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Abstract  

Introduction: Increasing evidence suggests a role for the gut microbiome in central nervous 

system disorders and specific role for the gut-brain axis in neurodegeneration. Bile acids (BA), 

products of cholesterol metabolism and clearance, are produced in the liver and are further 

metabolized by gut bacteria. They have major regulatory and signaling functions and seem 

dysregulated in Alzheimer disease (AD). 

Methods: Serum levels of 15 primary and secondary BAs and their conjugated forms were 

measured in 1,464 subjects including 370 cognitively normal older adults (CN), 284 with early 

mild cognitive impairment (MCI), 505 with late MCI, and 305 AD cases enrolled in the AD 

Neuroimaging Initiative. We assessed associations of BA profiles including selected ratios with 

diagnosis, cognition, and AD-related genetic variants, adjusting for cofounders and multiple 

testing.  

Results: In AD compared to CN, we observed significantly lower serum concentrations of a 

primary BA (cholic acid CA) and increased levels of the bacterially produced, secondary BA, 

deoxycholic acid (DCA), and its glycine and taurine conjugated forms. An increased ratio of 

DCA:CA, which reflects 7α-dehydroxylation of CA by gut bacteria, strongly associated with 

cognitive decline, a finding replicated in serum and brain samples in the Rush Religious Orders 

and Memory and Aging Project. Several genetic variants in immune response related genes 

implicated in AD showed associations with BA profiles. 

Conclusion: We report for the first time an association between altered BA profile, genetic 

variants implicated in AD and cognitive changes in disease using a large multicenter study.  

These findings warrant further investigation of gut dysbiosis and possible role of gut liver brain 

axis in the pathogenesis of AD. 
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1. Introduction 

Alzheimer’s disease (AD), a progressive neurodegenerative disorder, is the leading cause of 

dementia in old age affecting over 40 million people worldwide[1]. There are currently no 

therapies to prevent or slow AD progression, highlighting our incomplete knowledge of disease 

mechanisms and the need for new drug targets. A large number of biochemical processes are 

affected in AD and genes implicated in AD highlight the possible roles for lipid processing, 

immune function, phagocytosis, (innate) immunity and neurotransmitter function, biological 

pathways that may affect metabolism[2, 3]. Recent AD hypotheses implicate viral and bacterial 

contributions to disease pathogenesis[4-6]. 

Bidirectional biochemical communication between the brain and the gut contribute to a 

variety of neurodegenerative and psychiatric diseases[7-10]. The gut microbiome and the host 

collaboratively produce a large array of small molecules that impacts human health[11, 12]. 

Recently, a role for the gut microbiome in motor dysfunction in Parkinson’s disease has been 

highlighted[13] and several animal models of AD showed a possible role of gut bacteria in 

amyloid-beta (A) pathology[14, 15]. The APP transgenic mouse model of AD had a drastically 

altered gut microbiome composition compared to wild-type mice[15]. Other studies linked pro-

inflammatory bacteria, such as gram-negative producers of neurotoxic lipopolysaccharides, to 

brain amyloidosis and systemic inflammation, a central feature of AD[16, 17]. These studies 

suggest microbial dysbiosis or imbalance could potentially contribute to AD pathogenesis.  

Cholesterol metabolism in the liver is thought to play a key role in AD[18]. In fact, many 

cholesterol metabolism genes (e.g., BIN1, CLU, PICALM, ABCA7, ABCG1, and SORL1) are 

among the top AD susceptibility loci identified by genome-wide association studies[2, 19].  

Cholesterol is cleared through production of bile acids (BAs). Primary BAs, chenodeoxycholic 

acid (CDCA) and cholic acid (CA), are synthesized from cholesterol in the liver, conjugated with 

glycine or taurine, secreted into the gallbladder via the bile salt export pump (BSEP), and 

transported to the intestine to be metabolized by gut bacteria (Fig. 1). Intestinal anaerobic 

bacteria deconjugate the liver-derived BAs through the action of bile salt hydrolases (BSH) to 

their respective free BAs. Subsequently, anaerobe bacteria convert primary BAs to the secondary 

BAs. That is, CA is converted to deoxycholic acid (DCA). CDCA is converted to lithocholic acid 

(LCA) and ursodeoxycholic (UDCA) through 7α or 7β –dehydroxylation, respectively[20, 21]. 

In the terminal ileum and colon, BAs are reabsorbed by the enterocytes and released into the 
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portal vein for return to the liver where they are conjugated to produce their glycine and taurine 

forms.  

Beyond BAs role in cholesterol clearance, BAs are major regulators for maintaining energy 

homeostasis through binding to nuclear receptors, including FXR, among others. BAs also 

modulate the gut microbiome[22, 23]. Both primary and secondary BAs are present in the brains 

of mice and humans with evidence that they cross the blood-brain barrier[24-29]. Some BAs 

such UDCA exert beneficial effects while others are known to be cytotoxic[30-34]. In particular, 

DCA’s toxicity has been associated with modulating apoptosis involving mitochondrial 

pathways in a variety of tissues and cell types[35-37].  

In recent pilot human studies, BA profiles were shown to be affected in AD[26, 38-40].  

Here, we used a targeted metabolomics approach to evaluate BA profiles in a large cohort of 

1,464 individuals enrolled in the AD Neuroimaging Initiative (ADNI) where rich clinical, 

imaging, and genetic data exist. We used this data to address the following:  

1. Investigate if BA profiles are altered in MCI and AD patients and if these differences are 

related to cognitive decline.  

2. Use ratios of BAs to pinpoint possible enzymatic alterations in the liver and in the gut 

microbiome that directly contribute to altered BA profile. 

3. Investigate whether immune related AD genome-wide significant genes affect levels of BAs 

in circulation as markers for altered gut microbiome function. 

In a subsequent paper we evaluated correlations between BAs and ATN biomarkers of AD 

including CSF biomarkers, atrophy, and brain glucose metabolism.  

