration, and imbalanced in activity, in
favor of GLP-R activity relative to GCGR activity. At
the highest dose, mg, HbAc was decreased by .%
and body weight reduced by . kg after  weeks of
administration (). However, LY/TT-
has not been continued into phase  trials, but is
being reassessed by OPKO Health, Inc. Sanofi has also
developed a dual-agonist compound, SAR,
which has ongoing phase  clinical trials. SAR is
formulated for daily administration, and preliminary
results have shown that at the highest dose, a .-kg

“Balanced triagonists are
similar in length to
endogenous glucagon and are
about as close in sequence as
exendin-4 to GLP-1.”
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reduction in body weight was observed with a modest
reduction in HbAc after  weeks of treatment ().
This compound is also imbalanced in relative activity
with higher GLP-R potency. Despite positive pre-
liminary results from the phase  proof-of-concept
studies, gastrointestinal tolerability issues prevented
the continuation of the study, which was likely the
result of the dose escalation schedule. Another com-
pound, MEDI, developed by MedImmune and
AstraZeneca, demonstrated robust efficacy in rodent
and cynomologus monkey models for weight loss and
glucose control when administered in comparable
doses to liraglutide () and is now in phase b trials.
Several other companies have dual agonists in the
pipeline, including Janssen with Hanmi Pharmaceuticals
(HMA/JNJ-; phase ), Zealand Pharma
(ZP/BI ; phase ), Merck (MK-; phase
), and Novo Nordisk (NN; phase ) ().

GLP-1R/GIPR dual agonists
The pursuit of GLP-R/GIPR dual agonists lagged
behind the development of GLP-/glucagon agonists,
largely due to the limitations of using GIP, as discussed
above. Conceivably, these dual agonists would exert
their activities in two steps. First, GLP-R agonism
would elicit glycemic control, among its effects on
body weight, allowing GIPR sensitivity, and thus
secondary modulation of glycemia and body weight by
GIP. This strategy is supported by the finding that in
diabetic patients, who are unresponsive to GIP alone,
there was additive, increased first-phase insulin se-
cretion in response to coinfusion of GLP- and GIP at
physiologic levels (). However, several additional
acute human coinfusion studies found no further
benefit of GIP addition to GLP- infusion (–).
Thus, the effect of long-term administration of GIP,
when added to GLP-, could not be inferred from
these patient studies. As such, when compared with
equimolar doses of either incretin alone, the combi-
nation of GLP- and GIP in a rodent model of DIO
was more efficacious at reducing body weight, food
intake, and adiposity (). No additive or synergistic
effect of the incretin combination was observed for
lowering glycemia in nondiabetic rodents, suggesting
redundancy of action at the level of GPCR-mediated
potentiation of insulin secretion in b cells. Notably,
GIPR agonism alone had no effect on fat mass or body
weight yet when combined with GLP-R agonists was
able to outperform GLP-R agonism alone. These
findings provided the rationale to develop a balanced,
unimolecular dual-agonist peptide for the treatment of
metabolic syndrome and TD (). The acylated GLP-
R/GIPR dual agonist, which had an optimal phar-
macokinetic profile to decrease dosing frequency to
once daily, outperformed liraglutide in a mouse DIO
model in all parameters tested; at the highest dose
(equivalent to the tested dose of liraglutide), the
coagonist more potently reduced body weight, food

intake, fat mass, and blood glucose by  week post-
treatment initiation. These effects persisted with bi-
weekly injections in DIO mice and, in fact, amplified
after  days with the added benefit of signifi-
cantly lowered total cholesterol levels compared with
liraglutide. Notably, the coagonist was able to reduce
weight gain independent of an effect on energy ex-
penditure or locomotion, and was not solely due to
decreased food intake, as pair-fed mice did not lose
body weight at the same magnitude as coagonist-
treated mice. This finding demonstrates unique syn-
ergistic effects of incretins when dosed together that
have yet to be described. Though fatty acid–acylated
and PEGylated versions of the coagonist were de-
veloped, the former compound outperformed the
latter compound for lowering body weight, while
performing similarly for all other metabolic endpoints
tested. Comparable findings were observed across
several models, including db/db mice and cynomolgus
monkeys. Importantly, this compound reduced the
gastrointestinal side effects associated with mono-
agonism of GLP-R.