2. Methods  

2.1. Study cohorts and samples: 

2.1.1. ADNI baseline samples 

Data used in the preparation of this article were downloaded from the ADNI database 

(http://adni.loni.usc.edu/). The ADNI studies have recruited over 1,500 adults, ages 55 to 90, 

consisting of cognitively normal older individuals (CN), individuals with subjective memory 

concerns (SMC), subjects with early (EMCI) or late mild cognitive impairment (LMCI), and 
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patients with early probable AD dementia. Subjects categorized as SMC were excluded in this 

study. For key clinical and demographic variables of ADNI participants included in this study, 

see Table 1.  

2.1.2. The Religious Orders Study and the Rush Memory and Aging Project (ROS/MAP) for 

replication of key finding 

The ROS/MAP studies are both longitudinal cohort studies of aging and AD at Rush 

University, and are designed to be used in joint analyses to maximize sample size. ROS enrolled 

individuals from religious orders (nuns, priests, brothers) across the United States[41]. MAP was 

designed to complement the ROS study by using a similar structure and design as ROS, but 

enrolling participants with a wider range of life experiences and socioeconomic status from the 

Chicago, IL metropolitan area[42]. The entire ROS/MAP cohort consists of approximately 3,300 

participants, more than 1,500 of whom have come to autopsy (www.radc.rush.edu). We 

measured a subset of serum BAs in 566 subjects (446 CN, 109 MCI, and 11 AD), as well as a 

subset of BAs in postmortem brain samples of 111 subjects with brain pathology performed (51 

CN, 31 MCI, and 27 AD at time of death), of whom 93 also had serum measurements. Key 

demographic variables of ROS/MAP cohort are listed in Supplementary Table 1. 

2.1.3. Rotterdam study (RS) 

RS was used to perform association of BAs with AD genetic variants. RS is a prospective 

population based study[43]. At the baseline examination in 1990-93, 7983 subjects ≥ 55 years of 

age were recruited from the Ommoord district of Rotterdam (RS-I). All the study participants 

were extensively interviewed and physically examined at baseline and after every 3 to 4 years. 

During 2000 to 2001, the baseline cohort (RS-I) was expanded with 3011 subjects ≥55 years of 

age, who were not yet part of RS-I (RS-II). In this analysis, fasting serum BAs were measured 

for 488 dementia-free subjects with mean(SD) age of 73.1(6.3) from RS-I using Metabolon 

platform (Durham, North Carolina, USA) as described previously[44] (see Supplementary 

Table 2 for demographics). 

2.2. Sample collection and quantification of BAs 

Targeted metabolomics profiling was performed to measure concentrations of 20 BA 

metabolites in serum samples of the ADNI cohorts (see Table 2 for list of BAs and 
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abbreviations). Morning fasting serum samples from the baseline visit were collected and 

aliquoted as described in the ADNI standard operating procedures. BA quantification was 

performed by liquid chromatography tandem mass spectrometry using the Biocrates® Life 

Sciences Bile Acids Kit (BIOCRATES Life Science AG, Innsbruck, Austria) according to 

manufacturer’s instructions. 

In the ROS/MAP, quantification of BA concentration in 566 serum samples and 111 

postmortem brain samples was performed at the University of Hawaii cancer center using ultra-

performance liquid chromatography coupled to a tandem mass spectrometry (UPLC-MS/MS) 

system (ACQUITY UPLC-Xevo TQ-S, Waters Corp., Milford, MA)[45].  

In the RS study, serum BAs were measured in 488 serum samples using the non-targeted 

Metabolon platform (Durham, North Carolina, USA). 

2.3. Quality control of BA profiles 

Metabolomics lab staff were blinded to diagnosis and pathological data in all the studies. 

In ADNI, after unblinding and data release, metabolite profiles went through quality-control 

(QC) checks and data preprocessing including batch-effect adjustment, missing value imputation, 

and log-transformation (Supplementary Methods and Supplementary Table 3). After QC 

correction, the dataset included 15 BAs (5 BAs did not pass QC criteria) for a total of 1,464 

subjects (after excluding 99 SMC). The preprocessed BA values after QC were used for 

subsequent association analyses directly or were adjusted to take into account the effect of 

medications on BA levels[46]. The list of medications selected for adjustment for each BA is 

shown in Supplementary Table 7. We performed all analyses using both medication adjusted 

and unadjusted BA levels, results derived from medication-adjusted data and the adjustment 

process are described in Supplementary Methods and its accompanying tables. 

In both RS and ROS/MAP, missing metabolite levels were imputed using half of the limit 

of detection. Log-transformed values were used in subsequent analyses. 

2.4. Clinical Outcomes 

For ADNI data, continuous response variables included the modified Alzheimer Disease 

Assessment Scale 13-item cognitive subscale (ADAS-Cog13; range, 0 [best] to 85 [worst] 

points), an index of general cognitive functioning. Categorical response variables included 

clinical diagnosis at baseline and MCI conversion (MCI-NonConverter, MCI-Converter). For the 
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ROS/MAP cohort, cognition was measured using a battery of tests (details are published[47-50] 

). A composite measure of global cognition was created by averaging the z-scores of all tests as 

previously described[50]. Mean and standard deviation at baseline were used to compute z-

scores. A negative z-score means that an individual has an overall score that is lower than the 

average of the entire sample at baseline. Cognitive tests were used from the same cycle as serum, 

and proximate to death for brain. 

2.5. Genotype and whole genome sequencing data 

Whole genome sequencing: For 817 ADNI participants, whole-genome sequencing 

(WGS) was performed on blood-derived genomic DNA. Samples were sequenced on the 

Illumina HiSeq2000 using paired-end read chemistry and read-length of 100bp at 30–40X 

coverage. For data processing and QC, an established analysis pipeline based on GATK was 

used. The QC steps included participant sex check, participant identity check, and variant quality 

check of the Illumina-generated VCF files (see Saykin et al., 2015 for details[51]). 