Further supporting the concept of dual-incretin
agonism, coadministration of fatty acid–acylated an-
alogs of GLP- and GIP improved body weight and
hyperglycemia in metabolically compromised mice
(). Additionally, Zealand Pharma recently developed
a unique GIP analog, ZP, which in physical
combination potentiated the effects of liraglutide ().
ZP is more stable than native GIP, allowing for
long-term assessment of GIPR activation alone in the
db/db model of TD. This GIP analog was stabilized
through multiple modifications that include position 
Aib to prevent DPP degradation, and a C fatty acid
was added to Lys to increase the peptide half-life by
increasing albumin binding. Twice-daily injections of
ZP reduced glycemia and increased insulin se-
cretion in a DIO mouse and db/db model of TD.
Interestingly, when ZP was coadministered with
liraglutide, the profile observed was similar to that
previously observed with the unimolecular dual agonist
(), demonstrating synergistic lowering of HbAc
and body weight. Combination treatment of the two
incretin receptor agonists also corroborated the effects
of dual agonism on total cholesterol, as lowering was
only observed when GLP-R and GIPR were both
activated, with no change observed with either treat-
ment alone.

GLP-/GIP coagonism has recently demonstrated
benefits in models of Alzheimer’s and Parkinson
disease. Alzheimer’s disease increases the risk of de-
veloping TD, and both Alzheimer’s and Parkinson
diseases are associated with insulin resistance and
inflammation (, ). The fatty acid–acylated dual
GLP-R/GIPR agonist described above has recently
been tested in animal models of Alzheimer’s and
Parkinson disease, as well as traumatic brain injury
(). The coagonist demonstrated decreased brain
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inflammation, insulin resensitization, and reduced
cognitive impairment in an Alzheimer’s mouse model
using intracerebroventricular streptozotocin, a Parkinson
mouse model using -hydroxydopamine lesion, and a
Parkinson mouse model using -methyl--phenyl-
,,,-tetrahydropyridine (–). Though not all of
these studies performed direct comparisons to GLP-R
or GIPR monoagonists, promoting either GLP- or GIP
signaling alone has yielded benefits for cognitive im-
pairment in either clinical or preclinical studies of
Alzheimer’s and Parkinson disease, suggesting the po-
tential for additive or synergistic benefits of dual agonists
(–). Further studies are necessary to determine
the full array of benefits from multireceptor agonism in
the brain.

Although the results from the studies mentioned
above are from preclinical studies, the clinical effects
of a dual GLP-/GIP receptor agonist developed by
Novo Nordisk, NNC-, have recently been
described from phase a trials (). NNC-,
previously called RG, is the balanced, unim-
olecular, fatty acid–acylated GLP-R/GIPR agonist
that has been tested in several preclinical models and
safety verified in patients (). NNC- is
thought to bind only one receptor at a time, and this
concept guided the dosing in clinical trials; the study
based dosing on high doses of liraglutide with the
expectation that gastrointestinal side effects would be
curbed due to decreased GLP-R occupancy. In phase
 studies, NNC- displayed similar adverse
effects as GLP-R agonists, only at the highest doses
(, ). NNC- was found to reach steady-
state levels in patients after daily dosing for  week
during phase  studies. In the recently described phase
a studies, the dual-agonist compound was adminis-
tered to  patients once daily for  weeks, with
HbAc as the primary endpoint (). Dual GLP-R/
GIPR agonism was highly efficacious, significantly
reducing HbAc by .% and fasting plasma glucose
by .% after weeks of dosing when compared with
placebo. Body weight was significantly reduced by
.% after  weeks of dosing, and, although not sta-
tistically significant, a similar absolute reduction was
observed after  weeks of treatment. Total cholesterol
was % lower than that observed in the placebo group,
whereas liraglutide alone had no effect, suggesting a
potential benefit of dual-incretin use that requires
further investigation. Despite the clear efficacy
of NNC-, insulin sensitivity could not be
established, and will need to be further studied in
larger scale trials.

It is important to note that all combination
therapies demonstrate beneficial effects of GIP, par-
ticularly when coupled with GLP-R agonism. This is
counter to early genetic studies that suggested loss
of GIPR signaling was protective for DIO (, ).
Taken together, the data from multireceptor agonist
studies utilizing GIPR engagement supports further

development of GIP agonists as a viable aspect of a
comprehensive treatment strategy for TD. Certainly,
GIPR agonism in the presence of GLP-R agonism
demonstrates consistent, synergistic effects on targets
of obesity and TD and, as such, supports its in-
corporation into triagonist therapies, as will be dis-
cussed in the following section.