DNA genotyping in the participants of the RS cohort was performed using 550K, 550K 

duo, or 610K Illumina arrays at the internal genotyping facility of Erasmus Medical Center, 

Rotterdam. Study samples with excess autosomal heterozygosity, call rate < 97.5%, ethnic 

outliers and duplicate or family relationships were excluded during quality control analysis. 

Genotype exclusion criteria further included call rate < 95%, Hardy-Weinberg equilibrium p < 

1.0x10-6 and Minor Allele Frequency (MAF) < 1%. Genetic variants were imputed to the 

Haplotype Reference Consortium (HRC) reference panel (version 1.0)[52] using the Michigan 

imputation server[53].  

Reference genetic associations with BA profiles in healthy individuals were obtained 

from supplementary data of the atlas of genetic influences on blood metabolites[44].  To obtain 

genome-wide genetic associations with DCA, we considered all suggestive significant results 

with P < 1.0 x 10-5. Gene and complex trait annotations of the 13 resulting genetic loci were 

performed using the SNiPA tool v3.2[54] and the NHGRI-EBI Catalog of published genome-

wide association studies (www.ebi.ac.uk/gwas; accessed 02/01/2018, version 1.0)[55]. Lookup 

of AD genetic associations for DCA candidate variants was performed using the IGAP 

repository[2]. 
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2.6. Statistical analysis 

Differences of demographic, clinical, and cognitive measurements among the clinical 

diagnostic groups were evaluated using 2-sample t-test (for continuous variables) and Pearson 

Chi-squared test (for categorical variables). All analyses were performed in a metabolite-wise 

manner and Bonferroni-adjusted critical values were used to assess statistical significance. All 

models included age at baseline, sex, APOE ε4, and log10-transformed body mass index (BMI). 

For cognition, number of years of education was added as an additional covariate. 

Separate binary logistic regression models were conducted to examine cross-sectional 

association of each metabolite with baseline diagnosis (6 models per metabolite). We performed 

logistic regression models to compare BA levels between the MCI-NonConverter and MCI-

Converter groups. Cox proportional hazard models were used to evaluate the association of 

metabolite levels with progression from MCI (combined EMCI and LMCI subjects) to AD. The 

cross-sectional association of ADAS-Cog13 with BAs was assessed using linear regression 

models with square root of ADS-Cog13 as the dependent variable.  

In ROS/MAP, one sample per individual was used. Linear regression models with global 

cognition score as dependent variable and metabolites as independent variables were used to 

assess the association of serum BAs with cognition, while adjusting for sex, age, APOE ε4, and 

years of education. Similar analyses were conducted for brain BAs separately. 

We restricted our genetic variant analysis to single nucleotide polymorphisms (SNPs) in 

genes involved in immune response pathway that were significantly associated with AD genome-

wide[2, 56-58]. Selected genetic variant included rs616338-T(ABI3), rs143332484-T(TREM2), 

rs72824905-C(PLCG2), rs9331896-T(CLU), rs6656401-A(CR1), rs35349669-T(INPP5D), 

rs11771145-G(EPHA1), rs983392-A(MS4A6A), and rs190982 -A(MEF2C). Associations of AD 

risk variants in immune-related genes with selected metabolic traits in ADNI and RS were 

computed using sex, age, and BMI as covariates. 

3. Results 

Characteristics of ADNI participants are depicted in Table 1. Baseline cognitive 

measurements were significantly different among diagnostic groups, as expected. AD patients 

were more often carriers of at least one APOE ε4 allele. In addition, ADAS-Cog13 scores were 
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not significantly different between the MCI-converter and NonConverter groups. However, the 

proportion of APOE ε4 carriers was higher in MCI-Converter group. 

3.1. Serum BA profiles are significantly altered in AD 

The Bonferroni-corrected threshold for statistical significance was determined as P < 4.76 

x 10-4 (0.05 divided by 15 metabolites times 7 phenotypes including cognition). When we 

compared BA profile in AD to CN, we detected a significant decrease in levels of the primary 

BA, CA (P = 1.56 x 10-4). In contrast, a significant increase of bacterially produced secondary 

BA, DCA was noted (P = 1.61 x 10-4) along with several secondary conjugated BAs, GDCA, 

TDCA, and GLCA (Table 2). GDCA and GLCA were significantly associated with ADAS-

Cog13 where higher levels indicate worse cognition. Comparing BA levels between AD and 

both MCI groups yielded similar results, while the comparison of BA levels between the CN and 

MCI groups did not reach statistical significance (Supplementary Table 4). 

3.2. Ratios reflective of conversion of BAs by gut microbiome are significantly 

associated with AD and cognitive performance 

To determine which enzymatic processes in BA metabolism may underlie the differences 

noted in AD, we investigated eight selected ratios reflective of enzymatic activities in the liver 

and the gut microbiome. These ratios included: 

1. The CA:CDCA ratio was selected to test if a possible shift in BA synthesis from the 

primary to the alternative BA pathway occurs in the liver. 

2. Ratios of secondary to primary BAs (DCA:CA, GLCA:CDCA, and TLCA:CDCA) 

to investigate differences in gut microbiome enzymatic activity leading to altered 

production of secondary BAs. Since LCA was excluded in QC steps, the 

GLCA:CDCA and TLCA:CDCA ratios were used as proxies for LCA:CDCA ratio. 

3. GDCA:DCA and TDCA:DCA ratios were used to test if the observed secondary BA 

dysregulation is related to enzymatic differences related to their taurine and glycine 

conjugation. 

Here, we considered associations as significant at a Bonferroni-corrected P < 3.11 x 10-4 

(0.05 divided by all 23 metabolic traits times 7 phenotypes, which include cognition). The ratio 

of the primary BAs (CA:CDCA) showed no significant association with AD. Yet, for the ratio of 

DCA:CA, i.e. the conversion of unconjugated primary to unconjugated secondary BA, we 
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observed a highly significant association with AD diagnosis (P=1.53 x 10-8). Ratios between 

primary and secondary conjugated BAs showed the same effect and direction, including 

GDCA:CA (P=8.53 x 10-10), TDCA:CA (P=9.83 x 10-7), and GLCA:CDCA (P=3.61 x 10-6).  

Ratios modeling the glycine and taurine conjugation step of DCA, i.e. GDCA:DCA, 

TDCA:DCA, were not significantly associated with diagnosis (Fig. 2 and Table 3).  

Four ratios (including DCA:CA and GLCA:CDCA) were significantly associated with 

ADAS-Cog13. For the ratios we observed the same pattern as for AD diagnosis, with higher 

ratios of secondary to primary BAs being highly significantly associated with worse cognitive 

performance, while neither conjugation, nor a shift between primary and alternative BA 

pathways in the liver were significantly linked to cognition (Table 2 and 3).  

3.3. Serum BA levels were associated with progression from MCI to AD in ADNI 

The 9 metabolites and ratios associated with diagnosis were further investigated to assess 

their relationship with progression from MCI to AD. Out of 779 MCI (EMCI and LMCI) patients 

with mean (SD) follow-up 3.94 (2.35), 32.2% progressed to AD dementia in four years (labeled 

as MCI-Converter (n=251) vs. those that did not progressed MCI-NonConverter (n=528)). BA 

profiles were compared between the two groups using logistic regression models with conversion 

status as dependent variable and metabolite as independent variable. Models were adjusted for 

age, sex, BMI, baseline ADAS-Cog13 score, and APOE ε4. The Bonferroni-corrected threshold 

for statistical significance was determined as P < 5.56 x 10-3 (0.05 divided by 9 metabolites and 

ratios). We noted a decrease in CA levels (P=9.12 x 10-4) and an increase in ratios of GDCA:CA 

(P=1.63 x 10-3) and TDCA:CA (P=1.72 x 10-3) in MCI-Converters (Fig. 3 and Supplementary 

Table 5). Further survival analysis also revealed that levels of CA (hazard ratio (HR), 0.92; P 

=3.79 x 10-3), GDCA:CA (HR, 1.07; P=2.81 x 10-3),  and TDCA:CA (HR, 1.06; P=3.19 x 10-3) 

ratios predicted MCI progression (Fig. 3). 

3.4. Replication of association between cognition and DCA:CA ratio in serum and 

brain from ROS/MAP   

In order to confirm the associations observed in ADNI, we used an independent cohort of 

older adults (ROS/MAP) with measures of BAs in serum and brain to replicate our findings. 

Since the sample sizes in ROS/MAP were smaller than ADNI and AD cases were strongly 

underrepresented (n=11 for the serum samples), we focused on replicating the association 
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between global cognition (where higher values indicate better cognition, which is in contrast to 

ADNI where higher scores indicate worse cognition) and the DCA:CA ratio (as proxy for BA 

processing by the gut microbiome). Separate linear regression models were used for brain and 

serum samples. Pearson’s correlation coefficient between serum DCA:CA and DCA:CA in 93 

matching brain samples was 0.303 (P=0.003). In both serum and brain samples, higher levels of 

DCA:CA were associated with worse cognition (serum: β = -0.06; P = 0.011; brain:  β = -0.21; P 

= 0.032), replicating our ADNI finding. 

 

3.5. Genetic risk variants for AD in genes related to immune function are associated 

with bile acid levels  

To further evaluate that altered BA profiles in AD are related to processes in the gut 

microbiome, we investigated if BA profiles were associated with immune-related AD risk genes 

which may contribute to differences in gut microbiome composition.  Using the ADNI (n=817 

with WGS data) and RS (n=488) cohorts, association of selected BAs in the primary BA 

pathway (CA, DCA, GDCA, and TDCA) as well as the DCA:CA ratio with the selected genetic 

risk variants in 9 candidate genes with immune-related functions was assessed. In addition, we 

included associations from a published large cohort-based study[44] to increase sample size. 

With the exception of rs983392 in MS4A6A, we found nominally significant associations for the 

candidate variants in all of these genes (Supplementary Table 10). Three associations were 

significant after Bonferroni-correction (P < 1.1 x 10-3) in at least one of the studies: rs616338 

(ABI3) and rs190982 (MEF2C) were significantly associated with the DCA:CA ratio, and 

rs11771145 (EPHA1) was significantly linked to both DCA and TDCA. 

3.6. Genetic loci associated with DCA may influence susceptibility for AD 

To follow up on the hypothesis that elevated DCA levels in AD linked to gut dysbiosis 

are relevant in the pathogenesis of AD, we collected (suggestive) significant genetic associations 

with DCA levels (P < 1.0 x 10-5) from a previous study of genetic influences on blood 

metabolite levels in large population-based cohorts (n~7,800)[44]. We then annotated the 

resulting 13 loci with genetic trait associations, including AD associations from the IGAP 

study[2], and tried to replicate associations with DCA in ADNI (Supplementary Table 11). 

Two of the 13 genes, CYP7A1 and IMPA2, also showed association with DCA levels in ADNI 
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subjects. Notably, six of the 13 genes have been previously linked via genetic studies to AD 

(ABCA7) or AD phenotypes, including cognitive decline and CSF protein levels (LRRC7, CYCS, 

GPC6, FOXN3 and CNTNAP4).  

4. Discussion   

Cholesterol metabolism has been extensively implicated in the pathogenesis of AD 

through biological, epidemiological, and genetic studies, yet the molecular mechanisms linking 

cholesterol and AD pathology are still not well understood. Many cholesterol metabolism related 

genes such as BIN1, CLU, PICALM, ABCA7, ABCG1, and SORL1 are classified among the top 

20 late onset AD susceptibility loci by some of the largest genome-wide association studies 

(GWAS) undertaken to date[2, 19].  The ε4 allele of the apolipoprotein gene[59, 60], the most 

robust and reproducible genetic risk factor for AD, is involved in the transport of cholesterol.  