Effects of GLP-1R/GIPR/GCGR triagonism
GLP-R, GIPR, and GCGR triagonism is supported by
findings from successful dual agonists and clini-
cally effective monoagonists. Conceptually, its use is
founded in a three-prong approach; GLP-R agonism
supports weight loss and insulin secretion, GCGR
agonism activates independent, complimentary weight
loss mechanisms, and GIPR agonism further buffers
glucagon-mediated hepatic glucose production via
amplified potentiation of insulin secretion. Balanced
triagonists are similar in length to endogenous glu-
cagon and are about as close in sequence as exendin-
to GLP- ().

An early triagonist approach was the development
of a hybrid GIP-oxyntomodulin hybrid peptide,
DAGIP-Oxm. DAGIP-Oxm was developed by
replacing the first  residues from the N-terminal of
oxyntomodulin with D-Ala-GIP (). Thus, this
peptide was resistant to DPP degradation and ef-
fective at stimulating cAMP through GIPR, GLP-R,
and GCGR. Although this unimolecular peptide was
effective, it was less potent at each receptor (GIPR,
GLP-R, and GCGR) compared with the respective
native ligand. DAGIP-Oxm more potently reduced
glycemia and decreased body weight compared with
any individual peptide; however, it is important to note
that comparison with the clinical standard, liraglutide,
was not performed and, based on percentage weight
loss, would have performed similarly.

Other triagonists were developed utilizing the
peptide sequence of the three endogenous peptides.
First, [dA]GLP-/glucagon was identified as the most
promising candidate from iterative changes of peptide
sequences containing components of each incretin/
glucagon peptide to form several hybrid peptide
candidates (). [dA]GLP-/glucagon was admin-
istered twice daily for  weeks and demonstrated
significant decreases in body weight and glucose, with
concomitant elevation in plasma insulin. This peptide
also performed similarly to exendin- in glucose
tolerance tests and had similar potency for cAMP
stimulation in receptor transfected cells. Another
agonist was developed by manipulating the native
glucagon sequence and termed Y-dA-I-N-V-
I-G,-glucagon (). Although this peptide did
use all three receptors to elicit its maximal response, it
was less potent than any native peptide for its cognate
receptor. Twice-daily administration had no effect on
body weight, but significantly improved glycemia in
high-fat-fed mice (). Notably, this study did not

“The synergistic effects
observed by mutlireceptor
agonists have provided new
lines of inquiry for
understanding incretin/
glucagon biology.”
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compare with effective monoagonist or dual-agonist
strategies, so the relative effectiveness of this strategy
could not be assessed. However, this was the only
multireceptor-agonist strategy that had no effect on
body weight, suggesting unbalanced agonism, as
monoagonism of the GLP-R or GCGR consistently
elicits weight loss. Both [dA]GLP-/glucagon and Y-
dA-I-N-V-I-G,-glucagon displayed an ap-
parent lack of synergism, indicative of unbalanced
agonism and submaximal potency.

A highly effective, balanced triagonist structure was
published by Finan et al. () in . The triagonist
sequence was developed from iterative residue changes
that yielded a sequence-intermixed peptide with
multireceptor activity. This peptide was resistant to
DPP cleavage, and thus exhibits an extended half-life,
similar to liraglutide. The resultant triagonist was at
least as potent as the native peptide at each respective
rodent and human receptor. When administered at
equimolar concentrations against a proven incretin
dual agonist, the triagonist decreased body weight of
DIO mice by .% in  days, outperforming the
dual-incretin receptor agonist by .%. This enhanced
weight loss occurred independent of food intake,
gastric emptying, or changes in lean mass compared
with the dual-incretin receptor agonist, suggesting no
adverse effect of glucagon receptor agonism in this
peptide. The triagonist offered additional benefits for
lipid metabolism; the triagonist significantly reduced
plasma cholesterol and reduced markers of hepatic
steatosis. Most preclinical studies validate their com-
pounds in male mice because female mice are rela-
tively resistant to DIO and maintain normal glucose
tolerance. Thus, this triagonist was recently tested in
both age-matched and weight-matched female mice to
validate its effects independent of sex (). The tri-
agonist performed similarly in both male and female
mice, further supporting its translation to the clinic for
treatment of obesity and TD. Of the tested triple-
agonist compounds developed, this GLP-/GIP/
glucagon triagonist compound was the most effica-
cious, likely due to its balanced receptor agonism and
superior potency to native peptides at their cognate
receptor. Notably, proper balance of the triagonist in
regards to glucagon was important to achieve the full
weight loss benefits of triagonism. Currently the tri-
agonist compound, MAR, developed by Novo
Nordisk, is in early clinical trials ().

A unique long-acting triagonist, HM, was
recently described by Hanmi Pharmaceuticals in
preclinical models of TD, nonalcoholic steatohepa-
titis (NASH), and Parkinson disease (, ).
HM significantly outperformed liraglutide for
decreasing body weight, reducing hyperglycemia, and
increasing energy expenditure (). This efficacy was
observed with administration every other day com-
pared with twice-daily liraglutide administration.
Similar body weight loss was observed with weekly

administration. HM significantly lowered blood
cholesterol and hepatic steatosis in high-sucrose-fed
rats and methionine choline–deficient mice, two
models of NASH (). Additionally, HM
protected against MPTP-induced Parkinson disease in
mice by attenuating microglial activation and in-
flammation in the striatum and substantia nigra ().
Based on the broad beneficial effects of HM, it is
currently being tested in phase  clinical trials for
obesity and NASH.

Summary and Perspectives

Multireceptor agonists have shown improvements
over monoagonist strategies for the treatment of TD,
obesity, and several associated complications. It is clear
that agonism of all three receptors work in concert to
increase insulin secretion, while reducing adiposity
through decreased food intake and elevated energy
expenditure. However, based on the significant effects
across various tissues, there is room for the exploration
of these multireceptor agonists for a broad range of
diseases. For example, triagonists may be efficacious at
reducing obesity, even in the absence of TD. Fur-
thermore, several triagonist compounds have already
demonstrated cholesterol-lowering effects and benefits
for nonalcoholic fatty liver disease (, , ).
Moreover, although the mechanisms are not well
defined, these multireceptor agonists may be effica-
cious for slowing the progression of neurologic dis-
eases associated with TD, such as Parkinson disease
(, ). The broad benefits of multireceptor ago-
nism should be considered in future designs of pre-
clinical studies and clinical trials.

Despite the pursuit of several multireceptor ago-
nists in the clinic, a question still remains regarding the
molecular mechanisms underlying synergism. One
potential explanation of the results is that the tri-
agonists are just more potent activators of GLP-R,
and thus the benefits are due to increasing activity of
the single receptor. However, this is unlikely the case,
as the most effective multireceptor agonists have
balanced activity across the three receptors. Moreover,
GLP-R agonists are currently used at submaximal
doses due to gastrointestinal issues, and therefore if the
multiagonist receptor was merely more effective at the
single receptor, it would be expected to not be well
tolerated in patients. Currently, the intracellular sig-
naling mechanisms of multireceptor agonism are
unclear. In the case of GLP- and GIP, GLP- activity
removes the brakes on GIP activity found in TD. This
is supported by findings that lowering glycemia re-
stores GIP action on insulin secretion. Thus, in terms
of insulin secretion, GLP- and GIP may act on their
cognate receptors to increase insulin secretion more
than either individual peptide can achieve. This may
explain the results observed with the unimolecular
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dual-incretin agonist, where a plateau in the effect of
GLP-R monoagonism was surpassed by the addition
of GIP (). Another potential explanation for syn-
ergism is that lateral intracellular interactions occur, in
which downstream-signaling intermediates allosteri-
cally modify coincident signaling pathways within the
same cell. Further work is necessary to understand the
molecular basis of synergism to maximally harness its
benefits as therapies for TD.

With the advent of single-cell transcriptomics, it
will be necessary to understand coexpression profiles
of receptors within the same tissues. For instance, it
has been postulated that unique subpopulations of b
cells exist and, potentially, GLP-R, GCGR, and GIPR
exist on unique populations of cells. Thus, the additive
benefits of multireceptor agonism may result from the
engagement of multiple cell populations that have
unique receptor expression (Fig. a). Understanding
expression profiles within a single cell will provide
insights into the complexity and heterogeneity that
might exist in various target tissues. Conversely, if
receptors are expressed on the same cell, engagement
of multiple receptors simultaneously may confer the
benefits of multiagonists (Fig. b). Whether synergism
is the result of activating a broader network of cells,
convergence of intracellular signaling, or a combination
of the two has yet to be identified. The growing tech-
nology for single-cell genomics provides the ability to ask
these questions with previously unattainable precision.