In this study, we interrogated a possible role for BA end products of cholesterol metabolism 

and clearance in cognitive changes in AD. BA are produced in liver and by the gut microbiome, 

provide key regulatory functions in energy homeostatic mechanisms, and are indicators of gut 

dysbiosis. Using stored blood samples from ADNI studies we established that BA profile is 

significantly altered in AD patients with changes detected earlier in disease (Fig. 1 and 2). We 

noted a significant decrease in serum levels of a liver-derived primary BA (CA) and an increase 

in levels of a bacterially produced secondary BAs and their conjugated forms (DCA, GDCA and 

TDCA, GLCA) in AD patients compared to cognitively normal subjects (Table 2, Fig. 1A). 

Higher levels of secondary conjugated BAs (GDCA, GLCA, and TLCA) were significantly 

associated with worse cognitive function measured by the ADAS-Cog13 (Table 2, Fig. 1A).  

To inform about enzymatic activity changes in liver and gut, three types of metabolite ratios 

were evaluated to inform about mechanisms leading to the noted altered BA profile in AD. We 

found no shift in metabolism between primary and alternative pathways (Fig. 2; no change in 

CA:CDCA); a significant change in production of secondary BAs via enzymatic activities in gut 

microbiome (increased DCA:CA as well as GLCA:CDCA and TLCA:CDCA as proxies for 

LCA:CDCA) and no change in processes involved in glycine and taurine conjugation of 

secondary BAs in the liver (no change in GDCA:DCA and TDCA:DCA). The significant 

increase in ratios of secondary to primary BAs (e.g. DCA:CA; Fig. 2), suggest altered activity of 

bacterial 7α-dehydroxylases leading to excess production of secondary BAs many of which were 
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previously reported as cytotoxic[34, 61-63]. This indicates potential gut dysbiosis in AD patients 

possibly caused by enhanced colonization of the large and possibly the small intestine with 

anaerobic bacteria capable of CA and CDCA 7α-dehydroxylation. Increases in these ratios also 

significantly correlated with poorer cognition (Table 2).  Together, these findings suggest that 

enzymatic steps in conversion of primary to secondary BAs in the gut might contribute to 

disease.  

We also evaluated effects of BA levels on risk of progression to AD among 538 MCI 

patients. We noted that lower levels of CA and higher ratio of secondary to primary BAs, 

GDCA:CA, and TDCA:CA were significantly associated with risk of developing AD dementia 

(Fig. 3, Supplementary Table 6).  

The increased production of bacterially produced DCA from CA modeled by ratio DCA:CA 

and its link to cognition was replicated in the independent ROS/MAP cohort. Association of the 

DCA:CA ratio with disease severity was evaluated separately in serum and brain samples. Due 

to the small number of AD patients (n=11), we used global cognitive score as an index of disease 

severity. Similar to ADNI findings, an increase in the DCA:CA in both serum and brain were 

significantly associated with worse cognitive outcome. This finding suggests that downstream 

effects of the gut-directed dysregulation of primary vs. secondary BAs are not limited to the 

periphery, but also might affect metabolic homeostasis and/or signaling functions in the human 

brain. 

Earlier smaller studies suggested differences in BA levels in AD[26, 38-40]. For example, in 

a study of 495 plasma metabolites comparing metabolite levels among MCI (n=58) and AD (n = 

100) with those of cognitively normal controls (n=93), levels of DCA, LCA, and GLCA were 

significantly elevated in the disease state[40]. Mapstone and colleagues[38] identified increased 

levels of glycoursodeoxycholic acid (GUDCA) in subjects likely to develop amnestic MCI or 

AD within the next 2 to 3 years compared to the control group. We replicated these findings with 

the exception of LCA that was excluded during QC and GUDCA, which showed only a non-

significant trend of upregulation in the AD group (P = 0.054).   

Composition and functional changes of the gut microbiome have been implicated in several 

diseases. Microbiome GWAS reveal that variants in many human genes involved in immunity 

and gut architecture are associated with an altered composition of the gut microbiome[64]. 

Although many factors such as diet can affect the microbial organisms residing in the gut, 
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emerging data support the hypothesis that certain host genetic variants predispose an individual 

towards microbiome dysbiosis and this can be linked to disorders of metabolism and immunity 

such as Crohn’s disease, ulcerative colitis, type 2 diabetes mellitus, asthma, obesity, autism and 

rheumatoid arthritis[64]. 

Accumulating evidence links dysregulation of the immune system to AD pathology. In 

particular, genetic association studies in AD have robustly identified several genetic risk variants 

in immune-related genes[2, 58]. Using the ADNI and RS cohorts, we investigated the association 

of BA profiles of CN subjects with genetic variants in nine AD-related and innate immunity 

genes. Eight of them were associated with selected BA levels at nominal significance 

(Supplementary Table 10). Three of these associations were significant after Bonferroni-

correction, with rs616338 (ABI3) and rs190982 (MEF2C) associated with the DCA:CA ratio, and 

rs11771145 (EPHA1) linked to both DCA and TDCA. The association of the BAs to AD genes 

suggest that these immune related genes may influence the risk of AD through the BA 

metabolism or changes in the gut microbiome. Interestingly, both ABI3 and MEF2C are thought 

to be involved in immune reactions to pro-inflammatory stimuli that are partially secreted by 

microbes[65, 66]. The link to the DCA:CA ratio may thus mirror differences in gut microbiome 

composition due to altered immune response in AD, providing a mechanistic hypothesis for our 

findings. The function of EPHA1 is not well understood but, it has been hypothesized that when 

activated, this receptor may affect the integrity of the blood brain barrier (BBB)[67]. Its 

association with levels of DCA is intriguing as DCA is known to be cytotoxic and can disrupt the 

BBB and then enter the brain[28]. rs11771145 is associated with gene expression levels of 

EPHA1[54], and as DCA is not known to be produced by human metabolism, changed 

expression and activity of EPHA1 may be related to DCA-mediated cytotoxic effects. 