Neither GIP monoagonists nor antagonists have
been validated clinically, but the lack of clinical
investigation is largely predicated on studies using
incomplete or inadequate tools to query GIP’s

physiologic functions. A byproduct of GIP’s use in
conjunction with GLP- is a better, albeit incomplete,
understanding of its potential as a therapeutic. Several
dual-incretin studies verified the action of their pep-
tide’s activity at both receptors by using single-incretin
receptor knockout mice. There were no reports of
adverse effects on body weight or glucagon levels when
dual-incretin peptides were administered to Glpr–/–

mice, suggesting safety of GIP administration alone.
Furthermore, the use of these coagonists in models of
neurologic disease demonstrates untapped therapeutic
benefits of GIP agonism that have not been explored
in relation to the central deficits associated with TD.
Additionally, the advent of specific GIPR antagonists
or GIP-blocking antibodies has allowed for unique
lines of investigation to query the endogenous actions
of GIP, without the confounding factors associated
with genetic manipulations. As such, development of
stable GIPR agonists to fully understand its role
remains a burgeoning area for drug development.

The incorporation of glucagon into multiagonists
aimed at treating TD patients was initially contro-
versial because of the hyperglycemic liability, but
opinion has largely changed and is supported by
its effects on energy expenditure and lipolysis.
Glucagon stimulates hepatic glucose output, and as
such glucagon receptor agonism had not been
pursued. Even the current success of coagonists
utilizing glucagon biology solely focuses on the
GLP--independent central benefits of glucagon on
energy expenditure and thermogenesis. However,
there are likely unappreciated roles that contribute
to glucagon’s efficacy. Most notable, glucagon is a

Triagonist

(a) (b)

© 2018 Endocrine Reviews  ENDOCRINE SOCIETY

Monoagonist Monoagonist

Triagonist

Insulin secretion

Insulin secretion
Insulin secretion Insulin secretion

GIPR GIPR

GCGR GCGR
GLP-1R GLP-1R

Intracellular amplification modelCell heterogeneity model

Figure 4. Two hypothesized models of synergism for b-cell insulin secretion. (a) According to the cell heterogeneity model, unique
populations of b cells exist that do not express all three incretin/glucagon receptors. In this model, the triagonist increases insulin
secretion compared with a monoagonist by engaging multiple b-cell subgroups to stimulate insulin secretion. (b) In the intracellular
amplification model, b cells express all incretin/glucagon receptors, and the synergistic activity of the triagonist compared with the
monoagonist is based on the crosstalk of downstream signaling cascades within an individual b cell.
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potent insulin secretagogue. One hypothesis for
the primary physiologic role of glucagon is that it
functions to maintain normal levels of amino acids,
and its glycemic effects are a byproduct of amino
acid metabolism (). During hypoglycemia, amino
acids are synthesized from muscle and fat, stimulating
glucagon and promoting hepatic glucose production.
Conversely, when glycemia is elevated, such as in
overnutrition or in response to a protein-rich meal,
elevated amino acids stimulate glucagon and in turn
glucagon elevates insulin secretion in a paracrine
manner. The largely beneficial effects of glucagon
incorporation into unimolecular peptide agonist
strategies support the notion that glucagon may have
beneficial effects beyond its stimulation of GCGR in
the brain.

Taken together, the similar peptide sequences of
GLP-, GIP, and glucagon, coupled with their diverging

activities in a broad range of target tissues, position
triagonists as a unique drug class that could re-
capitulate the vast benefits of bariatric surgery for
TD. Although monoagonism of GLP-R has yielded
important benefits for weight management and
glucose control clinically, the potential for triagonism
could vastly improve clinical outcomes for TD
patients, beyond what is even purported for dual-
receptor agonists. Triagonism offers the benefit of
substantial weight loss from glucagon action, with
reduced hyperglycemic risk from the addition of GIP
action in addition to the reported actions of GLP-.
Yet in a broader context, the synergistic effects ob-
served by multireceptor agonists have provided new
lines of inquiry for understanding incretin/glucagon
biology, which opens the possibility for further op-
timization and translation of therapies into the clinic
in the future.
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DiMarchi RD, Tschöp MH. Fibroblast growth factor
21 mediates specific glucagon actions. Diabetes.
2013;62(5):1453–1463.

105. Coskun T, Bina HA, Schneider MA, Dunbar JD, Hu
CC, Chen Y, Moller DE, Kharitonenkov A. Fibroblast
growth factor 21 corrects obesity in mice. Endo-
crinology. 2008;149(12):6018–6027.

106. Falkén Y, Hellström PM, Holst JJ, Näslund E. Changes
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