Using an established atlas of genetic influences on human blood metabolites[44], we 

further investigated a potential cytotoxic role of DCA. For almost half of the 13 identified loci, 

we found genetic evidence for involvement in AD-linked complex traits (Supplementary Table 

11). In particular, ABCA7 is an AD risk gene replicated in several genetic studies[68, 69]. Five 

additional genes (LRRC7, CYCS, GPC6, FOXN3, and CNTNAP4) genetically influence AD 

phenotypes, including cognitive decline and CSF markers. While it remains speculative if and 

how these genes interact with DCA to contribute to AD risk, it is intriguing that we identified 

ABCA7 by screening for associations with DCA levels. ABCA7 is highly expressed in the brain, 
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and functions in the efflux of lipids, including cholesterol, from cells. Due to the structural 

similarity of DCA and cholesterol, we hypothesize that ABCA7 may be able to also transport this 

BA, reconciling metabolomics findings via a functional hypothesis to a risk gene for AD. The 

findings that BA levels are regulated by AD related genes might provide new mechanistic 

insights. 

There is growing support for strong connections between the intestinal environment, with its 

diverse microbial composition and activity, and the functions of the central nervous system. The 

“gut-brain metabolic axis” facilitates bidirectional chemical communication between the central 

and enteric nervous systems through mechanisms just starting to be defined[7-9]. Such a 

metabolic axis is thought to be involved in the regulation of multiple host metabolic pathways in 

which levels of hormones, neurotransmitters, amines, GABA, short-chain fatty acids (SCFA), 

lipid metabolites, and others are regulated by gut microbiome activity[12]. Changes in the 

composition of intestinal bacterial populations are associated with a wide array of conditions, 

including neurological and neurodevelopmental disorders such as multiple sclerosis,  autism, 

depression, schizophrenia, and Parkinson’s disease[70-72]. In addition, increasing evidence 

suggest that liver disease may impact cognitive functions and contribute to AD[73]. 

Our findings suggest novel metabolic links in AD where BAs represent a component of 

the gut-liver-brain axis that relates to cognitive functions. It is of interest that BAs that are 

ligands for the nuclear transcription factor FXR, which along with other nuclear receptors acts 

synergistically as metabolic sensors to regulate energy homeostasis pathways[74, 75] 

peripherally might also propagate their effects to the brain. Interestingly, levels of four BAs that 

are produced by the gut microbiome and that we show to be significantly correlated with disease 

status and cognition (DCA, GLCA, TLCA, TDCA) are hydrophobic and cytotoxic[34, 35, 76, 

77]. Cell lines, animal models, and human studies suggest that levels of such BA, particularly 

DCA, lead to a disruption of mitochondrial membranes resulting in increased reactive oxygen 

species, markers of inflammation, and apoptosis as well as decreases in cell viability and DNA 

synthesis[34, 35, 78]. DCA increases BBB permeability with deuterium labelled DCA showing it 

crosses the BBB in rodents[27, 29]. Increased amounts of secondary BAs in blood may enter the 

brain through induced permeability of the BBB, affecting brain physiology and metabolism[28]. 

Additionally, the BA nuclear receptor FXR, TGR5, and transporters Ostα/Ostβ seem to be 

expressed in the brain[79]. Several studies in human and animal brains also revealed that the full 
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panel of BAs are found in the brain[24-27], but it is unclear whether this is due to transport from 

the periphery, from local synthesis, or both. The function of these BAs in the brain remains 

poorly defined with some support for them acting as neurosteroids[80]  

BA levels and the gut microbiome influence each other, where BSH-rich bacteria readily 

modify the BA profile while, on the other hand, intestinal BAs control the growth and 

maintenance of commensal bacteria, maintain barrier integrity, and modulate the immune 

system[81-84]. Such changes might impact brain functions. Future longitudinal studies covering 

pre-symptomatic stages are needed to establish the influence of immune changes on gut 

microbiome composition and activity in AD patient. Tracking earliest changes in BA and other 

gut derived metabolites might provide insights into causality. Labeling studies are needed to 

evaluate if BAs cross the BBB and build up in brain with further elucidation of their signaling 

and regulatory functions centrally. However, we cannot exclude the possibility that changes in 

the brain during disease can also impact the gut and liver, and hence some of our findings might 

be brain derived.  

 

4.1. Limitations  

This is an observational study, the results of which may contain confounding biases. For 

example, diet, lifestyle, exposome and other factors may contribute to changes in the gut. It 

remains unclear how these important factors are related to AD pathogenesis and whether the 

observed differences we note are causes or consequences of disease. Further studies of metabolic 

changes in normal aging are required to help define which aspects of BA metabolism might be 

related to disease vs normal aging. Use of medications was extensively evaluated as a possible 

confound (Supplementary methods and Tables 8-10) and our key findings remained after 

controlling for medication use but larger studies need to further evaluate the effect of these 

medications. Additional experimental studies are needed to more fully define the expression of 

BAs and their receptors in the brain and mechanistic roles of BAs in the development of AD. 

The impact of BAs on FXR, TGR5, vitamin, and hormone receptors in the brain and the 

signaling pathways impacted are currently unclear. It is important to evaluate in other large 

community studies the generalizability of our findings. The genetic links need to be tested in 

large populations.  
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5. Conclusions  

In summary, there is evidence of a relationship among intestinal BA profile, gut 

microbial composition and/or activity, innate immunity, and genetic variants implicated in AD. 

When disrupted, BAs may contribute to cognitive changes, highlighting the importance of 

cholesterol clearance and its regulation in AD. Disorders in BA metabolism cause cholestatic 

liver diseases, dyslipidemia, fatty liver diseases, cardiovascular diseases, and diabetes, which are 

all associated with risk of cognitive decline, directly or indirectly. Our results lend support to this 

relationship in the context of AD and cohorts at risk for AD. Our evolving understanding of the 

gut microbiome’s role in aging and in central nervous system diseases and their progression 

could open potential new hypotheses in the field, regardless of whether the role is ultimately 

found to be causative, consequence, or contributory. The role of the gut microbiome in AD needs 

to be further investigated along with the emerging links between central and peripheral metabolic 

failures that might contribute to brain health and disease during aging.   
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Table 1.A Demographics of ADNI participants stratified by baseline diagnosisa.  

Variable 
N 

CN 

(N=370) 

EMCI 

(N=284) 

LMCI 

(N=505) 

AD 

(N=305) 
p-valueb 

Age 1464 74.58(5.71) 71.12(7.51) 73.95(7.59) 74.70(7.79) P<0.001 

Sex: Female, No. (%) 1464 190(51%) 130(46%) 197(39%) 139(46%) P=0.004 

Education, years 1464 16.28(2.92) 15.95(2.66) 15.87(2.90) 15.16(3.00) P<0.001 

BMI (Kg/M2) 1461 27.05(4.46) 28.06(5.41) 26.54(4.25) 25.83(4.69) P<0.001 

≥1 APOE ε4 allele, No. 

(%)  
1464 104(28%) 121(43%) 273(54%) 202(66%) P<0.001 

ADAS-Cog13c 1455 9.19(4.17) 12.64(5.40) 18.67(6.62) 29.67(8.20) P<0.001 

aData are reported as mean(SD) unless otherwise indicated. Bolded values indicate statistical 
significance. SD: Standard deviation. 
bBased on 2-sample t tests, or Pearson 𝜒ଶ tests. 
cScore explanations: ADAS-Cog13 range, 0 (best) to 85 (worst). 
Abbreviations: AD: Alzheimer’s disease; BMI: Body mass index; CN: Cognitively normal; 
EMCI: Early mild cognitive impairment; LMCI: Late mild cognitive impairment; ADAS-
Cog13, Alzheimer Disease Assessment Scale 13-item cognitive subscale. 
 

 

 

Table 1.B Demographics of ADNI participants stratified by MCI progression to ADa.  

Variable 
N 

MCI-NonConverter 

(N=538) 

MCI-Converter 

(N=251) 
p-valueb 

Age 789 72.47(7.90) 73.91(7.08) P=0.01 

Sex: Female, No. (%) 789 41%  (223) 41%  (104) P=1 

Education, years 789 15.95(2.85) 15.79(2.76) P=0.43 

BMI (Kg/M2) 788 27.37(4.80) 26.47(4.61) P=0.005 

≥1 APOE ε4 allele, No. 

(%)  
789 41%(223) 68%(171) P<0.001 

ADAS-Cog13 786 14.26(6.04) 21.31(5.94) P=0.29 

aMCI Subjects that converted to AD dementia in 4 years after baseline were labeled as MCI 
Converter. 
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Table 2. Primary and Secondary bile acids measured in the ADNI study and their cross-sectional 

association with diagnosis and cognitiona. 

Abbreviation Bile Acid Name Category CN vs. AD  (n=673)       

OR (95% CI); P-valueb 

ADAS-Cog13 (n=1453) 

β(95% CI); P-value c 

CA Cholic  Primary 0.85(0.78,0.92);1.56E-04 -0.04(-0.07,-0.01);2.81E-03 

CDCA Chenodeoxycholic Primary 0.94(0.87,1.01);7.19E-02 -0.02(-0.04,0.00);1.07E-01 

GCA Glycocholic Primary 

Conjugated 

1.07(0.96,1.18);2.03E-01 0.01(-0.02,0.05);4.36E-01 

GCDCA Glycochenodeoxycholic Primary 

Conjugated 

1.15(1.02,1.29);2.07E-02 0.06(0.02,0.09);4.60E-03 

TCA Taurocholic Primary 

Conjugated 

1.03(0.94,1.12);5.44E-01 -0.01(-0.03,0.03);7.84E-01 

TCDCA Taurochenodeoxycholic Primary 

Conjugated 

1.04(0.94,1.15);4.29E-01 0.02(-0.02,0.05);3.39E-01 

TMCA Tauromuricholic Primary 

Conjugated 

1.09(1.00,1.18);4.46E-02 0.029(0.00,0.06);4.21E-02 

DCA Deoxycholic Secondary 1.24(1.11,1.39);1.61E-04 0.05(0.01,0.08);9.26E-03 

UDCA Ursodeoxycholic Secondary 0.96(0.90,1.03);2.41E-01 -0.01(-0.03,0.01);2.44E-01 

GDCA Glycodeoxycholic Secondary 

Conjugated 

1.30(1.17,1.43);4.20E-07 0.07(0.04,0.10);1.05E-05 

TDCA Taurodeoxycholic Secondary 

Conjugated 

1.19(1.08,1.30);3.26E-04 0.05(0.02,0.08);2.39E-03 

GLCA Glycolithocholic Secondary 

Conjugated 

1.33(1.20,1.48);9.21E-08 0.07(0.04,0.11);1.97E-05 

TLCA Taurolithocholic Secondary 

Conjugated 

1.18(1.06,1.30);1.50E-03 0.06(0.03,0.09);4.83E-04 

GUDCA Glycoursodeoxycholic Secondary 

Conjugated 

1.09(1.00,1.19);5.39E-02 0.03(-0.00,0.06);6.04E-02 

TUDCA Tauroursodeoxycholic Secondary 

Conjugated 

1.08(0.96,1.20);1.86E-01 0.01(-0.02,0.05);4.85E-01 

a Statistically significant associations that passed Bonferroni correction are bolded. 
bOdds ratios and p-values were obtained from logistic regressions. Models were corrected for 
age, sex, body mass index, and APOE ε4 status; Bonferroni-adjusted critical value was set to 
5.76 x 10-4 (0.05 divided by 15 metabolites times 7 phenotypes including cognition) 
c Outcome: Square root of ADASCog-13 (0 [best] to 85 [worst]); Models were corrected for age, 
sex, years of education, body mass index and APOE ε4 status; Bonferroni-adjusted critical value 
was set to 2.17E-03.  
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Table 3. Ratios of bile acids reflective of gut microbiome and liver enzymatic activities and their 
correlation with disease status and cognitive functiona. 
  

Ratios informative 
about metabolic 

processes 

Ratios calculated CN vs. AD (n=673) OR 
(95% CI); P-valueb 

ADAS-Cog13 (n=1453) 
β(95% CI); P-value c 

Bile acid synthesis: 
primary vs. alternative 
pathway 

CA:CDCA 0.87(0.77,0.97);1.67E-02 
 

-0.03(-0.07,0.01);1.27E-01 
 

Conversion from primary 
to secondary BA by the 
gut microbiome  

DCA:CA 1.25(1.16,1.35);1.53E-08 0.05(0.03,0.08);1.05E-05 

GDCA:CA 1.24(1.16,1.33);8.53E-10 0.06(0.04,0.08);1.20E-07 

TDCA:CA 1.16(1.10,1.24);9.83E-07 0.04(0.02,0.06);5.40E-05 

GLCA:CDCA 1.16(1.09,1.23);3.61E-06 0.04(0.02,0.06);9.15E-05 

TLCA:CDCA 1.09(1.03,1.16);1.60E-03 0.03(0.01,0.05);1.50E-03 

Glycine or Taurine 
conjugation of secondary 
bile acids by liver 
enzymes 

GDCA:DCA 1.16(1.02,1.31);2.41E-02 0.05(0.02,0.10);5.49E-03 

TDCA:DCA 1.02(0.93,1.11);7.40E-01 0.01(-0.02,0.04);4.15E-01 

 

aSeveral ratios were calculated to inform about possible enzymatic activity changes in 
Alzheimer’s patients. These ratios reflect: (1) Shift in bile acid metabolism from primary to 
alternative pathway. (2) Changes in gut microbiome correlated with production of secondary bile 
acids. (3) Changes in glycine and taurine conjugation of secondary bile acids. 
bOutcome: Baseline diagnosis; Odds ratios and p-values were obtained from logistics 
regressions. Models were corrected for age, sex, body mass index, and APOE ε4 status; 
Bonferroni-adjusted critical value was set to 1.04E-03 based on 6 possible pairwise comparison 
of diagnosis groups (CN, EMCI, LMCI, and AD) for 8 ratios. 
cOutcome: Square root of ADASCog-13 (0 [best] to 85 [worst]); Models were corrected for age, 
sex, years of education, body mass index, and APOE ε4 status; Bonferroni-adjusted critical value 
was set to .11 x 10-4 (0.05 divided by all 23 metabolic traits times 7 phenotypes, which include 
cognitive function). 
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Fig. 1A Bile acid synthesis and cholesterol clearance pathway 
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B. Regulation of bile acid synthesis by feedback mechanism and bile acid transport through enterohepatic 
circulation. In the liver the bile acids (CDCA, DCA, LCA, CA) activate FXR that inhibits (via a repressor SHP, not 
shown here) the rate-limiting enzyme CYP7A1. The bile acids via FXR/SHP also inhibit the influx transporter 
NTCP; induce BSEP and canalicular bile acid secretion. In the intestine, bile acids, via FXR, inhibit the uptake 
transporter ASBT, decreasing absorption and increasing basolateral secretion into portal circulation by inducing 
OSTα & β. Bile acid activated FXR in the intestine also exerts inhibition on CYP7A1 in the liver via FGF19 
pathway. At the basolateral membrane of hepatocytes, transporters OSTα & β, and also MRP3 and MRP4, secrete 
bile acids into the systemic circulation. 
 
Abbreviations: ASBT: Apical Sodium-dependent Bile acid Transporters; BSEP: Bile Salt Export Pump; FXR: 
Farnesoid X Receptor; NTCP: Sodium/Taurocholate Co-transporting Polypeptide; SHP: Small heterodimer partner.  
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Fig. 2.  Ratios of bile acids reflective of liver and gut microbiome enzymatic activities in CN, 

Early MCI, Late MCI and AD patients. 

 
Three types of ratios were calculated to inform about possible enzymatic activity changes in Alzheimer’s patients. 
These ratios reflect one of the following: (1) Shift in bile acid metabolism from primary to alternative pathway. (2) 
Changes in gut microbiome correlated with production of secondary bile acids. (3) Changes in glycine and taurine 
conjugation of secondary bile acids. Color code: Green: cognitively normal; Yellow: EMCI; Blue: LMCI; Red: AD. 
Composition of selected ratios stratified by clinical diagnosis. Error bars indicate standard error of the means; 
Asterisks indicate statistical significance (*P<10-03, ** P< 10-04, and ***P< 10-05). P-values were estimated from 
logistic regression models and adjusted for age, sex, body mass index, and APOE ε4 status. The significance level 
was adjusted for multiple testing according to Bonferroni method to 0.05/138 = 3.62E-4; LCA were excluded in the 
quality control steps.  
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Fig. 3. Comparison of bile levels in MCI subjects who convert and those who did not convert to 

AD dementia. 

 

 
A and B. Lower levels of CA and higher levels of two secondary to primary ratios were significantly associated with 
higher odds of converting from MCI to AD. EMCI and LMCI patients that converted to AD dementia in 4 years 
after baseline were labeled as MCI-Converter; 9 bile acids and ratios that were significantly dysregulated between 
CN to AD were assessed; P-values were estimated from logistic regression models and adjusted for age, sex, body 
mass index, and APOE ε4 status; the significance level was adjusted for multiple testing according to Bonferroni 
0.05/9 = 5.56 x 10-3. C and D. Cox hazards model of the association of conversion from MCI to AD. Red line: 1st 
quantile, Red line: 3rd quantile. Analysis was conducted using quantitative values and stratification by quantiles was 
used only for graphical representation. 
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